Discovering the electron: JJ Thomson and the Cathode Ray Tube
Concept Introduction: JJ Thomson and the Discovery of the Electron
The discovery of the electron was an important step for physics, chemistry, and all fields of science. JJ Thomson made the discovery using the cathode ray tube. Learn all about the discovery, the importance of the discovery, and JJ Thomson in this tutorial article.
Further Reading on the Electron
Electron Orbital and Electron Shapes Writing Electron Configurations Electron Shells What are valence electrons? Electron Affinity Aufbau Principle
Who was JJ Thomson?
JJ Thomson was an English physicist who is credited with discovery of the electron in 1897. Thompson was born in December 1856 in Manchester, England and was educated at the University of Manchester and then the University of Cambridge, graduating with a degree in mathematics. Thompson made the switch to physics a few years later and began studying the properties of cathode rays. In addition to this work, Thomson also performed the first-ever mass spectrometr y experiments, discovered the first isotope and made important contributions both to the understanding of positively charged particles and electrical conductivity in gases.
Thomson did most of this work while leading the famed Cavendish Laboratory at the University of Cambridge. Although he received the Nobel Prize in physics and not chemistry, Thomson’s contributions to the field of chemistry are numerous. For instance, the discovery of the electron was vital to the development of chemistry today, and it was the first subatomic particle to be discovered. The proton and the neutron would soon follow as the full structure of the atom was discovered.
What is a cathode ray tube and why was it important?
Prior to the discovery of the electron, several scientists suggested that atoms consisted of smaller pieces. Yet until Thomson, no one had determined what these might be. Cathode rays played a critical role in unlocking this mystery. Thomson determined that charged particles much lighter than atoms , particles that we now call electrons made up cathode rays. Cathode rays form when electrons emit from one electrode and travel to another. The transfer occurs due to the application of a voltage in vacuum. Thomson also determined the mass to charge ratio of the electron using a cathode ray tube, another significant discovery.
How did Thomson make these discoveries?
Thomson was able to deflect the cathode ray towards a positively charged plate deduce that the particles in the beam were negatively charged. Then Thomson measured how much various strengths of magnetic fields bent the particles. Using this information Thomson determined the mass to charge ratio of an electron. These were the two critical pieces of information that lead to the discovery of the electron. Thomson was now able to determine that the particles in question were much smaller than atoms, but still highly charged. He finally proved atoms consisted of smaller components, something scientists puzzled over for a long time. Thomson called the particle “corpuscles” , not an electron. George Francis Fitzgerald suggested the name electron.
Why was the discovery of the electron important?
The discovery of the electron was the first step in a long journey towards a better understanding of the atom and chemical bonding. Although Thomson didn’t know it, the electron would turn out to be one of the most important particles in chemistry. We now know the electron forms the basis of all chemical bonds. In turn chemical bonds are essential to the reactions taking place around us every day. Thomson’s work provided the foundation for the work done by many other important scientists such as Einstein, Schrodinger, and Feynman.
Interesting Facts about JJ Thomson
Not only did Thomson receive the Nobel Prize in physics in 1906 , but his son Sir George Paget Thomson won the prize in 1937. A year earlier, in 1936, Thomson wrote an autobiography called “Recollections and Reflections”. He died in 1940, buried near Isaac Newton and Charles Darwin. JJ stands for “Joseph John”. Strangely, another author with the name JJ Thomson wrote a book with the same name in 1975. Thomson had many famous students, including Ernest Rutherford.
Discovery of the Electron: Further Reading
Protons, Neutrons & Electrons Discovering the nucleus with gold foil Millikan oil drop experiment Phase Diagrams
- Exploring CRT Experiment: Electron Charge-To-Mass Ratio
Welcome to Warren Institute! In this article, we delve into the fascinating world of Cathode Ray Tube Experiment and explore the concept of Charge To Mass Ratio of an Electron. This experiment played a crucial role in understanding the fundamental properties of electrons and their behavior in electric and magnetic fields. Join us as we uncover the intricacies of this groundbreaking experiment, its historical significance, and its implications for modern Mathematics education . Get ready to embark on an electrifying journey that will illuminate your understanding of the charge-to-mass ratio of electrons. Stay tuned for more electrifying content at Warren Institute!
