5 Characteristics of a Good Hypothesis: A Guide for Researchers

  • by Brian Thomas
  • October 4, 2024

Are you a curious soul, always seeking answers to the whys and hows of the world? As a researcher, formulating a hypothesis is a crucial first step towards unraveling the mysteries of your study. A well-crafted hypothesis not only guides your research but also lays the foundation for drawing valid conclusions. But what exactly makes a hypothesis a good one? In this blog post, we will explore the five key characteristics of a good hypothesis that every researcher should know.

Here, we will delve into the world of hypotheses, covering everything from their types in research to understanding if they can be proven true. Whether you’re a seasoned researcher or just starting out, this blog post will provide valuable insights on how to craft a sound hypothesis for your study. So let’s dive in and uncover the secrets to formulating a hypothesis that stands strong amidst the scientific rigor!

(Keywords: characteristics of a good hypothesis, important characteristics of a good hypothesis quizlet, types of hypothesis in research, can a hypothesis be proven true, 6 parts of hypothesis, how to start a hypothesis sentence, examples of hypothesis, five key elements of a good hypothesis, hypothesis in research papers, is a hypothesis always a question, three things needed for a good hypothesis, components of a good hypothesis, formulate a hypothesis, characteristics of a hypothesis mcq, criteria for a scientific hypothesis, steps of theory development in scientific methods, what makes a good hypothesis, characteristics of a good hypothesis quizlet, five-step p-value approach to hypothesis testing , stages of hypothesis, good hypothesis characteristics, writing a good hypothesis example, difference between hypothesis and hypotheses, good hypothesis statement, not a characteristic of a good hypothesis)

5 Characteristics of a Good Hypothesis

Clear and specific.

A good hypothesis is like a GPS that guides you to the right destination. It needs to be clear and specific so that you know exactly what you’re testing. Avoid vague statements or general ideas. Instead, focus on crafting a hypothesis that clearly states the relationship between variables and the expected outcome. Clarity is key, my friend!

Testable and Falsifiable

A hypothesis might sound great in theory, but if you can’t test it or prove it wrong, then it’s like chasing unicorns. A good hypothesis should be testable and falsifiable – meaning there should be a way to gather evidence to support or refute it. Don’t be afraid to challenge your hypothesis and put it to the test. Only when it can be proven false can it truly be considered a good hypothesis.

Based on Existing Knowledge

Imagine trying to build a Lego tower without any Lego bricks. That’s what it’s like to come up with a hypothesis that has no basis in existing knowledge. A good hypothesis is grounded in previous research, theories, or observations. It shows that you’ve done your homework and understand the current state of knowledge in your field. So, put on your research hat and gather those building blocks for a solid hypothesis!

Specific Predictions

No, we’re not talking about crystal ball predictions or psychic abilities here. A good hypothesis includes specific predictions about what you expect to happen. It’s like making an educated guess based on your understanding of the variables involved. These predictions help guide your research and give you something concrete to look for. So, put on those prediction goggles, my friend, and let’s get specific!

Relevant to the Research Question

A hypothesis is a road sign that points you in the right direction. But if it’s not relevant to your research question, then you might end up in a never-ending detour. A good hypothesis aligns with your research question and addresses the specific problem or phenomenon you’re investigating. Keep your focus on the main topic and avoid getting sidetracked by shiny distractions. Stay relevant, my friend, and you’ll find the answers you seek!

And there you have it: the five characteristics of a good hypothesis. Remember, a good hypothesis is clear, testable, based on existing knowledge, makes specific predictions, and is relevant to your research question. So go forth, my friend, and hypothesize your way to scientific discovery!

FAQs: Characteristics of a Good Hypothesis

In the realm of scientific research, a hypothesis plays a crucial role in formulating and testing ideas. A good hypothesis serves as the foundation for an experiment or study, guiding the researcher towards meaningful results. In this FAQ-style subsection, we’ll explore the characteristics of a good hypothesis, their types, formulation, and more. So let’s dive in and unravel the mysteries of hypothesis-making!

What Are Two Important Characteristics of a Good Hypothesis

A good hypothesis possesses two important characteristics:

Testability : A hypothesis must be testable to determine its validity. It should be formulated in a way that allows researchers to design and conduct experiments or gather data for analysis. For example, if we hypothesize that “drinking herbal tea reduces stress,” we can easily test it by conducting a study with a control group and a group drinking herbal tea.

