Research-Methodology

Research Structure

Research structure is basically an outline of your paper. In your dissertation you are expected to provide the research structure towards the end of introduction chapter. The components of research structure are illustrated in table below:

 

 

Introduction

Introduction of research problem
Discussion of research background
Research aims and objectives
Rationale for the study
Research structure
 

Literature review

Definitions of main terms
Explanation of secondary data search strategy
Critical analysis of major models, theoretical frameworks and thoughts
 

 

Methodology

Research process
Research philosophy
Research design
Data collection methods and their application
Sampling
Findings Primary data presentation
Brief discussions
Discussions and analysis In-depth discussions and analysis of primary data
Comparisons of primary data to secondary data findings
 

Conclusions

Discussion of achievement of research aim and objectives
Limitations of research
Scope for future studies

Components of each chapter in research structure

The following is a sample of a research structure:

Chapter One communicates the purpose and focus of the study and explains the outline of the research. This chapter includes a brief explanation of the research background , and provides rationale for the selection of the research area . Moreover, the first chapter contains explanation of the research aim and objectives , and explains research structure.

Chapter Two constitutes a literature review, and accordingly, contains analysis of models and theoretical frameworks that have been previously introduced to the research area. This chapter contains definitions of main terms and explains search strategy for the secondary data . Viewpoints of other authors regarding the research area in general and research problem in particular have been presented in a logical manner in this chapter.

Chapter Three addresses methodology. The chapter explains the research process and addresses the issues of research philosophy . Moreover, methodology chapter contains explanation of research design , and the choice and implementation of data collection methods . Sampling aspect of the study and discussions of ethical considerations are also included in this chapter.

Chapter Four contains presentation of the primary data collected through questionnaires/interviews/focus groups/observation/etc. Presentation of primary data findings have been facilitated through bar charts/pie charts. Brief discussions have been included to explain each chart.

Chapter Five constitutes discussions and analyses. This chapter plays a critical role in the achievement of research aim and objectives. Findings of the literature review have been compared to primary data findings in this chapter. Also, in-depth discussions have been provided in relation to each individual research objective.

Chapter Six concludes the work and summarises the level of achievement of research aim and objectives. The chapter comprises acknowledgement of limitations of the study and highlights scope for future studies in the same research area.

Your dissertation has also to contain title page, acknowledgements, abstract, table of contents at the beginning. Furthermore, you need to add references, bibliography and appendices sections at the end of your dissertation.

Research Structure

John Dudovskiy

  • Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • Why students love us
  • Rebels Blog
  • Why we are different
  • All Products
  • Coming Soon

How to Start a Research Project: A Step-by-Step Guide

Person at desk with research materials and ideas.

Starting a research project can feel overwhelming, but breaking it down into manageable steps can make it easier. This guide will walk you through each stage, from choosing a topic to preparing for your final presentation. By following these steps, you'll be well on your way to completing a successful research project.

Key Takeaways

  • Choose a topic that interests you and is feasible to research.
  • Develop clear research questions and objectives to guide your study.
  • Conduct a thorough literature review to understand the existing research.
  • Create a detailed research plan with a timeline and methodology.
  • Engage with stakeholders and incorporate their feedback throughout the project.

Choosing a Research Topic

Identifying research interests.

Start by thinking about what excites you. Pick a topic that you find fun and fulfilling . This will keep you motivated throughout your research. Make a list of subjects you enjoy and see how they can relate to your field of study.

Evaluating Topic Feasibility

Once you have a few ideas, check if they are too broad or too narrow. A good topic should be manageable within the time you have. Ask yourself if you can cover all aspects of the topic in your thesis.

Consulting with Advisors

If you have difficulty finding a topic, consult with your advisors. Present your ideas to them and seek their guidance. They can provide valuable insights and help you refine your topic to ensure it is both engaging and manageable.

Defining the Research Problem

Formulating research questions.

Once you have a topic, the next step is to formulate research questions . These questions should target what you want to find out. They can focus on describing, comparing, evaluating, or explaining the research problem. A strong research question should be specific enough to be answered thoroughly using appropriate methods. Avoid questions that can be answered with a simple "yes" or "no".

Justifying the Research Problem

After formulating your research questions, you need to justify why your research problem is important . Explain the significance of your research in the context of existing literature. Highlight the gaps your research aims to fill and how it will contribute to the field. This step is crucial for crafting a compelling research proposal.

Setting Research Objectives

Finally, set clear research objectives. These are the specific goals you aim to achieve through your research. They should align with your research questions and provide a roadmap for your study. Establishing well-defined objectives will make it easier to create a research plan and stay on track throughout the research process.

Conducting a Comprehensive Literature Review

Finding credible sources.

Start by gathering reliable sources for your research. Use academic databases, libraries, and journals to find books, articles, and papers related to your topic. Make sure to evaluate the credibility of each source. Primary sources like published articles or autobiographies are firsthand accounts, while secondary sources like critical reviews are more removed.

Analyzing Existing Research

Once you have your sources, read through them and take notes on key points. Look for different viewpoints and how they relate to your research question. This will help you understand the current state of research in your field. Skimming sources initially can save time; set aside useful ones for a full read later.

Identifying Research Gaps

Identify areas that haven't been explored or questions that haven't been answered. These gaps can provide a direction for your own research. For example, if you're studying the impact of WhatsApp on communication, look for what hasn't been covered in existing studies. This will make your research more valuable and original.

Developing a Detailed Research Plan

Creating a solid research plan is crucial for the success of your thesis . It helps you stay organized and ensures that you cover all necessary aspects of your research.

Engaging with Stakeholders

Identifying key stakeholders.

To start, you need to identify all the key stakeholders involved in your research project. Stakeholders can include funders, academic supervisors, and anyone who will be affected by your study. Identifying potential resistance early on can help you address concerns before they become major issues.

Conducting Stakeholder Meetings

Once you have identified your stakeholders, the next step is to conduct meetings with them. These meetings are crucial for understanding their needs and expectations. Here are some steps to ensure productive meetings:

  • Identify all stakeholders : Make a list of everyone affected by your project, including customers and end users.
  • Keep communication open: Regular updates and open discussions help in aligning everyone's expectations.
  • Present your project plan: Explain how your plan addresses stakeholders' expectations and be open to feedback.
  • Determine roles: Decide who needs to see which reports and how often, and identify which decisions need approval and by whom.

Incorporating Stakeholder Feedback

Engaging stakeholders allows organizations to identify potential sources of resistance early in the change process. Incorporating their feedback is essential for the success of your project. Make sure to document all feedback and adjust your research plan accordingly. This will not only improve the quality of your research but also ensure that all stakeholders are on board with your project.

Selecting Appropriate Research Methods

Researchers collaborating in a colorful lab setting.

Qualitative vs Quantitative Methods

When choosing research methods , you need to decide between qualitative and quantitative approaches. Qualitative methods involve collecting non-numerical data, such as interviews and focus groups, to understand experiences and opinions. On the other hand, quantitative methods focus on numerical data and statistical analysis, like surveys and experiments. Sometimes, a mixed-method approach, combining both qualitative and quantitative techniques, can provide a more comprehensive understanding of your research problem.

Choosing Data Collection Tools

Selecting the right data collection tools is crucial for gathering accurate and reliable data. Common tools include:

  • Surveys : Useful for collecting data from a large number of participants.
  • Interviews : Provide in-depth insights through one-on-one conversations.
  • Focus Groups : Gather diverse perspectives through group discussions.
  • Observations : Allow you to study behaviors in natural settings.

Each tool has its strengths and weaknesses, so choose the one that best aligns with your research objectives.

Ensuring Ethical Compliance

Ethical compliance is a fundamental aspect of any research project. Make sure to obtain informed consent from all participants and ensure their privacy and confidentiality. Additionally, consider any potential risks to participants and take steps to minimize them. Ethical research not only protects participants but also enhances the credibility of your study.

Implementing the Research Plan

Researcher at desk with books and charts

Data Collection Procedures

To start, you need to establish clear data collection procedures . This involves selecting the right tools and methods for gathering data. Whether you choose surveys, interviews, or experiments, ensure that your methods align with your research objectives. It's crucial to define the purpose of your project and identify research objectives before diving into data collection.

Data Analysis Techniques

Once data is collected, the next step is to analyze it. Choose appropriate data analysis techniques that suit your research design. This could involve statistical analysis for quantitative data or thematic analysis for qualitative data. Remember, the goal is to derive meaningful insights that address your research questions.

Maintaining Research Integrity

Maintaining research integrity is essential throughout the implementation phase. This means adhering to ethical guidelines, ensuring data accuracy, and avoiding any form of bias. By maintaining high standards, you ensure the credibility and reliability of your research findings.

Writing the Research Proposal

Structuring the proposal.

Creating a well-structured research proposal is essential for clearly communicating your research plan. Start with an introduction that outlines the background and significance of your study. Follow this with a literature review that situates your research within the existing body of work. Next, detail your research design and methodology, explaining how you will collect and analyze data. Finally, include a timeline and budget if required. A clear structure helps reviewers understand your research plan and its feasibility.

Articulating the Research Statement

Your research statement is the heart of your proposal. It should clearly define the problem you aim to address and why it is important. Make sure your statement is specific, measurable, and achievable. This will guide your entire research process and help you stay focused. A strong research statement is crucial for convincing reviewers of the value of your study.

Defining KPIs and Metrics

Key Performance Indicators (KPIs) and metrics are essential for measuring the success of your research. Identify the specific outcomes you aim to achieve and how you will measure them. Common metrics include data accuracy, response rates, and completion times. Including KPIs in your proposal shows that you have a clear plan for evaluating your research's impact.

Managing the Research Project

Setting milestones.

Creating a timeline with specific milestones is essential for tracking your progress. For example, aim to complete your literature review by the end of the first month. These milestones will help you stay on track and make adjustments as needed. Regularly review and update your timeline to reflect your current status and any changes in your schedule.

Tracking Progress

To ensure that you are meeting your milestones, it's important to track your progress consistently. Use tools like Gantt charts or project management software to visualize your progress. Regular check-ins with your team can also help identify any issues early on and keep everyone aligned with the project goals.

Adjusting the Plan as Needed

Flexibility is key in managing a research project. Unexpected challenges may arise, requiring you to adjust your plan. Be prepared to reallocate resources or extend deadlines if necessary. Consulting with your advisors can provide valuable insights and help you make informed decisions when adjustments are needed.

Drafting and Revising the Research Paper

Organizing the paper.

Start by creating a clear structure for your paper. This includes an introduction, body, and conclusion. Use a mind map or outline to group your ideas logically . This will help you stay organized and ensure that your paper flows smoothly.

Revising for Clarity and Coherence

Revising is a crucial part of the writing process. Read your paper out loud to catch any awkward sentences or unclear points. Make sure each paragraph supports your thesis statement and that your ideas are clearly organized. Don't hesitate to remove or revise sections that don't fit.

Maintaining Academic Integrity

Always cite your sources correctly to avoid plagiarism. Use a consistent citation style and double-check your references. This not only upholds academic standards but also enhances the credibility of your work.

Preparing for the Final Presentation

Creating visual aids.

Visual aids are essential for making your presentation engaging and easy to follow. Use slides, charts, and graphs to highlight key points . Ensure that your visuals are clear and not cluttered with too much information. Effective visual aids can make complex data more understandable and keep your audience engaged.

Practicing the Presentation

Practice is crucial for a successful presentation. Rehearse multiple times to get comfortable with the material and the flow of your talk. Consider practicing in front of friends or family to get feedback. This will help you refine your delivery and timing. Remember, the goal is to communicate your research clearly and confidently.

Handling Q&A Sessions

Anticipate questions that your audience might ask and prepare answers in advance. This will help you handle the Q&A session smoothly. Be honest if you don't know an answer and offer to follow up later. Handling questions well can demonstrate your deep understanding of the topic and leave a positive impression on your audience.

Getting ready for your final presentation can be nerve-wracking, but it doesn't have to be. Start by organizing your main points and practicing your delivery. Remember, confidence comes from preparation. For more tips and a step-by-step guide to ace your presentation, visit our website today !

Starting a research project may seem daunting, but breaking it down into manageable steps can make the process much more approachable. By clearly defining your research subject, engaging with stakeholders, crafting a precise research statement, and establishing key performance indicators, you set a strong foundation for your project. Choosing the right methodology and creating a detailed timeline will help ensure that your research is well-organized and on track. Remember, the key to a successful research project is thorough planning and consistent effort. With these steps, you can confidently navigate your research journey and achieve meaningful results.

Frequently Asked Questions

How do i choose a good research topic.

Start by thinking about what interests you. Pick a topic that you find fun and fulfilling. This will keep you motivated throughout your research. Make a list of subjects you enjoy and see how they can relate to your field of study.

What should I include in the introduction of my research paper?

Your introduction should set the stage for your research. Provide some background information and clearly state what your research will cover. This helps readers understand the context and significance of your work.

How do I create a timeline for my research project?

Break down your research into smaller tasks and assign time frames to each. This helps you manage your time and stay organized throughout the project. Use a table or chart to keep track of deadlines.

What is the best way to organize my research data?

Review the data you have and reorganize it so that the most important parts are central to your research. Set aside any information that is less relevant. Use digital folders or reference management software to keep everything organized.

How do I choose a thesis supervisor?

Look for a supervisor who is supportive and knowledgeable in your area of study. Good communication is key, so make sure you establish a good rapport with them from the start.

Where should I place my thesis statement?

A good place for your thesis statement is at the end of your introduction. This helps to clearly outline your main argument or point right from the start.

What should I do if I feel stuck during my research project?

If you feel stuck, take a break and revisit your work with fresh eyes. Talk to your advisor or peers for new perspectives. Sometimes, stepping away for a bit can help you see things more clearly.

How do I ensure my research is ethical?

Make sure your research complies with ethical guidelines. This includes getting consent from participants, ensuring their privacy, and being honest about your findings. Consult your institution's ethics board if you have questions.

شخص على المكتب مع مواد بحثية وأفكار.

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Discovering Statistics Using SAS: A Comprehensive Review

Discovering Statistics Using SAS: A Comprehensive Review

Trending Topics for Your Thesis: What's Hot in 2024

Trending Topics for Your Thesis: What's Hot in 2024

How to Deal with a Total Lack of Motivation, Stress, and Anxiety When Finishing Your Master's Thesis

How to Deal with a Total Lack of Motivation, Stress, and Anxiety When Finishing Your Master's Thesis

Confident student with laptop and colorful books

Mastering the First Step: How to Start Your Thesis with Confidence

Thesis Action Plan

Thesis Action Plan

Research Proposal Compass

  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

  • U.S. Locations
  • UMGC Europe
  • Learn Online
  • Find Answers
  • 855-655-8682
  • Current Students

Online Guide to Writing and Research

The research process, explore more of umgc.

  • Online Guide to Writing

Structuring the Research Paper

Formal research structure.

These are the primary purposes for formal research:

enter the discourse, or conversation, of other writers and scholars in your field

learn how others in your field use primary and secondary resources

find and understand raw data and information

Top view of textured wooden desk prepared for work and exploration - wooden pegs, domino, cubes and puzzles with blank notepads,  paper and colourful pencils lying on it.

For the formal academic research assignment, consider an organizational pattern typically used for primary academic research.  The pattern includes the following: introduction, methods, results, discussion, and conclusions/recommendations.

Usually, research papers flow from the general to the specific and back to the general in their organization. The introduction uses a general-to-specific movement in its organization, establishing the thesis and setting the context for the conversation. The methods and results sections are more detailed and specific, providing support for the generalizations made in the introduction. The discussion section moves toward an increasingly more general discussion of the subject, leading to the conclusions and recommendations, which then generalize the conversation again.

Sections of a Formal Structure

The introduction section.

Many students will find that writing a structured  introduction  gets them started and gives them the focus needed to significantly improve their entire paper. 

Introductions usually have three parts:

presentation of the problem statement, the topic, or the research inquiry

purpose and focus of your paper

summary or overview of the writer’s position or arguments

In the first part of the introduction—the presentation of the problem or the research inquiry—state the problem or express it so that the question is implied. Then, sketch the background on the problem and review the literature on it to give your readers a context that shows them how your research inquiry fits into the conversation currently ongoing in your subject area. 

In the second part of the introduction, state your purpose and focus. Here, you may even present your actual thesis. Sometimes your purpose statement can take the place of the thesis by letting your reader know your intentions. 

The third part of the introduction, the summary or overview of the paper, briefly leads readers through the discussion, forecasting the main ideas and giving readers a blueprint for the paper. 

The following example provides a blueprint for a well-organized introduction.

Example of an Introduction

Entrepreneurial Marketing: The Critical Difference

In an article in the Harvard Business Review, John A. Welsh and Jerry F. White remind us that “a small business is not a little big business.” An entrepreneur is not a multinational conglomerate but a profit-seeking individual. To survive, he must have a different outlook and must apply different principles to his endeavors than does the president of a large or even medium-sized corporation. Not only does the scale of small and big businesses differ, but small businesses also suffer from what the Harvard Business Review article calls “resource poverty.” This is a problem and opportunity that requires an entirely different approach to marketing. Where large ad budgets are not necessary or feasible, where expensive ad production squanders limited capital, where every marketing dollar must do the work of two dollars, if not five dollars or even ten, where a person’s company, capital, and material well-being are all on the line—that is, where guerrilla marketing can save the day and secure the bottom line (Levinson, 1984, p. 9).

By reviewing the introductions to research articles in the discipline in which you are writing your research paper, you can get an idea of what is considered the norm for that discipline. Study several of these before you begin your paper so that you know what may be expected. If you are unsure of the kind of introduction your paper needs, ask your professor for more information.  The introduction is normally written in present tense.

THE METHODS SECTION

The methods section of your research paper should describe in detail what methodology and special materials if any, you used to think through or perform your research. You should include any materials you used or designed for yourself, such as questionnaires or interview questions, to generate data or information for your research paper. You want to include any methodologies that are specific to your particular field of study, such as lab procedures for a lab experiment or data-gathering instruments for field research. The methods section is usually written in the past tense.