The Cathode Ray Tube Experiment: Understanding the Charge To Mass Ratio of an Electron
What is the significance of the cathode ray tube experiment in understanding the charge to mass ratio of an electron, how does the cathode ray tube experiment contribute to our understanding of electromagnetic forces in relation to the charge to mass ratio of an electron, what mathematical concepts and calculations are involved in determining the charge to mass ratio of an electron using the cathode ray tube experiment, how does the cathode ray tube experiment help students visualize and understand the relationship between electric fields and the charge to mass ratio of an electron, what are some common misconceptions or challenges that students may face when learning about the cathode ray tube experiment and the charge to mass ratio of an electron in a mathematics education setting.
1. Historical Background of the Cathode Ray Tube Experiment In this section, we explore the historical context of the cathode ray tube experiment and its significance in the field of mathematics education. We discuss the contributions of scientists such as J.J. Thomson and their discoveries related to the charge to mass ratio of an electron.
2. Experimental Setup and Procedure Here, we provide a detailed explanation of the experimental setup and procedure involved in the cathode ray tube experiment. We discuss the equipment used, such as the cathode ray tube itself, and how the charge to mass ratio of an electron is determined through measurements and calculations.
3. Mathematical Concepts and Principles Applied In this section, we delve into the mathematical concepts and principles applied in the cathode ray tube experiment. We discuss topics such as electromagnetic fields, electric potential, and motion in magnetic fields, highlighting their relevance and importance in understanding the charge to mass ratio of an electron.
4. Educational Implications and Applications In this final section, we explore the educational implications and applications of the cathode ray tube experiment in mathematics education. We discuss how this experiment can be utilized as a teaching tool to enhance students ' understanding of key mathematical concepts, such as measurement, data analysis, and scientific inquiry. We also highlight the broader significance of this experiment in fostering critical thinking and problem-solving skills among students.
frequently asked questions
The Cathode Ray Tube experiment is significant in understanding the charge to mass ratio of an electron because it provided direct evidence for the existence of negatively charged particles (electrons) and their properties. Through this experiment, scientists were able to determine that the deflection of the cathode rays was influenced by both electric and magnetic fields. By measuring the extent of deflection and manipulating the electric and magnetic fields, they were able to calculate the charge to mass ratio of the electrons. This experiment played a pivotal role in the development of the electron's understanding and set the foundation for further advances in particle physics.
The Cathode Ray Tube experiment played a crucial role in our understanding of electromagnetic forces and the charge to mass ratio of an electron . This experiment demonstrated that the trajectory of electrons inside a vacuum tube could be manipulated by applying electric and magnetic fields. By varying these fields and observing the resulting deflections of the electron beam, scientists were able to determine the relationship between the force acting on the electrons, their charge, and their mass. This groundbreaking experiment provided empirical evidence for the existence of the electron and paved the way for further advancements in the field of electromagnetism.
The mathematical concepts and calculations involved in determining the charge to mass ratio of an electron using the Cathode Ray Tube experiment include measuring the deflection of the electron beam , applying electromagnetic principles , calculating the magnetic field strength , and solving for the charge to mass ratio using the equations of motion.
The Cathode Ray Tube experiment helps students visualize and understand the relationship between electric fields and the charge to mass ratio of an electron by demonstrating the deflection of electron beams in the presence of electric and magnetic fields . This experiment allows students to observe how varying the electric field or magnetic field affects the path of the electron beam, enabling them to make connections between the magnitude and direction of the electric field, the force experienced by the electron, and the resulting deflection . Through this hands-on experience, students can develop a deeper understanding of the fundamental concepts of electric fields and the charge to mass ratio of an electron .
One common misconception students may have when learning about the Cathode Ray Tube experiment and the charge to mass ratio of an electron in a mathematics education setting is the belief that the experiment itself is solely based on mathematical principles. While mathematics is certainly involved in analyzing the data and understanding the relationships between variables, the experiment itself is a physical demonstration that requires a solid understanding of physics concepts. Another challenge students may face is grasping the concept of charge to mass ratio. This ratio requires understanding the properties of electric charge and mass, as well as the interactions between them. It may be difficult for students to visualize and comprehend how these two fundamental properties are related.
In conclusion, the Cathode Ray Tube experiment has played a crucial role in our understanding of the charge to mass ratio of an electron. Through meticulous calculations and precise measurements, scientists were able to determine this fundamental property, contributing to the foundation of modern physics. This experiment exemplifies the importance of hands-on learning and experimentation in mathematics education, allowing students to explore and discover concepts for themselves. By engaging in such activities, students not only deepen their understanding of mathematical principles but also develop critical thinking skills. Ultimately, the Cathode Ray Tube experiment serves as a powerful tool in mathematics education, inspiring curiosity and fostering a passion for scientific inquiry.
If you want to know other articles similar to Exploring CRT Experiment: Electron Charge-To-Mass Ratio you can visit the category General Education .
Michaell Miller
Michael Miller is a passionate blog writer and advanced mathematics teacher with a deep understanding of mathematical physics. With years of teaching experience, Michael combines his love of mathematics with an exceptional ability to communicate complex concepts in an accessible way. His blog posts offer a unique and enriching perspective on mathematical and physical topics, making learning fascinating and understandable for all.
- Exploring the Basics of LEDs - A Bright Introduction
- Divide and conquer: Square roots made easy!
Sagittal Eye Anatomy: Engaging Art-Labeling Activity for Internal Structures
Unleashing the Potential: How Computers Empower K-12 Educators and Students
Unlocking the Power of Rows: A Guide to Understanding Horizontal Cells in a Worksheet
Happy-Go-Lucky Electric Company: Your Only Source for Bright Solutions
Identifying Compound in Newman Projection: Name the Structure Shown
Bill's Fruit Dilemma: Juggling 5 Apples and 5 Bananas in Math Class
- Anatomy & Physiology
- Astrophysics
- Earth Science
- Environmental Science
- Organic Chemistry
- Precalculus
- Trigonometry
- English Grammar
- U.S. History
- World History
... and beyond
- Socratic Meta
- Featured Answers
- Cathode Ray Tube Experiment
Key Questions
Thomson's experiments with cathode ray tubes helped him to discover the electron.
This ushered in a model of atomic structure referred to as the plum pudding model. I like to think of it like a sphere shaped chocolate chip cookie since plum pudding is not super popular in the US.
The cookie dough (they didn't know what it was yet) is positively charged and the chocolate chips (electrons) are negatively charged and scattered randomly throughout the cookie (atom). The positive and negative charges cancel producing a neutral atom.
- Why Does Water Expand When It Freezes
- Gold Foil Experiment
- Faraday Cage
- Oil Drop Experiment
- Magnetic Monopole
- Why Do Fireflies Light Up
- Types of Blood Cells With Their Structure, and Functions
- The Main Parts of a Plant With Their Functions
- Parts of a Flower With Their Structure and Functions
- Parts of a Leaf With Their Structure and Functions
- Why Does Ice Float on Water
- Why Does Oil Float on Water
- How Do Clouds Form
- What Causes Lightning
- How are Diamonds Made
- Types of Meteorites
- Types of Volcanoes
- Types of Rocks
Cathode Ray Tube (CRT)
Cathode ray tube definition.
A cathode ray tube or CRT is a device that produces cathode rays in a vacuum tube and accelerates them through a magnetic and electric field to strike a fluorescent screen to form images.
Cathode Ray Tube History
The eminent physicist Johann Hittorf discovered cathode rays in 1869 in Crookes tubes. Crookes tubes are partially vacuum tubes having two electrodes kept at a high potential difference to discharge cathode rays from the negatively charged electrode cathode. Arthur Schuster and William Crooks proved that cathode rays are deflected by electric and magnetic fields, respectively. In the year 1897, the English physicist J.J. Thomson’s experiments with cathode rays led to the discovery of the electron , the first subatomic particle to be discovered.