THE RESULTS SECTION

How you present the results of your research depends on what kind of research you did, your subject matter, and your readers’ expectations. 

Quantitative information —data that can be measured—can be presented systematically and economically in tables, charts, and graphs. Quantitative information includes quantities and comparisons of sets of data. 

Qualitative information , which includes brief descriptions, explanations, or instructions, can also be presented in prose tables. This kind of descriptive or explanatory information, however, is often presented in essay-like prose or even lists.

There are specific conventions for creating tables, charts, and graphs and organizing the information they contain. In general, you should use them only when you are sure they will enlighten your readers rather than confuse them. In the accompanying explanation and discussion, always refer to the graphic by number and explain specifically what you are referring to; you can also provide a caption for the graphic. The rule of thumb for presenting a graphic is first to introduce it by name, show it, and then interpret it. The results section is usually written in the past tense.

THE DISCUSSION SECTION

Your discussion section should generalize what you have learned from your research. One way to generalize is to explain the consequences or meaning of your results and then make your points that support and refer back to the statements you made in your introduction. Your discussion should be organized so that it relates directly to your thesis. You want to avoid introducing new ideas here or discussing tangential issues not directly related to the exploration and discovery of your thesis. The discussion section, along with the introduction, is usually written in the present tense.

THE CONCLUSIONS AND RECOMMENDATIONS SECTION

Your conclusion ties your research to your thesis, binding together all the main ideas in your thinking and writing. By presenting the logical outcome of your research and thinking, your conclusion answers your research inquiry for your reader. Your conclusions should relate directly to the ideas presented in your introduction section and should not present any new ideas.

You may be asked to present your recommendations separately in your research assignment. If so, you will want to add some elements to your conclusion section. For example, you may be asked to recommend a course of action, make a prediction, propose a solution to a problem, offer a judgment, or speculate on the implications and consequences of your ideas. The conclusions and recommendations section is usually written in the present tense.

Key Takeaways

  • For the formal academic research assignment, consider an organizational pattern typically used for primary academic research. 
  •  The pattern includes the following: introduction, methods, results, discussion, and conclusions/recommendations.

Mailing Address: 3501 University Blvd. East, Adelphi, MD 20783 This work is licensed under a  Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License . © 2022 UMGC. All links to external sites were verified at the time of publication. UMGC is not responsible for the validity or integrity of information located at external sites.

Table of Contents: Online Guide to Writing

Chapter 1: College Writing

How Does College Writing Differ from Workplace Writing?

What Is College Writing?

Why So Much Emphasis on Writing?

Chapter 2: The Writing Process

Doing Exploratory Research

Getting from Notes to Your Draft

Introduction

Prewriting - Techniques to Get Started - Mining Your Intuition

Prewriting: Targeting Your Audience

Prewriting: Techniques to Get Started

Prewriting: Understanding Your Assignment

Rewriting: Being Your Own Critic

Rewriting: Creating a Revision Strategy

Rewriting: Getting Feedback

Rewriting: The Final Draft

Techniques to Get Started - Outlining

Techniques to Get Started - Using Systematic Techniques

Thesis Statement and Controlling Idea

Writing: Getting from Notes to Your Draft - Freewriting

Writing: Getting from Notes to Your Draft - Summarizing Your Ideas

Writing: Outlining What You Will Write

Chapter 3: Thinking Strategies

A Word About Style, Voice, and Tone

A Word About Style, Voice, and Tone: Style Through Vocabulary and Diction

Critical Strategies and Writing

Critical Strategies and Writing: Analysis

Critical Strategies and Writing: Evaluation

Critical Strategies and Writing: Persuasion

Critical Strategies and Writing: Synthesis

Developing a Paper Using Strategies

Kinds of Assignments You Will Write

Patterns for Presenting Information

Patterns for Presenting Information: Critiques

Patterns for Presenting Information: Discussing Raw Data

Patterns for Presenting Information: General-to-Specific Pattern

Patterns for Presenting Information: Problem-Cause-Solution Pattern

Patterns for Presenting Information: Specific-to-General Pattern

Patterns for Presenting Information: Summaries and Abstracts

Supporting with Research and Examples

Writing Essay Examinations

Writing Essay Examinations: Make Your Answer Relevant and Complete

Writing Essay Examinations: Organize Thinking Before Writing

Writing Essay Examinations: Read and Understand the Question

Chapter 4: The Research Process

Planning and Writing a Research Paper

Planning and Writing a Research Paper: Ask a Research Question

Planning and Writing a Research Paper: Cite Sources

Planning and Writing a Research Paper: Collect Evidence

Planning and Writing a Research Paper: Decide Your Point of View, or Role, for Your Research

Planning and Writing a Research Paper: Draw Conclusions

Planning and Writing a Research Paper: Find a Topic and Get an Overview

Planning and Writing a Research Paper: Manage Your Resources

Planning and Writing a Research Paper: Outline

Planning and Writing a Research Paper: Survey the Literature

Planning and Writing a Research Paper: Work Your Sources into Your Research Writing

Research Resources: Where Are Research Resources Found? - Human Resources

Research Resources: What Are Research Resources?

Research Resources: Where Are Research Resources Found?

Research Resources: Where Are Research Resources Found? - Electronic Resources

Research Resources: Where Are Research Resources Found? - Print Resources

Structuring the Research Paper: Formal Research Structure

Structuring the Research Paper: Informal Research Structure

The Nature of Research

The Research Assignment: How Should Research Sources Be Evaluated?

The Research Assignment: When Is Research Needed?

The Research Assignment: Why Perform Research?

Chapter 5: Academic Integrity

Academic Integrity

Giving Credit to Sources

Giving Credit to Sources: Copyright Laws

Giving Credit to Sources: Documentation

Giving Credit to Sources: Style Guides

Integrating Sources

Practicing Academic Integrity

Practicing Academic Integrity: Keeping Accurate Records

Practicing Academic Integrity: Managing Source Material

Practicing Academic Integrity: Managing Source Material - Paraphrasing Your Source

Practicing Academic Integrity: Managing Source Material - Quoting Your Source

Practicing Academic Integrity: Managing Source Material - Summarizing Your Sources

Types of Documentation

Types of Documentation: Bibliographies and Source Lists

Types of Documentation: Citing World Wide Web Sources

Types of Documentation: In-Text or Parenthetical Citations

Types of Documentation: In-Text or Parenthetical Citations - APA Style

Types of Documentation: In-Text or Parenthetical Citations - CSE/CBE Style

Types of Documentation: In-Text or Parenthetical Citations - Chicago Style

Types of Documentation: In-Text or Parenthetical Citations - MLA Style

Types of Documentation: Note Citations

Chapter 6: Using Library Resources

Finding Library Resources

Chapter 7: Assessing Your Writing

How Is Writing Graded?

How Is Writing Graded?: A General Assessment Tool

The Draft Stage

The Draft Stage: The First Draft

The Draft Stage: The Revision Process and the Final Draft

The Draft Stage: Using Feedback

The Research Stage

Using Assessment to Improve Your Writing

Chapter 8: Other Frequently Assigned Papers

Reviews and Reaction Papers: Article and Book Reviews

Reviews and Reaction Papers: Reaction Papers

Writing Arguments

Writing Arguments: Adapting the Argument Structure

Writing Arguments: Purposes of Argument

Writing Arguments: References to Consult for Writing Arguments

Writing Arguments: Steps to Writing an Argument - Anticipate Active Opposition

Writing Arguments: Steps to Writing an Argument - Determine Your Organization

Writing Arguments: Steps to Writing an Argument - Develop Your Argument

Writing Arguments: Steps to Writing an Argument - Introduce Your Argument

Writing Arguments: Steps to Writing an Argument - State Your Thesis or Proposition

Writing Arguments: Steps to Writing an Argument - Write Your Conclusion

Writing Arguments: Types of Argument

Appendix A: Books to Help Improve Your Writing

Dictionaries

General Style Manuals

Researching on the Internet

Special Style Manuals

Writing Handbooks

Appendix B: Collaborative Writing and Peer Reviewing

Collaborative Writing: Assignments to Accompany the Group Project

Collaborative Writing: Informal Progress Report

Collaborative Writing: Issues to Resolve

Collaborative Writing: Methodology

Collaborative Writing: Peer Evaluation

Collaborative Writing: Tasks of Collaborative Writing Group Members

Collaborative Writing: Writing Plan

General Introduction

Peer Reviewing

Appendix C: Developing an Improvement Plan

Working with Your Instructor’s Comments and Grades

Appendix D: Writing Plan and Project Schedule

Devising a Writing Project Plan and Schedule

Reviewing Your Plan with Others

By using our website you agree to our use of cookies. Learn more about how we use cookies by reading our  Privacy Policy .

  • Search This Site All UCSD Sites Faculty/Staff Search Term
  • Contact & Directions
  • Climate Statement
  • Cognitive Behavioral Neuroscience
  • Cognitive Psychology
  • Developmental Psychology
  • Social Psychology
  • Adjunct Faculty
  • Non-Senate Instructors
  • Researchers
  • Psychology Grads
  • Affiliated Grads
  • New and Prospective Students
  • Honors Program
  • Experiential Learning
  • Programs & Events
  • Psi Chi / Psychology Club
  • Prospective PhD Students
  • Current PhD Students
  • Area Brown Bags
  • Colloquium Series
  • Anderson Distinguished Lecture Series
  • Speaker Videos
  • Undergraduate Program
  • Academic and Writing Resources

Writing Research Papers

  • Research Paper Structure

Whether you are writing a B.S. Degree Research Paper or completing a research report for a Psychology course, it is highly likely that you will need to organize your research paper in accordance with American Psychological Association (APA) guidelines.  Here we discuss the structure of research papers according to APA style.

Major Sections of a Research Paper in APA Style

A complete research paper in APA style that is reporting on experimental research will typically contain a Title page, Abstract, Introduction, Methods, Results, Discussion, and References sections. 1  Many will also contain Figures and Tables and some will have an Appendix or Appendices.  These sections are detailed as follows (for a more in-depth guide, please refer to " How to Write a Research Paper in APA Style ”, a comprehensive guide developed by Prof. Emma Geller). 2

What is this paper called and who wrote it? – the first page of the paper; this includes the name of the paper, a “running head”, authors, and institutional affiliation of the authors.  The institutional affiliation is usually listed in an Author Note that is placed towards the bottom of the title page.  In some cases, the Author Note also contains an acknowledgment of any funding support and of any individuals that assisted with the research project.

One-paragraph summary of the entire study – typically no more than 250 words in length (and in many cases it is well shorter than that), the Abstract provides an overview of the study.

Introduction

What is the topic and why is it worth studying? – the first major section of text in the paper, the Introduction commonly describes the topic under investigation, summarizes or discusses relevant prior research (for related details, please see the Writing Literature Reviews section of this website), identifies unresolved issues that the current research will address, and provides an overview of the research that is to be described in greater detail in the sections to follow.

What did you do? – a section which details how the research was performed.  It typically features a description of the participants/subjects that were involved, the study design, the materials that were used, and the study procedure.  If there were multiple experiments, then each experiment may require a separate Methods section.  A rule of thumb is that the Methods section should be sufficiently detailed for another researcher to duplicate your research.

What did you find? – a section which describes the data that was collected and the results of any statistical tests that were performed.  It may also be prefaced by a description of the analysis procedure that was used. If there were multiple experiments, then each experiment may require a separate Results section.

What is the significance of your results? – the final major section of text in the paper.  The Discussion commonly features a summary of the results that were obtained in the study, describes how those results address the topic under investigation and/or the issues that the research was designed to address, and may expand upon the implications of those findings.  Limitations and directions for future research are also commonly addressed.

List of articles and any books cited – an alphabetized list of the sources that are cited in the paper (by last name of the first author of each source).  Each reference should follow specific APA guidelines regarding author names, dates, article titles, journal titles, journal volume numbers, page numbers, book publishers, publisher locations, websites, and so on (for more information, please see the Citing References in APA Style page of this website).

Tables and Figures

Graphs and data (optional in some cases) – depending on the type of research being performed, there may be Tables and/or Figures (however, in some cases, there may be neither).  In APA style, each Table and each Figure is placed on a separate page and all Tables and Figures are included after the References.   Tables are included first, followed by Figures.   However, for some journals and undergraduate research papers (such as the B.S. Research Paper or Honors Thesis), Tables and Figures may be embedded in the text (depending on the instructor’s or editor’s policies; for more details, see "Deviations from APA Style" below).

Supplementary information (optional) – in some cases, additional information that is not critical to understanding the research paper, such as a list of experiment stimuli, details of a secondary analysis, or programming code, is provided.  This is often placed in an Appendix.

Variations of Research Papers in APA Style

Although the major sections described above are common to most research papers written in APA style, there are variations on that pattern.  These variations include: 

  • Literature reviews – when a paper is reviewing prior published research and not presenting new empirical research itself (such as in a review article, and particularly a qualitative review), then the authors may forgo any Methods and Results sections. Instead, there is a different structure such as an Introduction section followed by sections for each of the different aspects of the body of research being reviewed, and then perhaps a Discussion section. 
  • Multi-experiment papers – when there are multiple experiments, it is common to follow the Introduction with an Experiment 1 section, itself containing Methods, Results, and Discussion subsections. Then there is an Experiment 2 section with a similar structure, an Experiment 3 section with a similar structure, and so on until all experiments are covered.  Towards the end of the paper there is a General Discussion section followed by References.  Additionally, in multi-experiment papers, it is common for the Results and Discussion subsections for individual experiments to be combined into single “Results and Discussion” sections.

Departures from APA Style

In some cases, official APA style might not be followed (however, be sure to check with your editor, instructor, or other sources before deviating from standards of the Publication Manual of the American Psychological Association).  Such deviations may include:

  • Placement of Tables and Figures  – in some cases, to make reading through the paper easier, Tables and/or Figures are embedded in the text (for example, having a bar graph placed in the relevant Results section). The embedding of Tables and/or Figures in the text is one of the most common deviations from APA style (and is commonly allowed in B.S. Degree Research Papers and Honors Theses; however you should check with your instructor, supervisor, or editor first). 
  • Incomplete research – sometimes a B.S. Degree Research Paper in this department is written about research that is currently being planned or is in progress. In those circumstances, sometimes only an Introduction and Methods section, followed by References, is included (that is, in cases where the research itself has not formally begun).  In other cases, preliminary results are presented and noted as such in the Results section (such as in cases where the study is underway but not complete), and the Discussion section includes caveats about the in-progress nature of the research.  Again, you should check with your instructor, supervisor, or editor first.
  • Class assignments – in some classes in this department, an assignment must be written in APA style but is not exactly a traditional research paper (for instance, a student asked to write about an article that they read, and to write that report in APA style). In that case, the structure of the paper might approximate the typical sections of a research paper in APA style, but not entirely.  You should check with your instructor for further guidelines.

Workshops and Downloadable Resources

  • For in-person discussion of the process of writing research papers, please consider attending this department’s “Writing Research Papers” workshop (for dates and times, please check the undergraduate workshops calendar).

Downloadable Resources

  • How to Write APA Style Research Papers (a comprehensive guide) [ PDF ]
  • Tips for Writing APA Style Research Papers (a brief summary) [ PDF ]
  • Example APA Style Research Paper (for B.S. Degree – empirical research) [ PDF ]
  • Example APA Style Research Paper (for B.S. Degree – literature review) [ PDF ]

Further Resources

How-To Videos     

  • Writing Research Paper Videos

APA Journal Article Reporting Guidelines

  • Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. (2018). Journal article reporting standards for quantitative research in psychology: The APA Publications and Communications Board task force report . American Psychologist , 73 (1), 3.
  • Levitt, H. M., Bamberg, M., Creswell, J. W., Frost, D. M., Josselson, R., & Suárez-Orozco, C. (2018). Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA Publications and Communications Board task force report . American Psychologist , 73 (1), 26.  

External Resources

  • Formatting APA Style Papers in Microsoft Word
  • How to Write an APA Style Research Paper from Hamilton University
  • WikiHow Guide to Writing APA Research Papers
  • Sample APA Formatted Paper with Comments
  • Sample APA Formatted Paper
  • Tips for Writing a Paper in APA Style

1 VandenBos, G. R. (Ed). (2010). Publication manual of the American Psychological Association (6th ed.) (pp. 41-60).  Washington, DC: American Psychological Association.

2 geller, e. (2018).  how to write an apa-style research report . [instructional materials]. , prepared by s. c. pan for ucsd psychology.

Back to top  

  • Formatting Research Papers
  • Using Databases and Finding References
  • What Types of References Are Appropriate?
  • Evaluating References and Taking Notes
  • Citing References
  • Writing a Literature Review
  • Writing Process and Revising
  • Improving Scientific Writing
  • Academic Integrity and Avoiding Plagiarism
  • Writing Research Papers Videos
  • Student Services Online
  • Class search
  • Student email
  • Change my password
  • MyCDES+ (job board)
  • Course outlines
  • Learning essentials
  • Libraries and Learning Services
  • Forms, policies and guidelines
  • Campus Card
  • Enrol in courses
  • Postgraduate students
  • Summer school
  • AskAuckland
  • Student Hubs
  • Student IT Hub
  • Student Health and Counselling
  • Harassment, bullying, sexual assault and other violence
  • Complaints and incidents
  • Career Development and Employability Services (CDES)
  • Ratonga Hauātanga Tauira | Student Disability Services (SDS)
  • Rainbow support
  • Emergency information
  • Report concerns, incidents and hazards
  • Health and safety topics
  • Staff email
  • Staff intranet
  • ResearchHub
  • PeopleSoft HR
  • Forms register
  • Careers at the University
  • Education Office
  • Early childhood centres
  • University Calendar
  • Opportunities
  • Update your details
  • Make a donation
  • Publications
  • Photo galleries
  • Video and audio
  • Career services
  • Virtual Book Club
  • Library services
  • Alumni benefits
  • Office contact details
  • Alumni and friends on social media
  • No events scheduled for today You have no more events scheduled for today
  • Next event:
  • Show {0} earlier events Show {0} earlier event
  • Event_Time Event_Name Event_Description
  • My Library Account
  • Change Password
  • Edit Profile
  • My GPA Grade Point Average About your GPA GPA not available Why can't I see my GPA?
  • My Progress
  • Points Required Completed points My Progress Progress not available All done!
  • Student hubs
  • Health and counselling
  • All support
  • Health, safety and well-being

Breadcrumbs List.