The earliest version of the cathode ray tube, Braun Tube, was invented in 1897 by the German physicist Ferdinand Braun. It employed a cold cathode for working. He used a phosphor-coated mica screen and a diaphragm to produce a visible dot. The cathode beam was deflected by a magnetic field only, in contrast to the discharge tube used earlier in the same year by J.J. Thomson, which employed only electrostatic deflection using two internal plates. Braun is also credited with the invention of the cathode ray tube oscilloscope, also known as Braun’s Electrometer.
In 1907, the cathode ray tube was first used in television when Russian scientist Boris Rosing passed a video signal through it to obtain geometric shapes on the screen. Earlier cathode ray tubes used cold cathodes. However, a hot cathode came into existence after being developed by John B. Johnson and Harry Weiner Weinhart of Western Electric. This type of cathode consists of a thin filament heated to a very high temperature by passing an electric current through it. It uses thermionic emissions in vacuum tubes to release electrons from a target.
The first commercial cathode ray tube television manufacture dates back to 1934 by the company Telefunken in Germany. This curved the path for large-scale manufacture and use of CRT TVs until the recent development of Liquid Crystal Displays, Light Emitting diodes, and Plasma TVs.
Cathode Ray Tube Description
The CRT is composed of three parts.
Electron Gun
This part produces a stream of electrons traveling at very high speeds by the process of thermionic emission. A thin filament is heated up by the passage of alternating current through it. It is used to heat the cathode, generally made of the metal cesium, which releases a stream of electrons when heated to temperatures of about 1750 F. The anode, which is the positively charged electrode, is placed a small distance away and is maintained at a high voltage which forces the cathode rays to gain considerably high accelerations as they move towards it.
The stream of electrons passes through a small aperture in the anode to land in the central part of the tube. There is a grid or a series of grids maintained at a variable potential, which control(s) the intensity of the electron beam reaching the anode. The brightness of the final image formed on the screen is also restricted thus. A monochrome CRT has a single electron gun, whereas a color CRT has three electron guns for the primary colors, red, green, and blue, which overlap among themselves to produce colored images.
Deflection System
The electron stream, after coming out of the anode, tends to spread out in the form of a cone. But it needs to be focused to form a sharp point on the screen. Also, its position on the screen should be as desired. This is achieved by subjecting the beam to magnetic and electric fields perpendicular to each other. The straight path of the beam then gets deflected, and it hits the screen at the desired point. It should be kept in mind that the anode gives it a considerable acceleration of the order of fractions of the speed of light. This endows the beam with very high amounts of energy.
Fluorescent CRT Screen
This part projects the image for the user’s view. It is given a coating of zinc sulfide or phosphorus which can produce fluorescence. When the highly energetic beam of electrons strikes it, its kinetic energy is converted to light energy, thus forming an illuminated spot on the screen. When complex signals are applied to the deflection system, the bright spot races across the screen horizontally and vertically, forming what is called the raster.
The raster scanning takes place in the same way as we would read a book. That is, from left to right, then go down and back to the left and move right to finish reading the line. This continues until the full screen is finished scanning. However, the CRT scan takes place so rapidly every second that the viewer cannot follow the actual movement of the dot but can see the whole image so produced.
Cathode Ray Tube Mechanism Video
Cathode ray tube experiment by j.j.thomson.
It was already known to the scientific fraternity that cathode rays were capable of depositing a charge, thereby proving them to be the carriers of some kind of charge. But they were not really sure whether this charge could be separated from the particles forming the rays. Hence, the celebrated English physicist J. J. Thomson devised an experiment to test the exact nature.
Thomson’s First CRT Experiment
Thomson took a cathode ray tube, and at the place where the electron beam was supposed to strike, he positioned a pair of metal cylinders having slits on them. The pair, in turn, was connected to an electrometer, a device for catching and measuring electric charges. Then, on operating the CRT, in the absence of any electric or magnetic fields, the beam of electrons traveled straight up to the cylinders, passed through the aptly positioned slits, and made the electrometer register a high amount of charge. So far, the result was quite an expected one.
In the next step, he put a magnet in the vicinity of the cathode ray path that set up a magnetic field. Now, as you may know, an electric field and a magnetic field can never act along the same line. Hence, the charged cathode rays get deflected from their path and give the slits a miss. The electrometer, hence, fails to register anything whatsoever. Thus, he concluded the cathode rays carry the charges along with them wherever they go, and it is impossible to separate the charges from the rays.
Thomson’s Second CRT Experiment
In his second attempt, Thomson tried to deflect the cathode rays by applying an electric field. It could prove the nature of the charge carried by them. There had been attempts before to achieve the end, but they had failed. He thought that if the streams are electrically charged, then they should be deflected by electric fields, but he could not explain why his setup failed to show any such movement.
He later came up with the idea that there was no change from the original path as the stream was covered by a conductor, that is, a layer of ionized air in this case. So he took great pains to make the interior of the tube as close to a vacuum as he could by drawing out all the residual air, and bravo! There was a pronounced deflection in the cathode rays. The great scientist had cleverly put two electrodes, positive and negative, halfway down the tube to produce the electric field. On observing that the beam deflected towards the anode, he could successfully prove that the cathode rays carried one and only one type of charge, negative.
Thomson’s Third CRT Experiment
Thomson tried to calculate the charge-to-mass ratio of the particles constituting the rays and found it to be exceptionally small. That implies the particles have either a very small mass or a very high charge. He decided on the former and gave a bold hypothesis that cathode rays were formed of particles emanating from the atom itself.
Experiment Summary
By using certain modifications in the regular CRT, Thomson’s cathode ray tube experiment proved that cathode rays consist of streams of negatively charged particles having smaller masses than that atoms. It was highly likely for them to be one of the components of atoms.
Cathode Ray Tube Applications
Oscilloscope.
It measures the changes in electrical voltage with time. If the horizontal plate is attached to a voltage source and the vertical to a clocking mechanism, then the variations in the magnitude of the voltage will show up on the CRT monitor in the form of a wave. With an increase in voltage, the line forming the wave shoots up while it comes down if the voltage is low. If, instead of a variable voltage source, the horizontal plates are connected to a circuit, then the arrangement can be used to detect any sudden change in its voltage. Thus, it can be used for troubleshooting purposes.
Televisions
Before the emergence of lightweight LCD and plasma TVs, all televisions were bulky and had cathode ray tubes in them. They had a very fast raster scan rate of about 1/50 th of a second. In a color TV, the persistence of the different colors would last for only the time between two consecutive scans. If it stayed longer, then the tube would produce blurred images. But if the effect of the colors ended before the next scan, then it gave rise to a flickering screen. Modern tube TVs use flat-screen CRTs, unlike their yesteryear counterparts.
Cathode Ray Tube Amusement Device
The predecessor to modern video games, the cathode ray tube amusement device gave the world the first gaming device. The CRT produced electronic signals in the form of a ray of light. Controller knobs in the tube were then used to adjust the trajectories of light so that it could hit on a target imprinted on a clear overlay attached to the CRT display screen. The game was conceptualized on World War II missile displays and created the effect of firing missiles at targets.
Other Applications
Cathode ray tube monitors are widely used as display devices in radars. However, the CRT computer monitor has gradually become obsolete with the introduction of TFT-LCD thin panel monitors.
Health Risks
Ionizing Radiation : CRTs can emit a small amount of ionizing radiation that needs to be kept under control by the Food and Drug Administration Regulations in 21 C.F.R. 1020.10. However, most CRTs manufactured after 2007 have much lesser emissions than the prescribed limit.
Flicker: Low refresh rates, 60Hz and below, can produce flicker in most people, although the susceptibility of eyesight to flicker varies from person to person.
Toxicity: Modern-day CRTs may have their rear glass tubes made of leaded glass, which is difficult to dispose of as they can cause an environmental hazard. Some of the older versions also contain cadmium and phosphorus, making the tubes highly toxic. Special cathode ray tube recycling processes fulfilling the norms of the United States Environmental Protection Agency should be followed.
Implosion: Very high levels of vacuum inside a CRT can cause it to implode if there is any damage to the covering glass. This is caused by the high atmospheric pressure, which forces the glass to crack and fly off at high speeds in all directions. Though modern CRTs have strong envelopes to prevent shattering, they should be handled very carefully.