  • Education and Social Work
  • Study with us
  • Study options
  • Doctoral programmes
  • You are currently on: Structuring your research proposal

Structuring your research proposal

What you need to include in your doctorate research proposal.

Your proposal cannot exceed 10,000 words so please follow the instructions carefully. All proposals have to cover the same core material: description of a problem or issue, a review of relevant literature, identification of research questions or hypotheses, description of appropriate methods to address those concerns.

Different disciplines have different styles in how they structure this material. This page provides two different templates and more be added as they are developed or needed. Please check with your supervisors as to the template they want you to use. Template 1 : For students working in sociological, philosophical, and critical theory perspectives.  

Template 2 : For students working in psychological and scientific perspectives.  

Research proposal structure

1. a summary or abstract.

One or two paragraphs that summarise what you will do in the research project and how you will do it.

2. Problem, question or hypothesis

The key details, approaches or framings the research project will focus on. If hypotheses are appropriate they should be stated along with a rationale. If a hypothesis isn’t appropriate, the research problems or questions should be clearly stated and examined.

3. Importance of the research topic

Your thesis must make an original contribution to knowledge. Thus, you must show how your proposed research is important enough to justify your efforts (and the efforts of anyone else involved in your research). You should should also include a statement about how the solution to the problem, or the answer to the question, can influence educational theory or practice.

4. Significant prior research

This should comprehensively demonstrate that you are aware of the major relevant sources of information in your chosen area. Most research projects arise out of considerable prior research, which should be summarised. You also need to show the relationship between your question or problem and this prior research.

5. Research methodology

The methodology section is one of the most important sections of your proposal. It demonstrates your understanding of the steps and skills necessary to undertake your intended research. It should be as explicit as possible, detailing how you will collect, analyse and present your data or research.

Examples of methodologies include:

  • Quantitative or qualitative research
  • Experimental methods in psychological research
  • A specialised approach to analysing concepts in philosophical research

Your choice of methodology should be justified by your research questions. For example if you are examining the relationship between two or more phenomena, a correlational methodology would be appropriate. Alternatively, a case study methodology would be appropriate for researching complex phenomena in their natural setting.

Be sure to describe your intended data collection and analysis techniques with as much detail as possible. They might change as you conduct your research, but you must still demonstrate that you have given a lot of thought into the practicalities of your research at this early stage. You should also note any major questions yet to be decided upon.

If you are gathering a sample of people or documents, you should outline your procedures for choosing this sample.

If you intend on giving interviews or handing out questionnaires, you should provide examples of the types of questions you will ask.

If you intend on using experimental situations to collect data, you should describe as many of its elements as possible. This could include:

  • Your chosen subject types (age, school level, quantity)
  • Types of materials to be used
  • What will be measured (achievement, attitudes, beliefs, etc)
  • Data collection methods (self-reporting, observation, clinical diagnosis)

6. Ethical considerations

All university research is expected to conform to acceptable ethical standards and proposals. Research involving human participants must also be approved before the research commences by the University of Auckland Human Subjects Ethics Committee.

Ethical concerns can arise in how research is conducted and the ways these research findings may later be used. You must take into account any areas of responsibility towards your research subjects at the planning stage, and provide strategies for addressing them in the methodology.

Examples of areas of responsibility could include:

  • The securing of informed consent
  • Confidentiality
  • Preservation of anonymity
  • Avoidance of deception or adverse effects

A research proposal involving Māori and minority groups/communities should demonstrate that the researcher has had adequate background preparation for working in that area. It should also outline the extent to which members of that group/community will be involved or consulted in the overall supervision of the project and the dissemination of the research findings.

To read the University’s ethics guidelines and submit an application, visit the Human Participants Ethics Committee page .

7. Analysis of information

How you intend to analyse your gathered information is a vital part of the assessment of your research proposal. You should clearly describe how you can answer your research questions based on the information you have gathered. In other words, "How will you figure out what it all means?"

Be explicit. For example, if you plan to collect evidence by a questionnaire and subsequent statistical analysis, you should describe the likely method of analysis and possible outcomes.

In another example, if you plan to use a case study approach, describe how you plan to identify the key themes and patterns in your data and the procedures you will use to check the validity of your analysis.

Sample analysis description

"The analysis of variance procedure will be used to determine whether the total score on the questionnaire is greater for experienced teachers, as expected than, for teachers in training.

“If, however, teachers in training are found to have a higher score this would mean that…"  

8. Limitations and key assumptions

This section should contain a paragraph or two that defines the limits of your research. It’s common for students to try to do too much. This section is useful in defining how much you will undertake and the key assumptions that you will follow in building your arguments, models, or experiments.

Again be specific. Make statements such as, "This argument assumes that…", and "This research will not…".

9. References or bibliography

This final section details the major readings cited in your proposal, or the literature that contextualises your proposed research.

Related links

  • Doctoral policies and guidelines
  • About University of Sheffield
  • Campus life
  • Accommodation
  • Student support
  • Virtual events
  • International Foundation Year
  • Pre-Masters
  • Pre-courses
  • Entry requirements
  • Fees, accommodation and living costs
  • Scholarships
  • Semester dates
  • Student visa
  • Before you arrive
  • Enquire now

How to do a research project for your academic study

  • Link copied!

USIC student studying

Writing a research report is part of most university degrees, so it is essential you know what one is and how to write one. This guide on how to do a research project for your university degree shows you what to do at each stage, taking you from planning to finishing the project.

What is a research project? 

The big question is: what is a research project? A research project for students is an extended essay that presents a question or statement for analysis and evaluation. During a research project, you will present your own ideas and research on a subject alongside analysing existing knowledge. 

How to write a research report 

The next section covers the research project steps necessary to producing a research paper. 

Developing a research question or statement 

Research project topics will vary depending on the course you study. The best research project ideas develop from areas you already have an interest in and where you have existing knowledge. 

The area of study needs to be specific as it will be much easier to cover fully. If your topic is too broad, you are at risk of not having an in-depth project. You can, however, also make your topic too narrow and there will not be enough research to be done. To make sure you don’t run into either of these problems, it’s a great idea to create sub-topics and questions to ensure you are able to complete suitable research. 

A research project example question would be: How will modern technologies change the way of teaching in the future? 

Finding and evaluating sources 

Secondary research is a large part of your research project as it makes up the literature review section. It is essential to use credible sources as failing to do so may decrease the validity of your research project.

Examples of secondary research include:

  • Peer-reviewed journals
  • Scholarly articles
  • Newspapers 

Great places to find your sources are the University library and Google Scholar. Both will give you many opportunities to find the credible sources you need. However, you need to make sure you are evaluating whether they are fit for purpose before including them in your research project as you do not want to include out of date information. 

When evaluating sources, you need to ask yourself:

  • Is the information provided by an expert?
  • How well does the source answer the research question?
  • What does the source contribute to its field?
  • Is the source valid? e.g. does it contain bias and is the information up-to-date?

It is important to ensure that you have a variety of sources in order to avoid bias. A successful research paper will present more than one point of view and the best way to do this is to not rely too heavily on just one author or publication. 

Conducting research 

For a research project, you will need to conduct primary research. This is the original research you will gather to further develop your research project. The most common types of primary research are interviews and surveys as these allow for many and varied results. 

Examples of primary research include: 

  • Interviews and surveys 
  • Focus groups 
  • Experiments 
  • Research diaries 

If you are looking to study in the UK and have an interest in bettering your research skills, The University of Sheffield is a  world top 100 research university  which will provide great research opportunities and resources for your project. 

Research report format  

Now that you understand the basics of how to write a research project, you now need to look at what goes into each section. The research project format is just as important as the research itself. Without a clear structure you will not be able to present your findings concisely. 

A research paper is made up of seven sections: introduction, literature review, methodology, findings and results, discussion, conclusion, and references. You need to make sure you are including a list of correctly cited references to avoid accusations of plagiarism. 

Introduction 

The introduction is where you will present your hypothesis and provide context for why you are doing the project. Here you will include relevant background information, present your research aims and explain why the research is important. 

Literature review  

The literature review is where you will analyse and evaluate existing research within your subject area. This section is where your secondary research will be presented. A literature review is an integral part of your research project as it brings validity to your research aims. 

What to include when writing your literature review:

  • A description of the publications
  • A summary of the main points
  • An evaluation on the contribution to the area of study
  • Potential flaws and gaps in the research 

Methodology

The research paper methodology outlines the process of your data collection. This is where you will present your primary research. The aim of the methodology section is to answer two questions: 

  • Why did you select the research methods you used?
  • How do these methods contribute towards your research hypothesis? 

In this section you will not be writing about your findings, but the ways in which you are going to try and achieve them. You need to state whether your methodology will be qualitative, quantitative, or mixed. 

  • Qualitative – first hand observations such as interviews, focus groups, case studies and questionnaires. The data collected will generally be non-numerical. 
  • Quantitative – research that deals in numbers and logic. The data collected will focus on statistics and numerical patterns.
  • Mixed – includes both quantitative and qualitative research.

The methodology section should always be written in the past tense, even if you have already started your data collection. 

Findings and results 

In this section you will present the findings and results of your primary research. Here you will give a concise and factual summary of your findings using tables and graphs where appropriate. 

Discussion 

The discussion section is where you will talk about your findings in detail. Here you need to relate your results to your hypothesis, explaining what you found out and the significance of the research. 

It is a good idea to talk about any areas with disappointing or surprising results and address the limitations within the research project. This will balance your project and steer you away from bias.

Some questions to consider when writing your discussion: 

  • To what extent was the hypothesis supported?
  • Was your research method appropriate?
  • Was there unexpected data that affected your results?
  • To what extent was your research validated by other sources?

Conclusion 

The conclusion is where you will bring your research project to a close. In this section you will not only be restating your research aims and how you achieved them, but also discussing the wider significance of your research project. You will talk about the successes and failures of the project, and how you would approach further study. 

It is essential you do not bring any new ideas into your conclusion; this section is used only to summarise what you have already stated in the project. 

References 

As a research project is your own ideas blended with information and research from existing knowledge, you must include a list of correctly cited references. Creating a list of references will allow the reader to easily evaluate the quality of your secondary research whilst also saving you from potential plagiarism accusations. 

The way in which you cite your sources will vary depending on the university standard.

If you are an international student looking to  study a degree in the UK , The University of Sheffield International College has a range of  pathway programmes  to prepare you for university study. Undertaking a Research Project is one of the core modules for the  Pre-Masters programme  at The University of Sheffield International College.

Frequently Asked Questions 

What is the best topic for research .

It’s a good idea to choose a topic you have existing knowledge on, or one that you are interested in. This will make the research process easier; as you have an idea of where and what to look for in your sources, as well as more enjoyable as it’s a topic you want to know more about.

What should a research project include? 

There are seven main sections to a research project, these are:

  • Introduction – the aims of the project and what you hope to achieve
  • Literature review – evaluating and reviewing existing knowledge on the topic
  • Methodology – the methods you will use for your primary research
  • Findings and results – presenting the data from your primary research
  • Discussion – summarising and analysing your research and what you have found out
  • Conclusion – how the project went (successes and failures), areas for future study
  • List of references – correctly cited sources that have been used throughout the project. 

How long is a research project? 

The length of a research project will depend on the level study and the nature of the subject. There is no one length for research papers, however the average dissertation style essay can be anywhere from 4,000 to 15,000+ words. 

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Pharmacol Pharmacother
  • v.4(2); Apr-Jun 2013

The critical steps for successful research: The research proposal and scientific writing: (A report on the pre-conference workshop held in conjunction with the 64 th annual conference of the Indian Pharmaceutical Congress-2012)

Pitchai balakumar.

Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong. Kedah Darul Aman, Malaysia

Mohammed Naseeruddin Inamdar

1 Department of Pharmacology, Al-Ameen College of Pharmacy, Bengaluru, Karnataka, India

Gowraganahalli Jagadeesh

2 Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, USA

An interactive workshop on ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing’ was conducted in conjunction with the 64 th Annual Conference of the Indian Pharmaceutical Congress-2012 at Chennai, India. In essence, research is performed to enlighten our understanding of a contemporary issue relevant to the needs of society. To accomplish this, a researcher begins search for a novel topic based on purpose, creativity, critical thinking, and logic. This leads to the fundamental pieces of the research endeavor: Question, objective, hypothesis, experimental tools to test the hypothesis, methodology, and data analysis. When correctly performed, research should produce new knowledge. The four cornerstones of good research are the well-formulated protocol or proposal that is well executed, analyzed, discussed and concluded. This recent workshop educated researchers in the critical steps involved in the development of a scientific idea to its successful execution and eventual publication.

INTRODUCTION

Creativity and critical thinking are of particular importance in scientific research. Basically, research is original investigation undertaken to gain knowledge and understand concepts in major subject areas of specialization, and includes the generation of ideas and information leading to new or substantially improved scientific insights with relevance to the needs of society. Hence, the primary objective of research is to produce new knowledge. Research is both theoretical and empirical. It is theoretical because the starting point of scientific research is the conceptualization of a research topic and development of a research question and hypothesis. Research is empirical (practical) because all of the planned studies involve a series of observations, measurements, and analyses of data that are all based on proper experimental design.[ 1 – 9 ]

The subject of this report is to inform readers of the proceedings from a recent workshop organized by the 64 th Annual conference of the ‘ Indian Pharmaceutical Congress ’ at SRM University, Chennai, India, from 05 to 06 December 2012. The objectives of the workshop titled ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing,’ were to assist participants in developing a strong fundamental understanding of how best to develop a research or study protocol, and communicate those research findings in a conference setting or scientific journal. Completing any research project requires meticulous planning, experimental design and execution, and compilation and publication of findings in the form of a research paper. All of these are often unfamiliar to naïve researchers; thus, the purpose of this workshop was to teach participants to master the critical steps involved in the development of an idea to its execution and eventual publication of the results (See the last section for a list of learning objectives).

THE STRUCTURE OF THE WORKSHOP

The two-day workshop was formatted to include key lectures and interactive breakout sessions that focused on protocol development in six subject areas of the pharmaceutical sciences. This was followed by sessions on scientific writing. DAY 1 taught the basic concepts of scientific research, including: (1) how to formulate a topic for research and to describe the what, why , and how of the protocol, (2) biomedical literature search and review, (3) study designs, statistical concepts, and result analyses, and (4) publication ethics. DAY 2 educated the attendees on the basic elements and logistics of writing a scientific paper and thesis, and preparation of poster as well as oral presentations.

The final phase of the workshop was the ‘Panel Discussion,’ including ‘Feedback/Comments’ by participants. There were thirteen distinguished speakers from India and abroad. Approximately 120 post-graduate and pre-doctoral students, young faculty members, and scientists representing industries attended the workshop from different parts of the country. All participants received a printed copy of the workshop manual and supporting materials on statistical analyses of data.

THE BASIC CONCEPTS OF RESEARCH: THE KEY TO GETTING STARTED IN RESEARCH

A research project generally comprises four key components: (1) writing a protocol, (2) performing experiments, (3) tabulating and analyzing data, and (4) writing a thesis or manuscript for publication.

Fundamentals in the research process

A protocol, whether experimental or clinical, serves as a navigator that evolves from a basic outline of the study plan to become a qualified research or grant proposal. It provides the structural support for the research. Dr. G. Jagadeesh (US FDA), the first speaker of the session, spoke on ‘ Fundamentals in research process and cornerstones of a research project .’ He discussed at length the developmental and structural processes in preparing a research protocol. A systematic and step-by-step approach is necessary in planning a study. Without a well-designed protocol, there would be a little chance for successful completion of a research project or an experiment.

Research topic

The first and the foremost difficult task in research is to identify a topic for investigation. The research topic is the keystone of the entire scientific enterprise. It begins the project, drives the entire study, and is crucial for moving the project forward. It dictates the remaining elements of the study [ Table 1 ] and thus, it should not be too narrow or too broad or unfocused. Because of these potential pitfalls, it is essential that a good or novel scientific idea be based on a sound concept. Creativity, critical thinking, and logic are required to generate new concepts and ideas in solving a research problem. Creativity involves critical thinking and is associated with generating many ideas. Critical thinking is analytical, judgmental, and involves evaluating choices before making a decision.[ 4 ] Thus, critical thinking is convergent type thinking that narrows and refines those divergent ideas and finally settles to one idea for an in-depth study. The idea on which a research project is built should be novel, appropriate to achieve within the existing conditions, and useful to the society at large. Therefore, creativity and critical thinking assist biomedical scientists in research that results in funding support, novel discovery, and publication.[ 1 , 4 ]

Elements of a study protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g001.jpg

Research question

The next most crucial aspect of a study protocol is identifying a research question. It should be a thought-provoking question. The question sets the framework. It emerges from the title, findings/results, and problems observed in previous studies. Thus, mastering the literature, attendance at conferences, and discussion in journal clubs/seminars are sources for developing research questions. Consider the following example in developing related research questions from the research topic.

Hepatoprotective activity of Terminalia arjuna and Apium graveolens on paracetamol-induced liver damage in albino rats.

How is paracetamol metabolized in the body? Does it involve P450 enzymes? How does paracetamol cause liver injury? What are the mechanisms by which drugs can alleviate liver damage? What biochemical parameters are indicative of liver injury? What major endogenous inflammatory molecules are involved in paracetamol-induced liver damage?

A research question is broken down into more precise objectives. The objectives lead to more precise methods and definition of key terms. The objectives should be SMART-Specific, Measurable, Achievable, Realistic, Time-framed,[ 10 ] and should cover the entire breadth of the project. The objectives are sometimes organized into hierarchies: Primary, secondary, and exploratory; or simply general and specific. Study the following example:

To evaluate the safety and tolerability of single oral doses of compound X in normal volunteers.

To assess the pharmacokinetic profile of compound X following single oral doses.

To evaluate the incidence of peripheral edema reported as an adverse event.