Noise: The signal frequencies used to operate CRTs are of a very high range and are usually imperceptible to the human ear. However, small children can sometimes hear very high-pitched noises near CRT televisions. That is because they have a greater sensitivity to hearing.
The cathode ray tube was a useful invention in Science for the discovery of an important fundamental particle like an electron and also opened up newer arenas of research in atomic Physics. Until about the year 2000, it was the mainstay of televisions all over the world before being forced into oblivion due to the emergence of newer technologies.
https://en.wikipedia.org/wiki/Cathode_ray
https://www.chemteam.info/AtomicStructure/Disc-of-Electron-History.html
https://www.techtarget.com/whatis/definition/cathode-ray-tube-CRT
https://explorable.com/cathode-ray-experiment
http://www.scienceclarified.com/Ca-Ch/Cathode-Ray-Tube.html
Article was last reviewed on Tuesday, May 9, 2023
Related articles
One response to “Cathode Ray Tube (CRT)”
I want to ask that in cathode ray tube tv why electrons are never finish which is on cathode while the material have limited electrons
Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Save my name, email, and website in this browser for the next time I comment.
Popular Articles
Join our Newsletter
Fill your E-mail Address
Related Worksheets
- Privacy Policy
© 2024 ( Science Facts ). All rights reserved. Reproduction in whole or in part without permission is prohibited.
JJ Thompson’s Discovery of Electron: Cathode Ray Tube Experiment Explained
JJ Thomson discovered the electron in 1897 and there are tons of videos about it. However, most videos miss what JJ Thomson himself said was the motivating factor: a debate about how cathode rays move. Want to know not only how but why electrons were discovered?
Table of Contents
The start of jj thomson, how thomson discovered electrons: trials and errors, thomson’s conclusion.
A short history of Thomson: Joseph John Thomson, JJ on papers, to friends, and even to his own son [1] , was born in Lancashire, England to a middle class bookseller. When he was 14 years old, Thomson planned to get an apprenticeship to a locomotive engineer but it had a long waiting list, so, he applied to and was accepted at that very young age to Owen’s college.
Thompson later recalled that, “the authorities at Owens College thought my admission was such a scandal – I expect they feared that students would soon be coming in perambulators – that they passed regulations raising the minimum age for admission, so that such a catastrophe should not happen again.
[2] ” While in school, his father died, and his family didn’t have enough money for the apprenticeship. Instead, he relied on scholarships at universities – ironically leading him to much greater fame in academia. In 1884, at the tender age of 28, Thomson applied to be the head of the Cavendish Research Institute.
He mostly applied as a lark and was as surprised as anyone to actually get the position! “I felt like a fisherman who…had casually cast a line in an unlikely spot and hooked a fish much too heavy for him to land. [3] ” Suddenly, he had incredible resources, stability and ability to research whatever he wished.
He ended up having an unerring ability to pinpoint interesting phenomena for himself and for others. In fact, a full eight of his research assistants and his son eventually earned Nobel Prizes, but, of course, like Thomson’s own Nobel Prize, that was in the future.
Why did J. J. Thomson discover the electron in 1897? Well, according to Thomson: “the discovery of the electron began with an attempt to explain the discrepancy between the behavior of cathode rays under magnetic and electric forces [4] .” What did he mean by that?
Well, a cathode ray, or a ray in a vacuum tube that emanates from the negative electrode, can be easily moved with a magnet. This gave a charismatic English chemist named William Crookes the crazy idea that the cathode ray was made of charged particles in 1879!
However, 5 years later, a young German scientist named Heinrich Hertz found that he could not get the beam to move with parallel plates, or with an electric field. Hertz decided that Crookes was wrong, if the cathode ray was made of charged particles then it should be attracted to a positive plate and repulsed from a negative plate.
Ergo, it couldn’t be particles, and Hertz decided it was probably some new kind of electromagnetic wave, like a new kind of ultraviolet light. Further, in 1892, Hertz accidentally discovered that cathode rays could tunnel through thin pieces of metal, which seemed like further proof that Crookes was so very wrong.