The objectives and research questions are then formulated into a workable or testable hypothesis. The latter forces us to think carefully about what comparisons will be needed to answer the research question, and establishes the format for applying statistical tests to interpret the results. The hypothesis should link a process to an existing or postulated biologic pathway. A hypothesis is written in a form that can yield measurable results. Studies that utilize statistics to compare groups of data should have a hypothesis. Consider the following example:

  • The hepatoprotective activity of Terminalia arjuna is superior to that of Apium graveolens against paracetamol-induced liver damage in albino rats.

All biological research, including discovery science, is hypothesis-driven. However, not all studies need be conducted with a hypothesis. For example, descriptive studies (e.g., describing characteristics of a plant, or a chemical compound) do not need a hypothesis.[ 1 ]

Relevance of the study

Another important section to be included in the protocol is ‘significance of the study.’ Its purpose is to justify the need for the research that is being proposed (e.g., development of a vaccine for a disease). In summary, the proposed study should demonstrate that it represents an advancement in understanding and that the eventual results will be meaningful, contribute to the field, and possibly even impact society.

Biomedical literature

A literature search may be defined as the process of examining published sources of information on a research or review topic, thesis, grant application, chemical, drug, disease, or clinical trial, etc. The quantity of information available in print or electronically (e.g., the internet) is immense and growing with time. A researcher should be familiar with the right kinds of databases and search engines to extract the needed information.[ 3 , 6 ]

Dr. P. Balakumar (Institute of Pharmacy, Rajendra Institute of Technology and Sciences, Sirsa, Haryana; currently, Faculty of Pharmacy, AIMST University, Malaysia) spoke on ‘ Biomedical literature: Searching, reviewing and referencing .’ He schematically explained the basis of scientific literature, designing a literature review, and searching literature. After an introduction to the genesis and diverse sources of scientific literature searches, the use of PubMed, one of the premier databases used for biomedical literature searches world-wide, was illustrated with examples and screenshots. Several companion databases and search engines are also used for finding information related to health sciences, and they include Embase, Web of Science, SciFinder, The Cochrane Library, International Pharmaceutical Abstracts, Scopus, and Google Scholar.[ 3 ] Literature searches using alternative interfaces for PubMed such as GoPubMed, Quertle, PubFocus, Pubget, and BibliMed were discussed. The participants were additionally informed of databases on chemistry, drugs and drug targets, clinical trials, toxicology, and laboratory animals (reviewed in ref[ 3 ]).

Referencing and bibliography are essential in scientific writing and publication.[ 7 ] Referencing systems are broadly classified into two major types, such as Parenthetical and Notation systems. Parenthetical referencing is also known as Harvard style of referencing, while Vancouver referencing style and ‘Footnote’ or ‘Endnote’ are placed under Notation referencing systems. The participants were educated on each referencing system with examples.

Bibliography management

Dr. Raj Rajasekaran (University of California at San Diego, CA, USA) enlightened the audience on ‘ bibliography management ’ using reference management software programs such as Reference Manager ® , Endnote ® , and Zotero ® for creating and formatting bibliographies while writing a manuscript for publication. The discussion focused on the use of bibliography management software in avoiding common mistakes such as incomplete references. Important steps in bibliography management, such as creating reference libraries/databases, searching for references using PubMed/Google scholar, selecting and transferring selected references into a library, inserting citations into a research article and formatting bibliographies, were presented. A demonstration of Zotero®, a freely available reference management program, included the salient features of the software, adding references from PubMed using PubMed ID, inserting citations and formatting using different styles.

Writing experimental protocols

The workshop systematically instructed the participants in writing ‘ experimental protocols ’ in six disciplines of Pharmaceutical Sciences.: (1) Pharmaceutical Chemistry (presented by Dr. P. V. Bharatam, NIPER, Mohali, Punjab); (2) Pharmacology (presented by Dr. G. Jagadeesh and Dr. P. Balakumar); (3) Pharmaceutics (presented by Dr. Jayant Khandare, Piramal Life Sciences, Mumbai); (4) Pharmacy Practice (presented by Dr. Shobha Hiremath, Al-Ameen College of Pharmacy, Bengaluru); (5) Pharmacognosy and Phytochemistry (presented by Dr. Salma Khanam, Al-Ameen College of Pharmacy, Bengaluru); and (6) Pharmaceutical Analysis (presented by Dr. Saranjit Singh, NIPER, Mohali, Punjab). The purpose of the research plan is to describe the what (Specific Aims/Objectives), why (Background and Significance), and how (Design and Methods) of the proposal.

The research plan should answer the following questions: (a) what do you intend to do; (b) what has already been done in general, and what have other researchers done in the field; (c) why is this worth doing; (d) how is it innovative; (e) what will this new work add to existing knowledge; and (f) how will the research be accomplished?

In general, the format used by the faculty in all subjects is shown in Table 2 .

Elements of a research protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g002.jpg

Biostatistics

Biostatistics is a key component of biomedical research. Highly reputed journals like The Lancet, BMJ, Journal of the American Medical Association, and many other biomedical journals include biostatisticians on their editorial board or reviewers list. This indicates that a great importance is given for learning and correctly employing appropriate statistical methods in biomedical research. The post-lunch session on day 1 of the workshop was largely committed to discussion on ‘ Basic biostatistics .’ Dr. R. Raveendran (JIPMER, Puducherry) and Dr. Avijit Hazra (PGIMER, Kolkata) reviewed, in parallel sessions, descriptive statistics, probability concepts, sample size calculation, choosing a statistical test, confidence intervals, hypothesis testing and ‘ P ’ values, parametric and non-parametric statistical tests, including analysis of variance (ANOVA), t tests, Chi-square test, type I and type II errors, correlation and regression, and summary statistics. This was followed by a practice and demonstration session. Statistics CD, compiled by Dr. Raveendran, was distributed to the participants before the session began and was demonstrated live. Both speakers worked on a variety of problems that involved both clinical and experimental data. They discussed through examples the experimental designs encountered in a variety of studies and statistical analyses performed for different types of data. For the benefit of readers, we have summarized statistical tests applied frequently for different experimental designs and post-hoc tests [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g003.jpg

Conceptual framework for statistical analyses of data. Of the two kinds of variables, qualitative (categorical) and quantitative (numerical), qualitative variables (nominal or ordinal) are not normally distributed. Numerical data that come from normal distributions are analyzed using parametric tests, if not; the data are analyzed using non-parametric tests. The most popularly used Student's t -test compares the means of two populations, data for this test could be paired or unpaired. One-way analysis of variance (ANOVA) is used to compare the means of three or more independent populations that are normally distributed. Applying t test repeatedly in pair (multiple comparison), to compare the means of more than two populations, will increase the probability of type I error (false positive). In this case, for proper interpretation, we need to adjust the P values. Repeated measures ANOVA is used to compare the population means if more than two observations coming from same subject over time. The null hypothesis is rejected with a ‘ P ’ value of less than 0.05, and the difference in population means is considered to be statistically significant. Subsequently, appropriate post-hoc tests are used for pairwise comparisons of population means. Two-way or three-way ANOVA are considered if two (diet, dose) or three (diet, dose, strain) independent factors, respectively, are analyzed in an experiment (not described in the Figure). Categorical nominal unmatched variables (counts or frequencies) are analyzed by Chi-square test (not shown in the Figure)

Research and publication ethics

The legitimate pursuit of scientific creativity is unfortunately being marred by a simultaneous increase in scientific misconduct. A disproportionate share of allegations involves scientists of many countries, and even from respected laboratories. Misconduct destroys faith in science and scientists and creates a hierarchy of fraudsters. Investigating misconduct also steals valuable time and resources. In spite of these facts, most researchers are not aware of publication ethics.

Day 1 of the workshop ended with a presentation on ‘ research and publication ethics ’ by Dr. M. K. Unnikrishnan (College of Pharmaceutical Sciences, Manipal University, Manipal). He spoke on the essentials of publication ethics that included plagiarism (attempting to take credit of the work of others), self-plagiarism (multiple publications by an author on the same content of work with slightly different wordings), falsification (manipulation of research data and processes and omitting critical data or results), gift authorship (guest authorship), ghostwriting (someone other than the named author (s) makes a major contribution), salami publishing (publishing many papers, with minor differences, from the same study), and sabotage (distracting the research works of others to halt their research completion). Additionally, Dr. Unnikrishnan pointed out the ‘ Ingelfinger rule ’ of stipulating that a scientist must not submit the same original research in two different journals. He also advised the audience that authorship is not just credit for the work but also responsibility for scientific contents of a paper. Although some Indian Universities are instituting preventive measures (e.g., use of plagiarism detecting software, Shodhganga digital archiving of doctoral theses), Dr. Unnikrishnan argued for a great need to sensitize young researchers on the nature and implications of scientific misconduct. Finally, he discussed methods on how editors and peer reviewers should ethically conduct themselves while managing a manuscript for publication.

SCIENTIFIC COMMUNICATION: THE KEY TO SUCCESSFUL SELLING OF FINDINGS

Research outcomes are measured through quality publications. Scientists must not only ‘do’ science but must ‘write’ science. The story of the project must be told in a clear, simple language weaving in previous work done in the field, answering the research question, and addressing the hypothesis set forth at the beginning of the study. Scientific publication is an organic process of planning, researching, drafting, revising, and updating the current knowledge for future perspectives. Writing a research paper is no easier than the research itself. The lectures of Day 2 of the workshop dealt with the basic elements and logistics of writing a scientific paper.

An overview of paper structure and thesis writing

Dr. Amitabh Prakash (Adis, Auckland, New Zealand) spoke on ‘ Learning how to write a good scientific paper .’ His presentation described the essential components of an original research paper and thesis (e.g., introduction, methods, results, and discussion [IMRaD]) and provided guidance on the correct order, in which data should appear within these sections. The characteristics of a good abstract and title and the creation of appropriate key words were discussed. Dr. Prakash suggested that the ‘title of a paper’ might perhaps have a chance to make a good impression, and the title might be either indicative (title that gives the purpose of the study) or declarative (title that gives the study conclusion). He also suggested that an abstract is a succinct summary of a research paper, and it should be specific, clear, and concise, and should have IMRaD structure in brief, followed by key words. Selection of appropriate papers to be cited in the reference list was also discussed. Various unethical authorships were enumerated, and ‘The International Committee of Medical Journal Editors (ICMJE) criteria for authorship’ was explained ( http://www.icmje.org/ethical_1author.html ; also see Table 1 in reference #9). The session highlighted the need for transparency in medical publication and provided a clear description of items that needed to be included in the ‘Disclosures’ section (e.g., sources of funding for the study and potential conflicts of interest of all authors, etc.) and ‘Acknowledgements’ section (e.g., writing assistance and input from all individuals who did not meet the authorship criteria). The final part of the presentation was devoted to thesis writing, and Dr. Prakash provided the audience with a list of common mistakes that are frequently encountered when writing a manuscript.

The backbone of a study is description of results through Text, Tables, and Figures. Dr. S. B. Deshpande (Institute of Medical Sciences, Banaras Hindu University, Varanasi, India) spoke on ‘ Effective Presentation of Results .’ The Results section deals with the observations made by the authors and thus, is not hypothetical. This section is subdivided into three segments, that is, descriptive form of the Text, providing numerical data in Tables, and visualizing the observations in Graphs or Figures. All these are arranged in a sequential order to address the question hypothesized in the Introduction. The description in Text provides clear content of the findings highlighting the observations. It should not be the repetition of facts in tables or graphs. Tables are used to summarize or emphasize descriptive content in the text or to present the numerical data that are unrelated. Illustrations should be used when the evidence bearing on the conclusions of a paper cannot be adequately presented in a written description or in a Table. Tables or Figures should relate to each other logically in sequence and should be clear by themselves. Furthermore, the discussion is based entirely on these observations. Additionally, how the results are applied to further research in the field to advance our understanding of research questions was discussed.

Dr. Peush Sahni (All-India Institute of Medical Sciences, New Delhi) spoke on effectively ‘ structuring the Discussion ’ for a research paper. The Discussion section deals with a systematic interpretation of study results within the available knowledge. He said the section should begin with the most important point relating to the subject studied, focusing on key issues, providing link sentences between paragraphs, and ensuring the flow of text. Points were made to avoid history, not repeat all the results, and provide limitations of the study. The strengths and novel findings of the study should be provided in the discussion, and it should open avenues for future research and new questions. The Discussion section should end with a conclusion stating the summary of key findings. Dr. Sahni gave an example from a published paper for writing a Discussion. In another presentation titled ‘ Writing an effective title and the abstract ,’ Dr. Sahni described the important components of a good title, such as, it should be simple, concise, informative, interesting and eye-catching, accurate and specific about the paper's content, and should state the subject in full indicating study design and animal species. Dr. Sahni explained structured (IMRaD) and unstructured abstracts and discussed a few selected examples with the audience.

Language and style in publication

The next lecture of Dr. Amitabh Prakash on ‘ Language and style in scientific writing: Importance of terseness, shortness and clarity in writing ’ focused on the actual sentence construction, language, grammar and punctuation in scientific manuscripts. His presentation emphasized the importance of brevity and clarity in the writing of manuscripts describing biomedical research. Starting with a guide to the appropriate construction of sentences and paragraphs, attendees were given a brief overview of the correct use of punctuation with interactive examples. Dr. Prakash discussed common errors in grammar and proactively sought audience participation in correcting some examples. Additional discussion was centered on discouraging the use of redundant and expendable words, jargon, and the use of adjectives with incomparable words. The session ended with a discussion of words and phrases that are commonly misused (e.g., data vs . datum, affect vs . effect, among vs . between, dose vs . dosage, and efficacy/efficacious vs . effective/effectiveness) in biomedical research manuscripts.

Working with journals

The appropriateness in selecting the journal for submission and acceptance of the manuscript should be determined by the experience of an author. The corresponding author must have a rationale in choosing the appropriate journal, and this depends upon the scope of the study and the quality of work performed. Dr. Amitabh Prakash spoke on ‘ Working with journals: Selecting a journal, cover letter, peer review process and impact factor ’ by instructing the audience in assessing the true value of a journal, understanding principles involved in the peer review processes, providing tips on making an initial approach to the editorial office, and drafting an appropriate cover letter to accompany the submission. His presentation defined the metrics that are most commonly used to measure journal quality (e.g., impact factor™, Eigenfactor™ score, Article Influence™ score, SCOPUS 2-year citation data, SCImago Journal Rank, h-Index, etc.) and guided attendees on the relative advantages and disadvantages of using each metric. Factors to consider when assessing journal quality were discussed, and the audience was educated on the ‘green’ and ‘gold’ open access publication models. Various peer review models (e.g., double-blind, single-blind, non-blind) were described together with the role of the journal editor in assessing manuscripts and selecting suitable reviewers. A typical checklist sent to referees was shared with the attendees, and clear guidance was provided on the best way to address referee feedback. The session concluded with a discussion of the potential drawbacks of the current peer review system.

Poster and oral presentations at conferences

Posters have become an increasingly popular mode of presentation at conferences, as it can accommodate more papers per meeting, has no time constraint, provides a better presenter-audience interaction, and allows one to select and attend papers of interest. In Figure 2 , we provide instructions, design, and layout in preparing a scientific poster. In the final presentation, Dr. Sahni provided the audience with step-by-step instructions on how to write and format posters for layout, content, font size, color, and graphics. Attendees were given specific guidance on the format of text on slides, the use of color, font type and size, and the use of illustrations and multimedia effects. Moreover, the importance of practical tips while delivering oral or poster presentation was provided to the audience, such as speak slowly and clearly, be informative, maintain eye contact, and listen to the questions from judges/audience carefully before coming up with an answer.

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g004.jpg

Guidelines and design to scientific poster presentation. The objective of scientific posters is to present laboratory work in scientific meetings. A poster is an excellent means of communicating scientific work, because it is a graphic representation of data. Posters should have focus points, and the intended message should be clearly conveyed through simple sections: Text, Tables, and Graphs. Posters should be clear, succinct, striking, and eye-catching. Colors should be used only where necessary. Use one font (Arial or Times New Roman) throughout. Fancy fonts should be avoided. All headings should have font size of 44, and be in bold capital letters. Size of Title may be a bit larger; subheading: Font size of 36, bold and caps. References and Acknowledgments, if any, should have font size of 24. Text should have font size between 24 and 30, in order to be legible from a distance of 3 to 6 feet. Do not use lengthy notes

PANEL DISCUSSION: FEEDBACK AND COMMENTS BY PARTICIPANTS

After all the presentations were made, Dr. Jagadeesh began a panel discussion that included all speakers. The discussion was aimed at what we do currently and could do in the future with respect to ‘developing a research question and then writing an effective thesis proposal/protocol followed by publication.’ Dr. Jagadeesh asked the following questions to the panelists, while receiving questions/suggestions from the participants and panelists.

  • Does a Post-Graduate or Ph.D. student receive adequate training, either through an institutional course, a workshop of the present nature, or from the guide?
  • Are these Post-Graduates self-taught (like most of us who learnt the hard way)?
  • How are these guides trained? How do we train them to become more efficient mentors?
  • Does a Post-Graduate or Ph.D. student struggle to find a method (s) to carry out studies? To what extent do seniors/guides help a post graduate overcome technical difficulties? How difficult is it for a student to find chemicals, reagents, instruments, and technical help in conducting studies?
  • Analyses of data and interpretation: Most students struggle without adequate guidance.
  • Thesis and publications frequently feature inadequate/incorrect statistical analyses and representation of data in tables/graphs. The student, their guide, and the reviewers all share equal responsibility.
  • Who initiates and drafts the research paper? The Post-Graduate or their guide?
  • What kind of assistance does a Post-Graduate get from the guide in finalizing a paper for publication?
  • Does the guide insist that each Post-Graduate thesis yield at least one paper, and each Ph.D. thesis more than two papers, plus a review article?

The panelists and audience expressed a variety of views, but were unable to arrive at a decisive conclusion.

WHAT HAVE THE PARTICIPANTS LEARNED?

At the end of this fast-moving two-day workshop, the participants had opportunities in learning the following topics:

  • Sequential steps in developing a study protocol, from choosing a research topic to developing research questions and a hypothesis.
  • Study protocols on different topics in their subject of specialization
  • Searching and reviewing the literature
  • Appropriate statistical analyses in biomedical research
  • Scientific ethics in publication
  • Writing and understanding the components of a research paper (IMRaD)
  • Recognizing the value of good title, running title, abstract, key words, etc
  • Importance of Tables and Figures in the Results section, and their importance in describing findings
  • Evidence-based Discussion in a research paper
  • Language and style in writing a paper and expert tips on getting it published
  • Presentation of research findings at a conference (oral and poster).

Overall, the workshop was deemed very helpful to participants. The participants rated the quality of workshop from “ satisfied ” to “ very satisfied .” A significant number of participants were of the opinion that the time allotted for each presentation was short and thus, be extended from the present two days to four days with adequate time to ask questions. In addition, a ‘hands-on’ session should be introduced for writing a proposal and manuscript. A large number of attendees expressed their desire to attend a similar workshop, if conducted, in the near future.

ACKNOWLEDGMENT

We gratefully express our gratitude to the Organizing Committee, especially Professors K. Chinnasamy, B. G. Shivananda, N. Udupa, Jerad Suresh, Padma Parekh, A. P. Basavarajappa, Mr. S. V. Veerramani, Mr. J. Jayaseelan, and all volunteers of the SRM University. We thank Dr. Thomas Papoian (US FDA) for helpful comments on the manuscript.

The opinions expressed herein are those of Gowraganahalli Jagadeesh and do not necessarily reflect those of the US Food and Drug Administration

Source of Support: Nil

Conflict of Interest: None declared.

Enago Academy

Structure of a Research Paper: Tips to Improve Your Manuscript

' src=

You’ve spent months or years conducting your academic research. Now it’s time to write your journal article. For some, this can become a daunting task because writing is not their forte. It might become difficult to even start writing. However, once you organize your thoughts and begin writing them down, the overall task will become easier.

We provide some helpful tips for you here.

Organize Your Thoughts

Perhaps one of the most important tasks before you even begin to write is to get organized. By this point, your data is compiled and analyzed. You most likely also have many pages of “notes”. These must also be organized. Fortunately, this is much easier to do than in the past with hand-written notes. Presuming that these tasks are completed, what’s next?

Related: Ready with your title and looking forward to manuscript submission ? Check these journal selection guidelines  now!

When suggesting that you organize your thoughts, we mean to take a look at what you have compiled. Ask yourself what you are trying to convey to the reader. What is the most important message from your research? How will your results affect others? Is more research necessary?

Write your answers down and keep them where you can see them while writing. This will help you focus on your goals.

Aim for Clarity

Your paper should be presented as clearly as possible. You want your readers to understand your research. You also do not want them to stop reading because the text is too technical.

Keep in mind that your published research will be available in academic journals all over the world. This means that people of different languages will read it. Moreover, even with scientists, this could present a language barrier. According to a recent article , always remember the following points as you write:

  • Clarity : Cleary define terms; avoid nonrelevant information.
  • Simplicity : Keep sentence structure simple and direct.
  • Accuracy : Represent all data and illustrations accurately.

For example, consider the following sentence:

“Chemical x had an effect on metabolism.”

This is an ambiguous statement. It does not tell the reader much. State the results instead:

“Chemical x increased fat metabolism by 20 percent.”

All scientific research also provide significance of findings, usually presented as defined “P” values. Be sure to explain these findings using descriptive terms. For example, rather than using the words “ significant effect ,” use a more descriptive term, such as “ significant increase .”

For more tips, please also see “Tips and Techniques for Scientific Writing”. In addition, it is very important to have your paper edited by a native English speaking professional editor. There are many editing services available for academic manuscripts and publication support services.

Research Paper Structure

With the above in mind, you can now focus on structure. Scientific papers are organized into specific sections and each has a goal. We have listed them here.

  • Your title is the most important part of your paper. It draws the reader in and tells them what you are presenting. Moreover, if you think about the titles of papers that you might browse in a day and which papers you actually read, you’ll agree.
  • The title should be clear and interesting otherwise the reader will not continue reading.
  • Authors’ names and affiliations are on the title page.
  • The abstract is a summary of your research. It is nearly as important as the title because the reader will be able to quickly read through it.
  • Most journals, the abstract can become divided into very short sections to guide the reader through the summaries.
  • Keep the sentences short and focused.
  • Avoid acronyms and citations.
  • Include background information on the subject and your objectives here.
  • Describe the materials used and include the names and locations of the manufacturers.
  • For any animal studies, include where you obtained the animals and a statement of humane treatment.
  • Clearly and succinctly explain your methods so that it can be duplicated.
  • Criteria for inclusion and exclusion in the study and statistical analyses should be included.
  • Discuss your findings here.
  • Be careful to not make definitive statements .
  • Your results suggest that something is or is not true.
  • This is true even when your results prove your hypothesis.
  • Discuss what your results mean in this section.
  • Discuss any study limitations. Suggest additional studies.
  • Acknowledge all contributors.
  • All citations in the text must have a corresponding reference.
  • Check your author guidelines for format protocols.
  • In most cases, your tables and figures appear at the end of your paper or in a separate file.
  • The titles (legends) usually become listed after the reference section.
  • Be sure that you define each acronym and abbreviation in each table and figure.

Manuscript

Helpful Rules

In their article entitled, “Ten simple rules for structuring papers,” in PLOS Computational Biology , authors Mensh and Kording provided 10 helpful tips as follows:

  • Focus on a central contribution.
  • Write for those who do not know your work.
  • Use the “context-content-conclusion” approach.
  • Avoid superfluous information and use parallel structures.
  • Summarize your research in the abstract.
  • Explain the importance of your research in the introduction.
  • Explain your results in a logical sequence and support them with figures and tables.
  • Discuss any data gaps and limitations.
  • Allocate your time for the most important sections.
  • Get feedback from colleagues.

Some of these rules have been briefly discussed above; however, the study done by the authors does provide detailed explanations on all of them.

Helpful Sites

Visit the following links for more helpful information:

  • “ Some writing tips for scientific papers ”
  • “ How to Structure Your Dissertation ”
  • “ Conciseness in Academic Writing: How to Prune Sentences ”
  • “ How to Optimize Sentence Length in Academic Writing ”

So, do you follow any additional tips when structuring your research paper ? Share them with us in the comments below!

' src=

Thanks for sharing this post. Great information provided. I really appreciate your writing. I like the way you put across your ideas.

Enago, is a good sources of academics presentation and interpretation tools in research writing

Rate this article Cancel Reply

Your email address will not be published.

project structure in research

Enago Academy's Most Popular Articles

project structure in research

  • Old Webinars
  • Webinar Mobile App

Improving Research Manuscripts Using AI-Powered Insights: Enago reports for effective research communication

Language Quality Importance in Academia AI in Evaluating Language Quality Enago Language Reports Live Demo…

Beyond spellcheck- How Copyediting guarantees an error-free submission

  • Reporting Research

Beyond Spellcheck: How copyediting guarantees error-free submission

Submitting a manuscript is a complex and often an emotional experience for researchers. Whether it’s…

How to Find the Right Journal and Fix Your Manuscript Before Submission

Selection of right journal Meets journal standards Plagiarism free manuscripts Rated from reviewer's POV

project structure in research

  • Manuscripts & Grants

Research Aims and Objectives: The dynamic duo for successful research

Picture yourself on a road trip without a destination in mind — driving aimlessly, not…

project structure in research

How Academic Editors Can Enhance the Quality of Your Manuscript

Avoiding desk rejection Detecting language errors Conveying your ideas clearly Following technical requirements

Top 4 Guidelines for Health and Clinical Research Report

Top 10 Questions for a Complete Literature Review

project structure in research

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

Pfeiffer Library

Writing a Research Proposal

  • Parts of a Research Proposal

Structure of a Research Proposal

Writing style.

  • Common Proposal Writing Mistakes
  • Proposal Writing Resources

Your research proposal should flow similarly to a research paper.  This is the general order of how content should be structured in a research proposal (McCombes, 2019):

  • Cover Page: Contains your project title, your name, your supervisor's name, program/department, institution or affiliation, and date.
  • Table of Contents: Outlines the contents of your entire proposal with respective page numbers.
  • Introduction: Contains background and context, a problem statement, research questions, and the rationale behind the study.
  • Literature review: Contains key concepts and theories that serve as the framework for your study as well as any gaps in research.
  • Research design and methods: Contains research objectives, method, and potential limitations
  • Implications: Explains how the study can be applied to the existing field of knowledge on the topic.
  • Reference list: A list of references used to write the proposal.
  • Research schedule: A timeline of research phases and how they will achieve the objective and meet deadlines.

In compliance with APA style, you can use these sections as headings for your document as well.  Using section headings makes information more organized for the reader and allows them to follow the author's thoughts more clearly.

Besides the contents of your proposal, you also need to pay attention to your writing style.  It is going to be different from other papers or documents you may have had to write in the past.  According to Academic Writer (n.d.), the following are some of the main elements of writing style.  These are important to making your proposal sound respectful and professional.

Instead of using common language, which is the type of language we use in normal conversations, you want to use the "language of research" or the "language of science."  This means that if a term has two meanings, you should only use the term for the meaning that is the most relevant to your research.  For example, if a chemist uses the word "element" in a proposal, they use it only in the context of its scientific definition.  This prevents the reader from getting confused throughout the document.  Avoid creating new terms in your proposal and be sure to clearly define unfamiliar words at the beginning of the proposal  (Locke et al., 2007).  Lastly, you also want to avoid using first person in your proposal ("I will...") as it does not demonstrate professionalism in writing.

The tone of your writing should be professional and serious.  In other words, use "academic voice" in your proposal writing.  Academic voice is meant to convey your thoughts and distinguish them from other authors (Robbins, 2016).  It is comprised of three elements ("What are the three elements," n.d.):

  • Making declarative statements
  • Avoiding casual language
  • Demonstrating authority

These elements make your academic writing unique from other writers and present your thoughts in a professional manner.

You want to ensure that your writing is precise so that readers have a clear understanding of your project.  Proposals should exclude excessive jargon (technical terms), slang, and abbreviations.  They should also make logical comparisons between ideas to prevent readers from getting confused or lost ("Academic Writer," n.d.).  Here are some general tips for ensuring clarity in your writing:

  • Using a term consistently throughout your paper (it refers to the same meaning throughout the document).
  • Do not use excessive jargon or technical terms, and make sure you define any new terms.
  • Draw comparisons between concepts to avoid ambiguity.  This requires using proper word choice and sentence structure.

Conciseness

  • Do not overuse passive voice
  • Describe things precisely and "to the point."
  • Assign one argument or idea per paragraph.
  • Locate areas in your document to break up text into different paragraphs.
  • Use a variety of sentence lengths.
  • Be mindful of how you use punctuation marks.  This includes commas, dashes, and hyphens.
  • Use transitional words (and, or, therefore, etc.)  to maintain flow.
  • Avoid using creative writing techniques, such as similes, metaphors, figurative language, and poetic devices.
  • Do not use contractions in your proposal (can't, don't, etc.).
  • Use words that reflect your involvement in research in your field.
  • When writing about people, use respectful language.
  • Use appropriate verb tenses to reflect series of events and timelines in your proposal.

For more in-depth content on writing style in academic writing, you can view quick guides and tutorials about scholarly writing on Academic Writer.  If you are new to using Academic Writer, we also have a database tutorial for new users.  The links to the database and tutorial are below.

TU Access Only

Compose papers in pre-formatted APA templates. Manage references in forms that help craft APA citations. Learn the rules of APA style through tutorials and practice quizzes.

Academic Writer will continue to use the 6th edition guidelines until August 2020. A preview of the 7th edition is available in the footer of the resource's site. Previously known as APA Style Central.

  • Academic Writer Tutorial by Pfeiffer Library Last Updated May 22, 2023 41740 views this year
  • << Previous: Parts of a Research Proposal
  • Next: Common Proposal Writing Mistakes >>
  • Last Updated: May 22, 2023 10:46 AM
  • URL: https://library.tiffin.edu/writingaresearchproposal

project structure in research

Dissertation Structure & Layout 101: How to structure your dissertation, thesis or research project.

By: Derek Jansen (MBA) Reviewed By: David Phair (PhD) | July 2019

So, you’ve got a decent understanding of what a dissertation is , you’ve chosen your topic and hopefully you’ve received approval for your research proposal . Awesome! Now its time to start the actual dissertation or thesis writing journey.

To craft a high-quality document, the very first thing you need to understand is dissertation structure . In this post, we’ll walk you through the generic dissertation structure and layout, step by step. We’ll start with the big picture, and then zoom into each chapter to briefly discuss the core contents. If you’re just starting out on your research journey, you should start with this post, which covers the big-picture process of how to write a dissertation or thesis .

Dissertation structure and layout - the basics

*The Caveat *

In this post, we’ll be discussing a traditional dissertation/thesis structure and layout, which is generally used for social science research across universities, whether in the US, UK, Europe or Australia. However, some universities may have small variations on this structure (extra chapters, merged chapters, slightly different ordering, etc).

So, always check with your university if they have a prescribed structure or layout that they expect you to work with. If not, it’s safe to assume the structure we’ll discuss here is suitable. And even if they do have a prescribed structure, you’ll still get value from this post as we’ll explain the core contents of each section.  

Overview: S tructuring a dissertation or thesis

  • Acknowledgements page
  • Abstract (or executive summary)
  • Table of contents , list of figures and tables
  • Chapter 1: Introduction
  • Chapter 2: Literature review
  • Chapter 3: Methodology
  • Chapter 4: Results
  • Chapter 5: Discussion
  • Chapter 6: Conclusion
  • Reference list

As I mentioned, some universities will have slight variations on this structure. For example, they want an additional “personal reflection chapter”, or they might prefer the results and discussion chapter to be merged into one. Regardless, the overarching flow will always be the same, as this flow reflects the research process , which we discussed here – i.e.:

  • The introduction chapter presents the core research question and aims .
  • The literature review chapter assesses what the current research says about this question.
  • The methodology, results and discussion chapters go about undertaking new research about this question.
  • The conclusion chapter (attempts to) answer the core research question .

In other words, the dissertation structure and layout reflect the research process of asking a well-defined question(s), investigating, and then answering the question – see below.

A dissertation's structure reflect the research process

To restate that – the structure and layout of a dissertation reflect the flow of the overall research process . This is essential to understand, as each chapter will make a lot more sense if you “get” this concept. If you’re not familiar with the research process, read this post before going further.

Right. Now that we’ve covered the big picture, let’s dive a little deeper into the details of each section and chapter. Oh and by the way, you can also grab our free dissertation/thesis template here to help speed things up.

The title page of your dissertation is the very first impression the marker will get of your work, so it pays to invest some time thinking about your title. But what makes for a good title? A strong title needs to be 3 things:

  • Succinct (not overly lengthy or verbose)
  • Specific (not vague or ambiguous)
  • Representative of the research you’re undertaking (clearly linked to your research questions)

Typically, a good title includes mention of the following:

  • The broader area of the research (i.e. the overarching topic)
  • The specific focus of your research (i.e. your specific context)
  • Indication of research design (e.g. quantitative , qualitative , or  mixed methods ).

For example:

A quantitative investigation [research design] into the antecedents of organisational trust [broader area] in the UK retail forex trading market [specific context/area of focus].

Again, some universities may have specific requirements regarding the format and structure of the title, so it’s worth double-checking expectations with your institution (if there’s no mention in the brief or study material).

Dissertations stacked up

Acknowledgements

This page provides you with an opportunity to say thank you to those who helped you along your research journey. Generally, it’s optional (and won’t count towards your marks), but it is academic best practice to include this.

So, who do you say thanks to? Well, there’s no prescribed requirements, but it’s common to mention the following people:

  • Your dissertation supervisor or committee.
  • Any professors, lecturers or academics that helped you understand the topic or methodologies.
  • Any tutors, mentors or advisors.
  • Your family and friends, especially spouse (for adult learners studying part-time).

There’s no need for lengthy rambling. Just state who you’re thankful to and for what (e.g. thank you to my supervisor, John Doe, for his endless patience and attentiveness) – be sincere. In terms of length, you should keep this to a page or less.

Abstract or executive summary

The dissertation abstract (or executive summary for some degrees) serves to provide the first-time reader (and marker or moderator) with a big-picture view of your research project. It should give them an understanding of the key insights and findings from the research, without them needing to read the rest of the report – in other words, it should be able to stand alone .

For it to stand alone, your abstract should cover the following key points (at a minimum):

  • Your research questions and aims – what key question(s) did your research aim to answer?
  • Your methodology – how did you go about investigating the topic and finding answers to your research question(s)?
  • Your findings – following your own research, what did do you discover?
  • Your conclusions – based on your findings, what conclusions did you draw? What answers did you find to your research question(s)?

So, in much the same way the dissertation structure mimics the research process, your abstract or executive summary should reflect the research process, from the initial stage of asking the original question to the final stage of answering that question.

In practical terms, it’s a good idea to write this section up last , once all your core chapters are complete. Otherwise, you’ll end up writing and rewriting this section multiple times (just wasting time). For a step by step guide on how to write a strong executive summary, check out this post .

Need a helping hand?

project structure in research

Table of contents

This section is straightforward. You’ll typically present your table of contents (TOC) first, followed by the two lists – figures and tables. I recommend that you use Microsoft Word’s automatic table of contents generator to generate your TOC. If you’re not familiar with this functionality, the video below explains it simply:

If you find that your table of contents is overly lengthy, consider removing one level of depth. Oftentimes, this can be done without detracting from the usefulness of the TOC.