Then, in December of 1895, a French physicist named Jean Perrin used a magnet to direct a cathode ray into and out of an electroscope (called a Faraday cylinder) and measured its charge. Perrin wrote, “the Faraday cylinder became negatively charged when the cathode rays entered it, and only when they entered it; the cathode rays are thus charged with negative electricity .
[5] ” This is why JJ Thomson was so confused, he felt that Perrin had, “conclusive evidence that the rays carried a charge of negative electricity” except that, “Hertz found that when they were exposed to an electric force they were not deflected at all.” What was going on?
In 1896, Thomson wondered if there might have been something wrong with Hertz’s experiment with the two plates. Thomson knew that the cathode ray tubes that they had only work if there is a little air in the tube and the amount of air needed depended on the shape of the terminals.
Thomson wondered if the air affected the results. Through trial and error, Thomson found he could get a “stronger” beam by shooting it through a positive anode with a hole in it. With this system he could evacuate the tube to a much higher degree and, if the vacuum was good enough, the cathode ray was moved by electrically charged plates, “just as negatively electrified particles would be.
[6] ” (If you are wondering why the air affected it, the air became ionized in the high electric field and became conductive. The conductive air then acted like a Faraday cage shielding the beam from the electric field.)
As stated before, Heinrich Hertz also found that cathode rays could travel through thin solids. How could a particle do that? Thomson thought that maybe particles could go through a solid if they were moving really, really fast. But how to determine how fast a ray was moving?
Thomson made an electromagnetic gauntlet. First, Thomson put a magnet near the ray to deflect the ray one-way and plates with electric charge to deflect the ray the other way. He then added or reduced the charge on the plates so that the forces were balanced and the ray went in a straight line.
He knew that the force from the magnet depended on the charge of the particle, its speed and the magnetic field (given the letter B). He also knew that the electric force from the plates only depended on the charge of the particle and the Electric field. Since these forces were balanced, Thomson could determine the speed of the particles from the ratio of the two fields.
Thomson found speeds as big as 60,000 miles per second or almost one third of the speed of light. Thomson recalled, “In all cases when the cathode rays are produced their velocity is much greater than the velocity of any other moving body with which we are acquainted. [7] ”
Thomson then did something even more ingenious; he removed the magnetic field. Now, he had a beam of particles moving at a known speed with a single force on them. They would fall, as Thomson said, “like a bullet projected horizontally with a velocity v and falling under gravity [8] ”.
Note that these “bullets” are falling because of the force between their charge and the charges on the electric plates as gravity is too small on such light objects to be influential. By measuring the distance the bullets went he could determine the time they were in the tube and by the distance they “fell” Thomson could determine their acceleration.
Using F=ma Thomson determine the ratio of the charge on the particle to the mass (or e/m). He found some very interesting results. First, no matter what variables he changed in the experiment, the value of e/m was constant. “We may… use any kind of substance we please for the electrodes and fill the tube with gas of any kind and yet the value of e/m will remain the same.
[9] ” This was a revolutionary result. Thomson concluded that everything contained these tiny little things that he called corpuscles (and we call electrons). He also deduced that the “corpuscles” in one item are exactly the same as the “corpuscles” in another. So, for example, an oxygen molecule contains the same kind of electrons as a piece of gold! Atoms are the building blocks of matter but inside the atoms (called subatomic) are these tiny electrons that are the same for everything .
The other result he found was that the value of e/m was gigantic, 1,700 times bigger than the value for a charged Hydrogen atom, the object with the largest value of e/m before this experiment. So, either the “corpuscle” had a ridiculously large charge or it was, well, ridiculously small.
A student of Thomson’s named C. T. R. Wilson had experimented with slowly falling water droplets that found that the charge on the corpuscles were, to the accuracy of the experiment, the same as the charge on a charged Hydrogen atom! Thomson concluded that his corpuscles were just very, very, tiny, about 1,700 times smaller then the Hydrogen atom [1] . These experiments lead Thomson to come to some interesting conclusions:
- Electrons are in everything and are well over a thousand times smaller then even the smallest atom.