Right, now that the “admin” sections are out of the way, its time to move on to your core chapters. These chapters are the heart of your dissertation and are where you’ll earn the marks. The first chapter is the introduction chapter – as you would expect, this is the time to introduce your research…

It’s important to understand that even though you’ve provided an overview of your research in your abstract, your introduction needs to be written as if the reader has not read that (remember, the abstract is essentially a standalone document). So, your introduction chapter needs to start from the very beginning, and should address the following questions:

  • What will you be investigating (in plain-language, big picture-level)?
  • Why is that worth investigating? How is it important to academia or business? How is it sufficiently original?
  • What are your research aims and research question(s)? Note that the research questions can sometimes be presented at the end of the literature review (next chapter).
  • What is the scope of your study? In other words, what will and won’t you cover ?
  • How will you approach your research? In other words, what methodology will you adopt?
  • How will you structure your dissertation? What are the core chapters and what will you do in each of them?

These are just the bare basic requirements for your intro chapter. Some universities will want additional bells and whistles in the intro chapter, so be sure to carefully read your brief or consult your research supervisor.

If done right, your introduction chapter will set a clear direction for the rest of your dissertation. Specifically, it will make it clear to the reader (and marker) exactly what you’ll be investigating, why that’s important, and how you’ll be going about the investigation. Conversely, if your introduction chapter leaves a first-time reader wondering what exactly you’ll be researching, you’ve still got some work to do.

Now that you’ve set a clear direction with your introduction chapter, the next step is the literature review . In this section, you will analyse the existing research (typically academic journal articles and high-quality industry publications), with a view to understanding the following questions:

  • What does the literature currently say about the topic you’re investigating?
  • Is the literature lacking or well established? Is it divided or in disagreement?
  • How does your research fit into the bigger picture?
  • How does your research contribute something original?
  • How does the methodology of previous studies help you develop your own?

Depending on the nature of your study, you may also present a conceptual framework towards the end of your literature review, which you will then test in your actual research.

Again, some universities will want you to focus on some of these areas more than others, some will have additional or fewer requirements, and so on. Therefore, as always, its important to review your brief and/or discuss with your supervisor, so that you know exactly what’s expected of your literature review chapter.

Dissertation writing

Now that you’ve investigated the current state of knowledge in your literature review chapter and are familiar with the existing key theories, models and frameworks, its time to design your own research. Enter the methodology chapter – the most “science-ey” of the chapters…

In this chapter, you need to address two critical questions:

  • Exactly HOW will you carry out your research (i.e. what is your intended research design)?
  • Exactly WHY have you chosen to do things this way (i.e. how do you justify your design)?

Remember, the dissertation part of your degree is first and foremost about developing and demonstrating research skills . Therefore, the markers want to see that you know which methods to use, can clearly articulate why you’ve chosen then, and know how to deploy them effectively.

Importantly, this chapter requires detail – don’t hold back on the specifics. State exactly what you’ll be doing, with who, when, for how long, etc. Moreover, for every design choice you make, make sure you justify it.

In practice, you will likely end up coming back to this chapter once you’ve undertaken all your data collection and analysis, and revise it based on changes you made during the analysis phase. This is perfectly fine. Its natural for you to add an additional analysis technique, scrap an old one, etc based on where your data lead you. Of course, I’m talking about small changes here – not a fundamental switch from qualitative to quantitative, which will likely send your supervisor in a spin!

You’ve now collected your data and undertaken your analysis, whether qualitative, quantitative or mixed methods. In this chapter, you’ll present the raw results of your analysis . For example, in the case of a quant study, you’ll present the demographic data, descriptive statistics, inferential statistics , etc.

Typically, Chapter 4 is simply a presentation and description of the data, not a discussion of the meaning of the data. In other words, it’s descriptive, rather than analytical – the meaning is discussed in Chapter 5. However, some universities will want you to combine chapters 4 and 5, so that you both present and interpret the meaning of the data at the same time. Check with your institution what their preference is.

Now that you’ve presented the data analysis results, its time to interpret and analyse them. In other words, its time to discuss what they mean, especially in relation to your research question(s).

What you discuss here will depend largely on your chosen methodology. For example, if you’ve gone the quantitative route, you might discuss the relationships between variables . If you’ve gone the qualitative route, you might discuss key themes and the meanings thereof. It all depends on what your research design choices were.

Most importantly, you need to discuss your results in relation to your research questions and aims, as well as the existing literature. What do the results tell you about your research questions? Are they aligned with the existing research or at odds? If so, why might this be? Dig deep into your findings and explain what the findings suggest, in plain English.

The final chapter – you’ve made it! Now that you’ve discussed your interpretation of the results, its time to bring it back to the beginning with the conclusion chapter . In other words, its time to (attempt to) answer your original research question s (from way back in chapter 1). Clearly state what your conclusions are in terms of your research questions. This might feel a bit repetitive, as you would have touched on this in the previous chapter, but its important to bring the discussion full circle and explicitly state your answer(s) to the research question(s).

Dissertation and thesis prep

Next, you’ll typically discuss the implications of your findings . In other words, you’ve answered your research questions – but what does this mean for the real world (or even for academia)? What should now be done differently, given the new insight you’ve generated?

Lastly, you should discuss the limitations of your research, as well as what this means for future research in the area. No study is perfect, especially not a Masters-level. Discuss the shortcomings of your research. Perhaps your methodology was limited, perhaps your sample size was small or not representative, etc, etc. Don’t be afraid to critique your work – the markers want to see that you can identify the limitations of your work. This is a strength, not a weakness. Be brutal!

This marks the end of your core chapters – woohoo! From here on out, it’s pretty smooth sailing.

The reference list is straightforward. It should contain a list of all resources cited in your dissertation, in the required format, e.g. APA , Harvard, etc.

It’s essential that you use reference management software for your dissertation. Do NOT try handle your referencing manually – its far too error prone. On a reference list of multiple pages, you’re going to make mistake. To this end, I suggest considering either Mendeley or Zotero. Both are free and provide a very straightforward interface to ensure that your referencing is 100% on point. I’ve included a simple how-to video for the Mendeley software (my personal favourite) below:

Some universities may ask you to include a bibliography, as opposed to a reference list. These two things are not the same . A bibliography is similar to a reference list, except that it also includes resources which informed your thinking but were not directly cited in your dissertation. So, double-check your brief and make sure you use the right one.

The very last piece of the puzzle is the appendix or set of appendices. This is where you’ll include any supporting data and evidence. Importantly, supporting is the keyword here.

Your appendices should provide additional “nice to know”, depth-adding information, which is not critical to the core analysis. Appendices should not be used as a way to cut down word count (see this post which covers how to reduce word count ). In other words, don’t place content that is critical to the core analysis here, just to save word count. You will not earn marks on any content in the appendices, so don’t try to play the system!

Time to recap…

And there you have it – the traditional dissertation structure and layout, from A-Z. To recap, the core structure for a dissertation or thesis is (typically) as follows:

  • Acknowledgments page

Most importantly, the core chapters should reflect the research process (asking, investigating and answering your research question). Moreover, the research question(s) should form the golden thread throughout your dissertation structure. Everything should revolve around the research questions, and as you’ve seen, they should form both the start point (i.e. introduction chapter) and the endpoint (i.e. conclusion chapter).

I hope this post has provided you with clarity about the traditional dissertation/thesis structure and layout. If you have any questions or comments, please leave a comment below, or feel free to get in touch with us. Also, be sure to check out the rest of the  Grad Coach Blog .

project structure in research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

36 Comments

ARUN kumar SHARMA

many thanks i found it very useful

Derek Jansen

Glad to hear that, Arun. Good luck writing your dissertation.

Sue

Such clear practical logical advice. I very much needed to read this to keep me focused in stead of fretting.. Perfect now ready to start my research!

hayder

what about scientific fields like computer or engineering thesis what is the difference in the structure? thank you very much

Tim

Thanks so much this helped me a lot!

Ade Adeniyi

Very helpful and accessible. What I like most is how practical the advice is along with helpful tools/ links.

Thanks Ade!

Aswathi

Thank you so much sir.. It was really helpful..

You’re welcome!

Jp Raimundo

Hi! How many words maximum should contain the abstract?

Karmelia Renatee

Thank you so much 😊 Find this at the right moment

You’re most welcome. Good luck with your dissertation.

moha

best ever benefit i got on right time thank you

Krishnan iyer

Many times Clarity and vision of destination of dissertation is what makes the difference between good ,average and great researchers the same way a great automobile driver is fast with clarity of address and Clear weather conditions .

I guess Great researcher = great ideas + knowledge + great and fast data collection and modeling + great writing + high clarity on all these

You have given immense clarity from start to end.

Alwyn Malan

Morning. Where will I write the definitions of what I’m referring to in my report?

Rose

Thank you so much Derek, I was almost lost! Thanks a tonnnn! Have a great day!

yemi Amos

Thanks ! so concise and valuable

Kgomotso Siwelane

This was very helpful. Clear and concise. I know exactly what to do now.

dauda sesay

Thank you for allowing me to go through briefly. I hope to find time to continue.

Patrick Mwathi

Really useful to me. Thanks a thousand times

Adao Bundi

Very interesting! It will definitely set me and many more for success. highly recommended.

SAIKUMAR NALUMASU

Thank you soo much sir, for the opportunity to express my skills

mwepu Ilunga

Usefull, thanks a lot. Really clear

Rami

Very nice and easy to understand. Thank you .

Chrisogonas Odhiambo

That was incredibly useful. Thanks Grad Coach Crew!

Luke

My stress level just dropped at least 15 points after watching this. Just starting my thesis for my grad program and I feel a lot more capable now! Thanks for such a clear and helpful video, Emma and the GradCoach team!

Judy

Do we need to mention the number of words the dissertation contains in the main document?

It depends on your university’s requirements, so it would be best to check with them 🙂

Christine

Such a helpful post to help me get started with structuring my masters dissertation, thank you!

Simon Le

Great video; I appreciate that helpful information

Brhane Kidane

It is so necessary or avital course

johnson

This blog is very informative for my research. Thank you

avc

Doctoral students are required to fill out the National Research Council’s Survey of Earned Doctorates

Emmanuel Manjolo

wow this is an amazing gain in my life

Paul I Thoronka

This is so good

Tesfay haftu

How can i arrange my specific objectives in my dissertation?

Trackbacks/Pingbacks

  • What Is A Literature Review (In A Dissertation Or Thesis) - Grad Coach - […] is to write the actual literature review chapter (this is usually the second chapter in a typical dissertation or…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Search Menu
  • Sign in through your institution
  • Advance articles
  • Editor's Choice
  • Supplements
  • French Abstracts
  • Portuguese Abstracts
  • Spanish Abstracts
  • Author Guidelines
  • Submission Site
  • Open Access
  • About International Journal for Quality in Health Care
  • About the International Society for Quality in Health Care
  • Editorial Board
  • Advertising and Corporate Services
  • Journals Career Network
  • Self-Archiving Policy
  • Dispatch Dates
  • Contact ISQua
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

Primacy of the research question, structure of the paper, writing a research article: advice to beginners.

  • Article contents
  • Figures & tables
  • Supplementary Data

Thomas V. Perneger, Patricia M. Hudelson, Writing a research article: advice to beginners, International Journal for Quality in Health Care , Volume 16, Issue 3, June 2004, Pages 191–192, https://doi.org/10.1093/intqhc/mzh053

  • Permissions Icon Permissions

Writing research papers does not come naturally to most of us. The typical research paper is a highly codified rhetorical form [ 1 , 2 ]. Knowledge of the rules—some explicit, others implied—goes a long way toward writing a paper that will get accepted in a peer-reviewed journal.

A good research paper addresses a specific research question. The research question—or study objective or main research hypothesis—is the central organizing principle of the paper. Whatever relates to the research question belongs in the paper; the rest doesn’t. This is perhaps obvious when the paper reports on a well planned research project. However, in applied domains such as quality improvement, some papers are written based on projects that were undertaken for operational reasons, and not with the primary aim of producing new knowledge. In such cases, authors should define the main research question a posteriori and design the paper around it.

Generally, only one main research question should be addressed in a paper (secondary but related questions are allowed). If a project allows you to explore several distinct research questions, write several papers. For instance, if you measured the impact of obtaining written consent on patient satisfaction at a specialized clinic using a newly developed questionnaire, you may want to write one paper on the questionnaire development and validation, and another on the impact of the intervention. The idea is not to split results into ‘least publishable units’, a practice that is rightly decried, but rather into ‘optimally publishable units’.

What is a good research question? The key attributes are: (i) specificity; (ii) originality or novelty; and (iii) general relevance to a broad scientific community. The research question should be precise and not merely identify a general area of inquiry. It can often (but not always) be expressed in terms of a possible association between X and Y in a population Z, for example ‘we examined whether providing patients about to be discharged from the hospital with written information about their medications would improve their compliance with the treatment 1 month later’. A study does not necessarily have to break completely new ground, but it should extend previous knowledge in a useful way, or alternatively refute existing knowledge. Finally, the question should be of interest to others who work in the same scientific area. The latter requirement is more challenging for those who work in applied science than for basic scientists. While it may safely be assumed that the human genome is the same worldwide, whether the results of a local quality improvement project have wider relevance requires careful consideration and argument.

Once the research question is clearly defined, writing the paper becomes considerably easier. The paper will ask the question, then answer it. The key to successful scientific writing is getting the structure of the paper right. The basic structure of a typical research paper is the sequence of Introduction, Methods, Results, and Discussion (sometimes abbreviated as IMRAD). Each section addresses a different objective. The authors state: (i) the problem they intend to address—in other terms, the research question—in the Introduction; (ii) what they did to answer the question in the Methods section; (iii) what they observed in the Results section; and (iv) what they think the results mean in the Discussion.

In turn, each basic section addresses several topics, and may be divided into subsections (Table 1 ). In the Introduction, the authors should explain the rationale and background to the study. What is the research question, and why is it important to ask it? While it is neither necessary nor desirable to provide a full-blown review of the literature as a prelude to the study, it is helpful to situate the study within some larger field of enquiry. The research question should always be spelled out, and not merely left for the reader to guess.

Typical structure of a research paper

Introduction
    State why the problem you address is important
    State what is lacking in the current knowledge
    State the objectives of your study or the research question
Methods
    Describe the context and setting of the study
    Specify the study design
    Describe the ‘population’ (patients, doctors, hospitals, etc.)
    Describe the sampling strategy
    Describe the intervention (if applicable)
    Identify the main study variables
    Describe data collection instruments and procedures
    Outline analysis methods
Results
    Report on data collection and recruitment (response rates, etc.)
    Describe participants (demographic, clinical condition, etc.)
    Present key findings with respect to the central research question
    Present secondary findings (secondary outcomes, subgroup analyses, etc.)
Discussion
    State the main findings of the study
    Discuss the main results with reference to previous research
    Discuss policy and practice implications of the results
    Analyse the strengths and limitations of the study
    Offer perspectives for future work
Introduction
    State why the problem you address is important
    State what is lacking in the current knowledge
    State the objectives of your study or the research question
Methods
    Describe the context and setting of the study
    Specify the study design
    Describe the ‘population’ (patients, doctors, hospitals, etc.)
    Describe the sampling strategy
    Describe the intervention (if applicable)
    Identify the main study variables
    Describe data collection instruments and procedures
    Outline analysis methods
Results
    Report on data collection and recruitment (response rates, etc.)
    Describe participants (demographic, clinical condition, etc.)
    Present key findings with respect to the central research question
    Present secondary findings (secondary outcomes, subgroup analyses, etc.)
Discussion
    State the main findings of the study
    Discuss the main results with reference to previous research
    Discuss policy and practice implications of the results
    Analyse the strengths and limitations of the study
    Offer perspectives for future work

The Methods section should provide the readers with sufficient detail about the study methods to be able to reproduce the study if so desired. Thus, this section should be specific, concrete, technical, and fairly detailed. The study setting, the sampling strategy used, instruments, data collection methods, and analysis strategies should be described. In the case of qualitative research studies, it is also useful to tell the reader which research tradition the study utilizes and to link the choice of methodological strategies with the research goals [ 3 ].

The Results section is typically fairly straightforward and factual. All results that relate to the research question should be given in detail, including simple counts and percentages. Resist the temptation to demonstrate analytic ability and the richness of the dataset by providing numerous tables of non-essential results.

The Discussion section allows the most freedom. This is why the Discussion is the most difficult to write, and is often the weakest part of a paper. Structured Discussion sections have been proposed by some journal editors [ 4 ]. While strict adherence to such rules may not be necessary, following a plan such as that proposed in Table 1 may help the novice writer stay on track.

References should be used wisely. Key assertions should be referenced, as well as the methods and instruments used. However, unless the paper is a comprehensive review of a topic, there is no need to be exhaustive. Also, references to unpublished work, to documents in the grey literature (technical reports), or to any source that the reader will have difficulty finding or understanding should be avoided.

Having the structure of the paper in place is a good start. However, there are many details that have to be attended to while writing. An obvious recommendation is to read, and follow, the instructions to authors published by the journal (typically found on the journal’s website). Another concerns non-native writers of English: do have a native speaker edit the manuscript. A paper usually goes through several drafts before it is submitted. When revising a paper, it is useful to keep an eye out for the most common mistakes (Table 2 ). If you avoid all those, your paper should be in good shape.

Common mistakes seen in manuscripts submitted to this journal

The research question is not specified
The stated aim of the paper is tautological (e.g. ‘The aim of this paper is to describe what we did’) or vague (e.g. ‘We explored issues related to X’)
The structure of the paper is chaotic (e.g. methods are described in the Results section)
The manuscripts does not follow the journal’s instructions for authors
The paper much exceeds the maximum number of words allowed
The Introduction is an extensive review of the literature
Methods, interventions and instruments are not described in sufficient detail
Results are reported selectively (e.g. percentages without frequencies, -values without measures of effect)
The same results appear both in a table and in the text
Detailed tables are provided for results that do not relate to the main research question
In the Introduction and Discussion, key arguments are not backed up by appropriate references
References are out of date or cannot be accessed by most readers
The Discussion does not provide an answer to the research question
The Discussion overstates the implications of the results and does not acknowledge the limitations of the study
The paper is written in poor English
The research question is not specified
The stated aim of the paper is tautological (e.g. ‘The aim of this paper is to describe what we did’) or vague (e.g. ‘We explored issues related to X’)
The structure of the paper is chaotic (e.g. methods are described in the Results section)
The manuscripts does not follow the journal’s instructions for authors
The paper much exceeds the maximum number of words allowed
The Introduction is an extensive review of the literature
Methods, interventions and instruments are not described in sufficient detail
Results are reported selectively (e.g. percentages without frequencies, -values without measures of effect)
The same results appear both in a table and in the text
Detailed tables are provided for results that do not relate to the main research question
In the Introduction and Discussion, key arguments are not backed up by appropriate references
References are out of date or cannot be accessed by most readers
The Discussion does not provide an answer to the research question
The Discussion overstates the implications of the results and does not acknowledge the limitations of the study
The paper is written in poor English

Huth EJ . How to Write and Publish Papers in the Medical Sciences , 2nd edition. Baltimore, MD: Williams & Wilkins, 1990 .

Browner WS . Publishing and Presenting Clinical Research . Baltimore, MD: Lippincott, Williams & Wilkins, 1999 .

Devers KJ , Frankel RM. Getting qualitative research published. Educ Health 2001 ; 14 : 109 –117.

Docherty M , Smith R. The case for structuring the discussion of scientific papers. Br Med J 1999 ; 318 : 1224 –1225.

Month: Total Views:
December 2016 1
January 2017 242
February 2017 451
March 2017 632
April 2017 289
May 2017 349
June 2017 347
July 2017 752
August 2017 649
September 2017 844
October 2017 920
November 2017 1,646
December 2017 7,530
January 2018 8,339
February 2018 9,141
March 2018 13,810
April 2018 19,070
May 2018 16,599
June 2018 13,752
July 2018 12,558
August 2018 15,395
September 2018 14,283
October 2018 14,089
November 2018 17,418
December 2018 16,718
January 2019 17,941
February 2019 15,452
March 2019 17,862
April 2019 18,214
May 2019 17,643
June 2019 13,983
July 2019 13,079
August 2019 12,840
September 2019 12,724
October 2019 10,555
November 2019 9,256
December 2019 7,084
January 2020 7,476
February 2020 8,890
March 2020 8,359
April 2020 13,466
May 2020 6,115
June 2020 8,233
July 2020 7,063
August 2020 6,487
September 2020 8,284
October 2020 9,266
November 2020 10,248
December 2020 10,201
January 2021 9,786
February 2021 10,582
March 2021 10,011
April 2021 10,238
May 2021 9,880
June 2021 8,729
July 2021 6,278
August 2021 6,723
September 2021 7,704
October 2021 8,604
November 2021 9,733
December 2021 7,678
January 2022 7,286
February 2022 7,406
March 2022 8,097
April 2022 7,589
May 2022 8,337
June 2022 5,305
July 2022 3,959
August 2022 4,166
September 2022 5,435
October 2022 5,294
November 2022 5,096
December 2022 4,104
January 2023 3,550
February 2023 4,079
March 2023 4,935
April 2023 3,793
May 2023 3,689
June 2023 2,548
July 2023 2,313
August 2023 2,125
September 2023 2,172
October 2023 2,859
November 2023 2,767
December 2023 2,335
January 2024 2,825
February 2024 2,630
March 2024 2,874
April 2024 2,311
May 2024 2,108
June 2024 1,586
July 2024 8,045
August 2024 2,672

Email alerts

Citing articles via.

  • Recommend to your Library

Affiliations

  • Online ISSN 1464-3677
  • Print ISSN 1353-4505
  • Copyright © 2024 International Society for Quality in Health Care and Oxford University Press
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Locations and Hours
  • UCLA Library
  • Research Guides
  • Research Tips and Tools

Advanced Research Methods

  • Writing a Research Proposal
  • What Is Research?
  • Library Research

What Is a Research Proposal?

Reference books.

  • Writing the Research Paper
  • Presenting the Research Paper

When applying for a research grant or scholarship, or, just before you start a major research project, you may be asked to write a preliminary document that includes basic information about your future research. This is the information that is usually needed in your proposal:

  • The topic and goal of the research project.
  • The kind of result expected from the research.
  • The theory or framework in which the research will be done and presented.
  • What kind of methods will be used (statistical, empirical, etc.).
  • Short reference on the preliminary scholarship and why your research project is needed; how will it continue/justify/disprove the previous scholarship.
  • How much will the research project cost; how will it be budgeted (what for the money will be spent).
  • Why is it you who can do this research and not somebody else.

Most agencies that offer scholarships or grants provide information about the required format of the proposal. It may include filling out templates, types of information they need, suggested/maximum length of the proposal, etc.

Research proposal formats vary depending on the size of the planned research, the number of participants, the discipline, the characteristics of the research, etc. The following outline assumes an individual researcher. This is just a SAMPLE; several other ways are equally good and can be successful. If possible, discuss your research proposal with an expert in writing, a professor, your colleague, another student who already wrote successful proposals, etc.

  • Author, author's affiliation
  • Explain the topic and why you chose it. If possible explain your goal/outcome of the research . How much time you need to complete the research?
  • Give a brief summary of previous scholarship and explain why your topic and goals are important.
  • Relate your planned research to previous scholarship. What will your research add to our knowledge of the topic.
  • Break down the main topic into smaller research questions. List them one by one and explain why these questions need to be investigated. Relate them to previous scholarship.
  • Include your hypothesis into the descriptions of the detailed research issues if you have one. Explain why it is important to justify your hypothesis.
  • This part depends of the methods conducted in the research process. List the methods; explain how the results will be presented; how they will be assessed.
  • Explain what kind of results will justify or  disprove your hypothesis. 
  • Explain how much money you need.
  • Explain the details of the budget (how much you want to spend for what).
  • Describe why your research is important.
  • List the sources you have used for writing the research proposal, including a few main citations of the preliminary scholarship.

project structure in research

  • << Previous: Library Research
  • Next: Writing the Research Paper >>
  • Last Updated: Aug 22, 2024 3:43 PM
  • URL: https://guides.library.ucla.edu/research-methods
  • Research Guides

Reading for Research: Social Sciences

Structure of a research article.

  • Structural Read

Guide Acknowledgements

How to Read a Scholarly Article from the Howard Tilton Memorial Library at Tulane University

Strategic Reading for Research   from the Howard Tilton Memorial Library at Tulane University

Bridging the Gap between Faculty Expectation and the Student Experience: Teaching Students toAnnotate and Synthesize Sources

Librarian for Sociology, Environmental Sociology, MHS and Public Policy Studies

Profile Photo

Academic writing has features that vary only slightly across the different disciplines. Knowing these elements and the purpose of each serves help you to read and understand academic texts efficiently and effectively, and then apply what you read to your paper or project.

Social Science (and Science) original research articles generally follow IMRD: Introduction- Methods-Results-Discussion

Introduction

  • Introduces topic of article
  • Presents the "Research Gap"/Statement of Problem article will address
  • How research presented in the article will solve the problem presented in research gap.
  • Literature Review. presenting and evaluating previous scholarship on a topic.  Sometimes, this is separate section of the article. 

​Method & Results

  • How research was done, including analysis and measurements.  
  • Sometimes labeled as "Research Design"
  • What answers were found
  • Interpretation of Results (What Does It Mean? Why is it important?)
  • Implications for the Field, how the study contributes to the existing field of knowledge
  • Suggestions for further research
  • Sometimes called Conclusion

You might also see IBC: Introduction - Body - Conclusion

  • Identify the subject
  • State the thesis 
  • Describe why thesis is important to the field (this may be in the form of a literature review or general prose)

Body  

  • Presents Evidence/Counter Evidence
  • Integrate other writings (i.e. evidence) to support argument 
  • Discuss why others may disagree (counter-evidence) and why argument is still valid
  • Summary of argument
  • Evaluation of argument by pointing out its implications and/or limitations 
  • Anticipate and address possible counter-claims
  • Suggest future directions of research
  • Next: Structural Read >>
  • Last Updated: Jan 19, 2024 10:44 AM
  • URL: https://researchguides.library.vanderbilt.edu/readingforresearch

Creative Commons License

University Times Home

  • Back Issues
  • Letters Policy

Projects selected for dB-SERC Course Transformation Awards

The Discipline-Based Science Education Research Center (dB-SERC) has awarded 12 Course Transformation Awards to faculty in natural sciences.

Since 2014, dB-SERC has supported natural sciences faculty members in developing projects to transform the way classes are taught by adopting evidence-based teaching practice to improve student learning outcomes.

Award recipients receive funds for equipment, student support or summer salary for faculty. Two mentor-mentee awards also were given out to support classroom innovation projects conducted by students and faculty working together.

Course Transformation Awards

Young Ahn, Department of Biological Sciences: Designing a high-structure course combining frequent low-stakes assessments with inclusive teaching for a large-enrollment introductory biology class

This proposal aims to test the “heads and hearts” hypothesis which suggests that both students’ cognitive (heads) and affective (hearts) learning experiences must be purposefully constructed in classroom environments. This project will investigate whether a course structure that combines frequent low-stakes assessments (heads) and inclusive teaching (hearts) can improve student performance and reduce achievement gaps in a large-enrollment introductory biology course thereby promoting retention in STEM.

Anusha Balangoda, Department of Geology and Environmental Science : Use of a Collaborative Online Reading Platform for Pre-class Reading Assignments in a Large Enrollment First-Year Undergraduate Class

The proposed work seeks funding to implement pre-class reading assignments through a social annotation platform allowing active reading on assigned course materials outside the class. A free social platform, Perusall, provides an interactive experience for students to engage with peers asynchronously and facilitates a space to teach and learn from peers. This collaborative social platform allows students to work on assignments outside the classroom to promote productive discussions and produce high-quality peer interactions.

Seth Childers, Department of Chemistry: Development of Interdisciplinary Courses for a New Chemical Biology Major

In the Department of Chemistry, the PI is proposing a chemical biology major, including two new lecture courses and one laboratory course, proposed to launch in Fall 2025 or 2026. This timeline allows them to craft a curriculum while deploying evidence-based learning practices to enhance job readiness. Based on student surveys, the program aims to accommodate approximately 48 majors annually and engage non-majors as a desirable scientific elective campus wide.

Russell Clark and Aidan Payton, Department of Physics & Astronomy: Gender Equity in Introductory Physics Lab Group Roles

This is a continuation of a dB-SERC award from 2020 (Development of Teacher Guides and Rubrics for Introductory Physics Labs). The original plan for that award was to develop better rubrics and other materials to help the TA graders provide more valuable feedback to the students. However, the University was forced into quarantine midway through the first semester of the project, and so the character of it changed.  They know from a previous study that student groups tend to have gender bias in which men tend to work with the experimental apparatus and women are relegated to secretarial roles (recording data, writing the report, etc.). They attempted to mitigate this by asking the students to cycle through the roles week to week so that each student would get to participate in each role multiple times.

Erika Fanselow, Department of Neuroscience: Incorporating digital and physical 3D brain models into interactive online and in-class activities to enhance student engagement and mastery in neuroanatomy courses

The goal of this course transformation is to develop interactive, online and in-class exercises that incorporate digital and printed 3D models of nervous system structures. These 3D model-based exercises and in-class activities are intended to enhance students’ visualization and conceptualization of neuroanatomical structures. The rationale for this course transformation proposal is based on the fact that neuroanatomy students are commonly overwhelmed by the complexity of the nervous system, resulting in a condition Jozefowicz (1994) referred to as “neurophobia,” which he concluded actually keeps students from choosing fields such as neurology.

Sean Garrett-Roe, Department of Chemistry: Activity redesign and mindset intervention based on growth-oriented testing in Chem-0110 General Chemistry I

“Grading for Growth” is a movement to encourage students to embrace deeper intellectual engagement with their studies by revolutionizing the way that their learning is assessed. Student-focused active learning pedagogies, such as Process Oriented Guided Inquiry Learning (POGIL), are well-established; student-focused assessments, on the other hand, are a new frontier. The PIs have formulated, implemented and assessed a student-focused assessment system that they call “Growth-Oriented Testing.” As successful as the system has been, the assessment results have illuminated ways in which their in-class materials have not optimally supported students, and the student opinion surveys suggest ways in which they have not optimally framed the learning process. As a result, students may not get the full benefits of the learning environment. A long-range goal of their teaching is to help students embrace a life of growth and learning; they want the students to learn both Chemistry and the metacognitive and metaemotional skills they need to succeed beyond the Chemistry classroom.

Sean Gess, Department of Biological Sciences: Supporting richer class-wide discussion and promoting the use of scientific argumentation in Foundations of Biology laboratory courses

This project focuses on class-wide discussion in a guided, authentic research lab. In this course students engage in science education by performing authentic research science to address active research questions being investigated within the department. The course is designed to mimic the research process, including discussions of data to try and understand it better. These discussion-based activities often struggle to support the learning objectives due to low participation from students or students not really listening and engaging with others during the discussions. To improve these discussions, they have previously introduced an explicit framing to attempt to help students understand the norms around this activity, normalize it as a professional practice, and encourage engagement and participation. This approach to science learning has shown gains in critical thinking skills and supports epistemic learning of STEM content.

Burhan Gharaibeh, Natasha Baker and Bridget Deasy, Department of Biological Sciences: Enhancing student engagement in anatomy and physiology courses through regenerative medicine primary science literature

Students of anatomy and physiology in different majors often report difficulty in these courses due to the need for memorizing lists of structures and comprehending complex physiological processes. They have preliminary data demonstrating that adding discussions of current, clinically relevant therapies and biotechnology articles related to regenerative medicine studies were effective in enhancing the biology student’s engagement during anatomy lectures. More importantly, the addition of these discussions to the curriculum appeared to improve exam grades.

Melanie Good and Eric Swanson, Department of Physics & Astronomy: The Use of Comprehensive PACE (Pseudoscience and Conspiracy-theory Education) in Physics and Society

Phys0087: Physics and Society was a course developed by Eric Swanson to help students examine the conceptual foundations of modern science with the goal of understanding how science affects our daily lives and our impact on the environment. At the intersection of science and society lies the issue of popular belief in the claims of pseudoscience and conspiracy theories. These beliefs are fairly common and often can be difficult to dislodge with education in science alone. However, past work has shown that explicit instruction on topics related to pseudoscience and conspiracy theory beliefs may be effective in reducing endorsement of these beliefs. The PIs have seen this among their own students, based on pilot data and data from a previous dB-SERC Course Transformation Award. The success of their earlier work has captured the attention not only of our university media, but also the Lilienfeld Alliance, a group of higher education professionals across the nation that is committed to promoting critical thinking skills in the face of the claims of pseudoscience, who invited them to join their cause. With the momentum they have built, they are inspired to more comprehensively overhaul Phys0087: Physics and Society to expand upon their original transformation. Their new proposed course transformation would extend the pseudoscience module into a comprehensive PACE (Pseudoscience and Conspiracy-theory Education) curriculum in Phys0087–Physics and Society during the 2024-2025 school year.

Edison Hauptman and Jeffrey Wheeler, Department of Mathematics: Contract Grading in Calculus 2

In summer 2024, Edison Hauptman’s section of Analytic Geometry & Calculus 2 (Math 0230) was taught with a different set of assignments and grading structure. The grading structure for the class resembled a contract between the instructor and their students: the instructor provided many different assignments, and for a student to earn a desired grade, they had to score enough points on various assignments of their choice to reach that grade’s point threshold. This course structure can have many variations and is called a “grading contract.” Compared to the current (default) course structure for Calculus courses at the University of Pittsburgh, a grading contract is a more equitable way to evaluate a diverse set of students, allows the instructor to be more accommodating to students without sacrificing the course’s rigor, and encourages more student buy-in. This project develops and evaluates a set of assignments offered to students in  Hauptman’s Summer 2024 12-week section of Math 0230 and focuses on mathematical skills emphasized in each assignment.

Zuzana Swigonova, Department of Biological Sciences: Combining computer visualizations with 3D printed models to engage students in active study of molecular structure and function

All biological processes in a living system depend on proper functioning of molecules. Understanding the principles of molecular structure, the three-dimensional spatial arrangements of atoms and functional groups that allow for intra- and intermolecular interactions, is crucial for grasping the fundamentals of structure-function relationships. Despite the many benefits of physical 3D models, printing intricate biological molecules has several limitations, such as low level of atomic detail in complex structures, depiction of a single static molecular representation, and labor-intensive post-printing processing. Computer visualization allows for the development of abundant resources that complement physical models with no added material cost. They propose to develop teaching resources using computer visualization to supplement the physical 3D models.

Margaret Vines, Department of Chemistry: Learning to learn chemistry

The purpose of this project is to help students learn. Most students come to college with the desire to learn. They want to be successful and learn the material presented to them in their classes. Unfortunately, many of them engage in activities that do not help with their learning. The PI’s goal is to help students begin to learn how to learn. They will do this as part of their regular lecture and recitation in general Chemistry. They will educate them about learning techniques and explain why they will aid in their learning. They will then demonstrate these techniques in class, and the students will be given opportunities to use these techniques inside and outside the lecture and recitation. Finally, they will encourage their students to develop those techniques for use in their other classes.

Mentor/Mentee Award

Mentor: Anusha Balangoda / Mentee: Beth Ann Eberle. Department of Geology and Environmental Science: Use of Cooperative Learning Approach in Recitations to Untangle Pressing Environmental Issues in Introductory Environmental Science Class

Cooperative learning is a student-centered active learning strategy in which a small group of students is responsible for their own success and that of their team by holding themselves accountable for the process and outcomes of the activities. In this project, they propose to use a cooperative learning strategy in the GEOL 0840 Introductory Environmental Science course, which is a large enrollment three-credit class, and both lectures and recitations are required.

Mentor: Ben Rottman / Mentee: Rebecca McGregor. Department of Psychology; Learning Research and Development Center: Using a Consulting Model and Project-Based Learning to Teach Psychology Research Methods

In the field of psychology, research methods form the foundation of students’ knowledge during the remainder of their undergraduate degree and beyond. Students in PSY 0036: Research Methods Lecture at the University of Pittsburgh have three course objectives: learn how to read, interpret and discuss research design and conclusions, learn how to critique research, and learn how to design valid research. There are currently few opportunities for students to apply this knowledge to real-world experiences, as this is an introductory course in which students have not yet developed the skills to analyze and interpret their own data. Thus, this course design through the dB-SERC would provide a semester-long collaborative assignment in which students would develop a project proposal to investigate a real-world research problem for a fictional client.