- Benjamin Franklin thought positive objects had too much “electrical fire” and negative had too little. Really, positive objects have too few electrons and negative have too many. Oops.
- Although since Franklin, people thought current flowed from the positive side to the negative, really, the electrons are flowing the other way. When a person talks about “current” that flows from positive to negative they are talking about something that is not real! True “electric current” flows from negative to positive and is the real way the electrons move. [although by the time that people believed J.J. Thomson, it was too late to change our electronics, so people just decided to stick with “current” going the wrong way!]
- Since electrons are tiny and in everything but most things have a neutral charge, and because solid objects are solid, the electrons must be swimming in a sea or soup of positive charges. Like raisons in a raison cookie.
The first three are still considered correct over one hundred years later. The forth theory, the “plum pudding model” named after a truly English “desert” with raisins in sweet bread that the English torture people with during Christmas, was proposed by Thomson in 1904.
In 1908, a former student of Thomson’snamed Ernest Rutherford was experimenting with radiation, and inadvertently demolished the “plum pudding model” in the process. However, before I can get into Rutherford’s gold foil experiment, I first want to talk about what was going on in France concurrent to Thomson’s experiments.
This is a story of how a new mother working mostly in a converted shed discovered and named the radium that Rutherford was experimenting with. That woman’s name was Marie Sklodowska Curie, and that story is next time on the Lightning Tamers.
[1] the current number is 1,836 but Thomson got pretty close
[1] p 14 “Flash of the Cathode Rays: A History of JJ Thomson’s Electron” Dahl
[2] Thompson, J.J. Recollections and Reflections p. 2 Referred to in Davis & Falconer JJ. Thompson and the Discovery of the Electron 2002 p. 3
[3] Thomson, Joseph John Recollections and Reflections p. 98 quoted in Davis, E.A & Falconer, Isabel JJ Thomson and the Discovery of the Electron 2002 p. 35
[4] Thomson, JJ Recollections and Reflections p. 332-3
[5] “New Experiments on the Kathode Rays” Jean Perrin, December 30, 1985 translation appeared in Nature, Volume 53, p 298-9, January 30, 1896
[6] Nobel Prize speech?
Related Posts
How the inquisition led to the vacuum pump.
How in the world would the inquisition lead to the invention of the vacuum pump? …
The True Father of Electricity: Stephen Gray
On May 1, 1729 a retired clothing dyer noticed a single feather moving in a…
How Static Electricity Works
How did gold lead to the first rules of electricity? And, why is it ½…
Georg Matthias Bose: Crazy Experiments of the Enlightenment
Am I really going to light a fire with my bare finger? Of course, I…
Leave a Comment Cancel Reply
Your email address will not be published. Required fields are marked *
Save my name, email, and website in this browser for the next time I comment.
IMAGES
VIDEO
COMMENTS
The function of the cathode ray tube is to convert an electrical signal into a visual display. Cathode rays or streams of electron particlesare quite easy to produce, electrons orbit every atom and move from atom t…
Cathode rays form when electrons emit from one electrode and travel to another. The transfer occurs due to the application of a voltage in vacuum. Thomson also determined the mass to charge ratio of the electron using a cathode ray tube, …
The Cathode Ray Tube experiment helps students visualize and understand the relationship between electric fields and the charge to mass ratio of an electron by demonstrating the deflection of electron beams in the presence of electric and …
To see all my Chemistry videos, check outhttp://socratic.org/chemistryJ.J. Thompson discovered the electron, the first of the subatomic particles, using the ...
JJ Thompson did an experiment using a cathode ray tube and found that electrons passed from the surface of the cathode and accelerate toward the positively charged anode. …
Thomson’s First CRT Experiment. Thomson took a cathode ray tube, and at the place where the electron beam was supposed to strike, he positioned a pair of metal cylinders having slits on them. The pair, in turn, was …
Well, a cathode ray, or a ray in a vacuum tube that emanates from the negative electrode, can be easily moved with a magnet. This gave a charismatic English chemist named William Crookes the crazy idea that the …
In 1897, JJ Thomson discovered the electron in his famous cathode ray tube experiment. How did it work and why did Thomson do the experiment in the first pl...