Grandmother, mother and daughter smiling and laughing on a beach

Senior Scientist, Protein Sciences

About the role.

Internal Job Title: Senior Scientist I/II

Position Location: Onsite, Cambridge, MA

About the role:

Biomedical Research (BR) is the innovation engine of Novartis, focusing on powerful new approaches that will help produce therapeutic breakthroughs for patients. The Discovery Sciences department within BR drives early-stage drug discovery and champions innovative therapeutics.

The Protein Sciences group in Discovery Sciences is an interdisciplinary team that has expertise in protein chemistry, enzymology, biophysics, NMR, X-ray crystallography, and electron microscopy. Our mission is to enable structure-guided drug discovery for multiple disease areas and to identify innovative approaches that can address difficult drug targets. We are currently recruiting a Senior Scientist with a strong background and track record in protein biochemistry. The candidate will focus primarily on the production of membrane proteins. The responsibilities of this new position include designing protein constructs for optimal expression in various cell lines, developing methodologies for purification of membrane proteins, and protein characterization with biophysical and structural techniques. You will closely collaborate with our scientists and contribute to protein production efforts on novel and challenging drug-discovery projects.

This is an excellent opportunity to join the vibrant research community of Novartis BR in Cambridge, MA to work on various early-stage drug discovery projects. The successful candidate will be a curious and highly motivated protein scientist with a collaborative spirit and excellent organizational and communication skills.

Key Responsibilities:

  • Develop and execute protocols to produce various membrane proteins targets for small molecule hit generation, hit validation and structural biology studies of protein-small molecule complexes.
  • Design protein constructs based on literature and AI-powered structure prediction tools.
  • Protein expression in mammalian and insect cell culture lines.
  • Protein purification using various chromatography techniques and FPLC equipment.
  • Collaborate with colleagues to characterize membrane proteins using biophysical and structural biology techniques.
  • Maintains a high level of professional expertise through accurate and detailed record keeping and familiarity with scientific literature.
  • Work collaboratively with lab associates in a matrix setting to expand our protein production toolkit.
  • Present and communicate results with protein science colleagues and project teams.

Minimum Requirements:

  • BS/MS degree in biochemistry, life sciences, molecular biology or related field with at least 4 years of relevant postgraduate laboratory research experience.
  • Proven in-depth knowledge and hands-on experience in protein chemistry, including protein expression, purification, and characterization.
  • Experience with molecular biology and protein sequence analysis.
  • Excellent collaboration, communication (oral and written) and organizational skills and the ability to present work formally to project teams and scientific research committees.
  • Strong desire to learn new techniques in the areas of protein biochemistry, biophysics and structural biology.

Desirable Requirements:

  • Experience with membrane protein biochemistry including expression, purification, characterization and functional assays
  • Previous exposure to structural biology research including structural analysis and modeling, x-ray crystallography and/or cryo-EM.
  • Experience in cell line development and maintenance.

Why Novartis: Our purpose is to reimagine medicine to improve and extend people’s lives and our vision is to become the most valued and trusted medicines company in the world. How can we achieve this? With our people. It is our associates that drive us each day to reach our ambitions. Be a part of this mission and join us! Learn more here: https://www.novartis.com/about/strategy/people-and-culture

You’ll receive: You can find everything you need to know about our benefits and rewards in the Novartis Life Handbook: https://www.novartis.com/careers/benefits-rewards

Commitment to Diversity and Inclusion / EEO: The Novartis Group of Companies are Equal Opportunity Employers and take pride in maintaining a diverse environment. We do not discriminate in recruitment, hiring, training, promotion or other employment practices for reasons of race, color, religion, gender, national origin, age, sexual orientation, gender identity or expression, marital or veteran status, disability, or any other legally protected status. We are committed to building diverse teams, representative of the patients and communities we serve, and we strive to create an inclusive workplace that cultivates bold innovation through collaboration and empowers our people to unleash their full potential. Novartis Compensation and Benefit Summary: The pay range for this position at commencement of employment is expected to be between $92,800 to $153,600/year; however, while salary ranges are effective from 1/1/24 through 12/31/24, fluctuations in the job market may necessitate adjustments to pay ranges during this period. Further, final pay determinations will depend on various factors, including, but not limited to geographical location, experience level, knowledge, skills, and abilities. The total compensation package for this position may also include other elements, including a sign-on bonus, restricted stock units, and discretionary awards in addition to a full range of medical, financial, and/or other benefits (including 401(k) eligibility and various paid time off benefits, such as vacation, sick time, and parental leave), dependent on the position offered. Details of participation in these benefit plans will be provided if an employee receives an offer of employment. If hired, employee will be in an “at-will position” and the Company reserves the right to modify base salary (as well as any other discretionary payment or compensation program) at any time, including for reasons related to individual performance, Company or individual department/team performance, and market factors. Join our Novartis Network: If this role is not suitable to your experience or career goals but you wish to stay connected to hear more about Novartis and our career opportunities, join the Novartis Network here: https://talentnetwork.novartis.com/network

Why Novartis: Helping people with disease and their families takes more than innovative science. It takes a community of smart, passionate people like you. Collaborating, supporting and inspiring each other. Combining to achieve breakthroughs that change patients’ lives. Ready to create a brighter future together? https://www.novartis.com/about/strategy/people-and-culture

Join our Novartis Network: Not the right Novartis role for you? Sign up to our talent community to stay connected and learn about suitable career opportunities as soon as they come up: https://talentnetwork.novartis.com/network

Benefits and Rewards: Read our handbook to learn about all the ways we’ll help you thrive personally and professionally: https://www.novartis.com/careers/benefits-rewards

EEO Statement:

The Novartis Group of Companies are Equal Opportunity Employers who are focused on building and advancing a culture of inclusion that values and celebrates individual differences, uniqueness, backgrounds and perspectives. We do not discriminate in recruitment, hiring, training, promotion or other employment practices for reasons of race, color, religion, sex, national origin, age, sexual orientation, gender identity or expression, marital or veteran status, disability, or any other legally protected status. We are committed to fostering a diverse and inclusive workplace that reflects the world around us and connects us to the patients, customers and communities we serve.

Accessibility & Reasonable Accommodations

The Novartis Group of Companies are committed to working with and providing reasonable accommodation to individuals with disabilities. If, because of a medical condition or disability, you need a reasonable accommodation for any part of the application process, or to perform the essential functions of a position, please send an e-mail to [email protected] or call +1(877)395-2339 and let us know the nature of your request and your contact information. Please include the job requisition number in your message.

A female Novartis scientist wearing a white lab coat and glasses, smiles in front of laboratory equipment.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • Research Objectives | Definition & Examples

Research Objectives | Definition & Examples

Published on July 12, 2022 by Eoghan Ryan . Revised on November 20, 2023.

Research objectives describe what your research is trying to achieve and explain why you are pursuing it. They summarize the approach and purpose of your project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement . They should:

  • Establish the scope and depth of your project
  • Contribute to your research design
  • Indicate how your project will contribute to existing knowledge

Table of contents

What is a research objective, why are research objectives important, how to write research aims and objectives, smart research objectives, other interesting articles, frequently asked questions about research objectives.

Research objectives describe what your research project intends to accomplish. They should guide every step of the research process , including how you collect data , build your argument , and develop your conclusions .

Your research objectives may evolve slightly as your research progresses, but they should always line up with the research carried out and the actual content of your paper.

Research aims

A distinction is often made between research objectives and research aims.

A research aim typically refers to a broad statement indicating the general purpose of your research project. It should appear at the end of your problem statement, before your research objectives.

Your research objectives are more specific than your research aim and indicate the particular focus and approach of your project. Though you will only have one research aim, you will likely have several research objectives.

Prevent plagiarism. Run a free check.

Research objectives are important because they:

  • Establish the scope and depth of your project: This helps you avoid unnecessary research. It also means that your research methods and conclusions can easily be evaluated .
  • Contribute to your research design: When you know what your objectives are, you have a clearer idea of what methods are most appropriate for your research.
  • Indicate how your project will contribute to extant research: They allow you to display your knowledge of up-to-date research, employ or build on current research methods, and attempt to contribute to recent debates.

Once you’ve established a research problem you want to address, you need to decide how you will address it. This is where your research aim and objectives come in.

Step 1: Decide on a general aim

Your research aim should reflect your research problem and should be relatively broad.

Step 2: Decide on specific objectives

Break down your aim into a limited number of steps that will help you resolve your research problem. What specific aspects of the problem do you want to examine or understand?

Step 3: Formulate your aims and objectives

Once you’ve established your research aim and objectives, you need to explain them clearly and concisely to the reader.

You’ll lay out your aims and objectives at the end of your problem statement, which appears in your introduction. Frame them as clear declarative statements, and use appropriate verbs to accurately characterize the work that you will carry out.

The acronym “SMART” is commonly used in relation to research objectives. It states that your objectives should be:

  • Specific: Make sure your objectives aren’t overly vague. Your research needs to be clearly defined in order to get useful results.
  • Measurable: Know how you’ll measure whether your objectives have been achieved.
  • Achievable: Your objectives may be challenging, but they should be feasible. Make sure that relevant groundwork has been done on your topic or that relevant primary or secondary sources exist. Also ensure that you have access to relevant research facilities (labs, library resources , research databases , etc.).
  • Relevant: Make sure that they directly address the research problem you want to work on and that they contribute to the current state of research in your field.
  • Time-based: Set clear deadlines for objectives to ensure that the project stays on track.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Research objectives describe what you intend your research project to accomplish.

They summarize the approach and purpose of the project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement .

Your research objectives indicate how you’ll try to address your research problem and should be specific:

Once you’ve decided on your research objectives , you need to explain them in your paper, at the end of your problem statement .

Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one.

I will compare …

A research aim is a broad statement indicating the general purpose of your research project. It should appear in your introduction at the end of your problem statement , before your research objectives.

Research objectives are more specific than your research aim. They indicate the specific ways you’ll address the overarching aim.

Scope of research is determined at the beginning of your research process , prior to the data collection stage. Sometimes called “scope of study,” your scope delineates what will and will not be covered in your project. It helps you focus your work and your time, ensuring that you’ll be able to achieve your goals and outcomes.

Defining a scope can be very useful in any research project, from a research proposal to a thesis or dissertation . A scope is needed for all types of research: quantitative , qualitative , and mixed methods .

To define your scope of research, consider the following:

  • Budget constraints or any specifics of grant funding
  • Your proposed timeline and duration
  • Specifics about your population of study, your proposed sample size , and the research methodology you’ll pursue
  • Any inclusion and exclusion criteria
  • Any anticipated control , extraneous , or confounding variables that could bias your research if not accounted for properly.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, November 20). Research Objectives | Definition & Examples. Scribbr. Retrieved September 4, 2024, from https://www.scribbr.com/research-process/research-objectives/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, writing strong research questions | criteria & examples, how to write a problem statement | guide & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

COMMENTS

  1. Research Structure

    Components of each chapter in research structure . The following is a sample of a research structure: Chapter One communicates the purpose and focus of the study and explains the outline of the research. This chapter includes a brief explanation of the research background, and provides rationale for the selection of the research area.Moreover, the first chapter contains explanation of the ...

  2. How to Start a Research Project: A Step-by-Step Guide

    Starting a research project can feel overwhelming, but breaking it down into manageable steps can make it easier. This guide will walk you through each stage, from choosing a topic to preparing for your final presentation. By following these steps, you'll be well on your way to completing a successful research project. Key Takeaways

  3. Structuring the Research Paper: Formal Research Structure

    Formal Research Structure. These are the primary purposes for formal research: enter the discourse, or conversation, of other writers and scholars in your field. learn how others in your field use primary and secondary resources. find and understand raw data and information. For the formal academic research assignment, consider an ...

  4. Research Paper Structure

    A complete research paper in APA style that is reporting on experimental research will typically contain a Title page, Abstract, Introduction, Methods, Results, Discussion, and References sections. 1 Many will also contain Figures and Tables and some will have an Appendix or Appendices. These sections are detailed as follows (for a more in ...

  5. Research Paper

    The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. ... Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share ...

  6. What Is Research Design? 8 Types + Examples

    Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data. Research designs for quantitative studies include descriptive, correlational, experimental and quasi-experimenta l designs. Research designs for qualitative studies include phenomenological ...

  7. Research Paper Structure: A Comprehensive Guide

    In any form of written communication, content structure plays a vital role in facilitating understanding. A well-structured research paper provides a framework that guides readers through the content, ensuring they grasp the main points efficiently. Without a clear structure, readers may become lost or confused, leading to a loss of interest ...

  8. Research Project

    Definition: Research Project is a planned and systematic investigation into a specific area of interest or problem, with the goal of generating new knowledge, insights, or solutions. It typically involves identifying a research question or hypothesis, designing a study to test it, collecting and analyzing data, and drawing conclusions based on ...

  9. PDF The Structure of an Academic Paper

    The Structure of an Academic Paper www.communicate.gse.harvard.edu Academic papers are like hourglasses. The paper opens at its widest point; the introduction makes broad connections to the reader's interests, hoping they will be persuaded to follow along, then gradually narrows to a tight, focused, thesis statement.

  10. Structuring your research proposal

    Research proposal structure. 1. A summary or abstract. One or two paragraphs that summarise what you will do in the research project and how you will do it. 2. Problem, question or hypothesis. The key details, approaches or framings the research project will focus on. If hypotheses are appropriate they should be stated along with a rationale.

  11. How to do a research project for your academic study

    The research project format is just as important as the research itself. Without a clear structure you will not be able to present your findings concisely. A research paper is made up of seven sections: introduction, literature review, methodology, findings and results, discussion, conclusion, and references.

  12. The critical steps for successful research: The research proposal and

    Completing any research project requires meticulous planning, experimental design and execution, and compilation and publication of findings in the form of a research paper. ... and it should be specific, clear, and concise, and should have IMRaD structure in brief, followed by key words. Selection of appropriate papers to be cited in the ...

  13. Structure of a Research Paper: Tips to Improve Your Manuscript

    Use the "context-content-conclusion" approach. Avoid superfluous information and use parallel structures. Summarize your research in the abstract. Explain the importance of your research in the introduction. Explain your results in a logical sequence and support them with figures and tables.

  14. How to Write a Research Proposal

    Writing a research proposal can be quite challenging, but a good starting point could be to look at some examples. We've included a few for you below. Example research proposal #1: "A Conceptual Framework for Scheduling Constraint Management" Example research proposal #2: "Medical Students as Mediators of Change in Tobacco Use" Title page

  15. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  16. PDF How to write a research project

    approach to your research project. Don't try to do a month's work in a week: frame your project so that it fits the time you have. And remember, the more work you hope to do, the more time you'll need. Keep this in mind when you're planning your project. How to start your research project No matter how S.M.A.R.T. your goals, your

  17. Structure of a Research Proposal

    Your research proposal should flow similarly to a research paper. This is the general order of how content should be structured in a research proposal (McCombes, 2019): Cover Page: Contains your project title, your name, your supervisor's name, program/department, institution or affiliation, and date.

  18. Dissertation Structure & Layout 101 (+ Examples)

    Abstract or executive summary. The dissertation abstract (or executive summary for some degrees) serves to provide the first-time reader (and marker or moderator) with a big-picture view of your research project. It should give them an understanding of the key insights and findings from the research, without them needing to read the rest of the report - in other words, it should be able to ...

  19. A Beginner's Guide to Starting the Research Process

    Step 4: Create a research design. The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you'll use to collect and analyze it, and the location and timescale of your research. There are often many possible paths you can take to answering ...

  20. Writing a research article: advice to beginners

    The typical research paper is a highly codified rhetorical form [1, 2]. Knowledge of the rules—some explicit, others implied—goes a long way toward writing a paper that will get accepted in a peer-reviewed journal. Primacy of the research question. A good research paper addresses a specific research question.

  21. Writing a Research Proposal

    Lecturers, request your electronic inspection copy. This is your step-by-step guide to success with your research proposal. The new Third Edition covers every section of the proposal, telling you all you need to know on how to structure it, bring rigor to your methods section, impress your readers, and get your proposal accepted.

  22. Structure of a Research Article

    Structure of a Research Article. Academic writing has features that vary only slightly across the different disciplines. Knowing these elements and the purpose of each serves help you to read and understand academic texts efficiently and effectively, and then apply what you read to your paper or project.

  23. Challenges and Strategies in Carrying Out Scholarly and Research Projects

    For example, one shared, "Research is an intensive process, and it takes a lot of time (from conception of the topic, to designing the project, obtaining research ethics approval, writing grant applications, conducting the research, analyzing the results, supervising RAs, writing for publication, and conference presentations).

  24. How to Create a Structured Research Paper Outline

    A research paper outline is a useful tool to aid in the writing process, providing a structure to follow with all information to be included in the paper clearly organized. A quality outline can make writing your research paper more efficient by helping to: Organize your thoughts; Understand the flow of information and how ideas are related

  25. Projects selected for dB-SERC Course Transformation Awards

    The Discipline-Based Science Education Research Center (dB-SERC) has awarded 12 Course Transformation Awards to faculty in natural sciences. Since 2014, dB-SERC has supported natural sciences faculty members in developing projects to transform the way classes are taught by adopting evidence-based teaching practice to improve student learning outcomes. Award recipients receive funds for ...

  26. Senior Scientist, Protein Sciences

    Internal Job Title: Senior Scientist I/IIPosition Location: Onsite, Cambridge, MAAbout the role:Biomedical Research (BR) is the innovation engine of Novartis, focusing on powerful new approaches that will help produce therapeutic breakthroughs for patients. The Discovery Sciences department within BR drives early-stage drug discovery and champions innovative therapeutics.The Protein Sciences ...

  27. Research Objectives

    Example: Research aim. To examine contributory factors to muscle retention in a group of elderly people. Example: Research objectives. To assess the relationship between sedentary habits and muscle atrophy among the participants. To determine the impact of dietary factors, particularly protein consumption, on the muscular health of the ...