Falsifiability : Falsifiability refers to the potential for a hypothesis to be proven wrong. A good hypothesis should make specific predictions that can be refuted or supported by evidence. This characteristic ensures that hypotheses are based on empirical observations rather than personal opinions. For instance, the hypothesis “all swans are white” can be falsified by discovering a single black swan.

What Are the Types of Hypothesis in Research

In research, there are three main types of hypotheses:

Null Hypothesis (H0) : The null hypothesis is a statement of no effect or relationship. It assumes that there is no significant difference between variables or no effect of a treatment. Researchers aim to reject the null hypothesis in favor of an alternative hypothesis.

Alternative Hypothesis (HA or H1) : The alternative hypothesis is the opposite of the null hypothesis. It asserts that there is a significant difference between variables or an effect of a treatment. Researchers seek evidence to support the alternative hypothesis.

Directional Hypothesis : A directional hypothesis predicts the specific direction of the relationship or difference between variables. For example, “increasing exercise duration will lead to greater weight loss.”

Can a Hypothesis Be Proven True

In scientific research, hypotheses are not proven true; they are supported or rejected based on empirical evidence . Even if a hypothesis is supported by multiple studies, new evidence could arise that contradicts it. Scientific knowledge is always subject to revision and refinement. Therefore, the goal is to gather enough evidence to either support or reject a hypothesis, rather than proving it absolutely true.

What Are the Six Parts of a Hypothesis

A hypothesis typically consists of six essential parts:

Research Question : A clear and concise question that the hypothesis seeks to answer.

Variables : Identification of the independent (manipulated) and dependent (measured) variables involved in the hypothesis.

Population : The specific group or individuals the hypothesis is concerned with.

Relationship or Comparison : The expected relationship or difference between variables, often indicated by directional terms like “more,” “less,” “higher,” or “lower.”

Predictability : A statement of the predicted outcome or result based on the relationship between variables.

Testability : The ability to design an experiment or gather data to support or reject the hypothesis.

How Do You Start a Hypothesis Sentence

When starting a hypothesis sentence, it is essential to use clear and concise language to express your ideas. A common approach is to use the phrase “If…then…” to establish the conditional relationship between variables. For example:

  • If [independent variable], then [dependent variable] because [explanation of expected relationship].

This structure allows for a straightforward and logical formulation of the hypothesis.

What Are Examples of Hypotheses

Here are a few examples of well-formulated hypotheses:

If exposure to sunlight increases, then plants will grow taller because sunlight is necessary for photosynthesis.

If students receive praise for good grades, then their motivation to excel will increase because they seek recognition and approval.

If the dose of a painkiller is increased, then the relief from pain will last longer because a higher dosage has a prolonged effect.

What Are the Five Key Elements to a Good Hypothesis

A good hypothesis should include the following five key elements:

Clarity : The hypothesis should be clear and specific, leaving no room for interpretation.

Testability : It should be possible to test the hypothesis through experimentation or data collection.

Relevance : The hypothesis should be directly tied to the research question or problem being investigated.

Specificity : It must clearly state the relationship or difference between variables being studied.

Falsifiability : The hypothesis should make predictions that can be refuted or supported by empirical evidence.

What Makes a Good Hypothesis in a Research Paper

In a research paper, a good hypothesis should have the following characteristics:

Relevance : It must directly relate to the research topic and address the objectives of the study.

Clarity : The hypothesis should be concise and precisely worded to avoid confusion.

Unambiguous : It must leave no room for multiple interpretations or ambiguity.

Logic : The hypothesis should be based on rational and logical reasoning, considering existing theories and observations.

Empirical Support : Ideally, the hypothesis should be supported by prior empirical evidence or strong theoretical justifications.

Is a Hypothesis Always a Question

No, a hypothesis is not always in the form of a question. While some hypotheses can take the form of a question, others may be statements asserting a relationship or difference between variables. The form of a hypothesis depends on the research question being addressed and the researcher’s preferred style of expression.

What Are the Three Things Needed for a Good Hypothesis

For a hypothesis to be considered good, it must fulfill the following three criteria:

Testability : The hypothesis should be formulated in a way that allows for empirical testing through experimentation or data collection.

Falsifiability : It must make specific predictions that can be potentially refuted or supported by evidence.

Relevance : The hypothesis should directly address the research question or problem being investigated.

What Are the Four Components to a Good Hypothesis

A good hypothesis typically consists of four components:

Independent Variable : The variable being manipulated or controlled by the researcher.

Dependent Variable : The variable being measured or observed to determine the effect of the independent variable.

Directionality : The predicted relationship or difference between the independent and dependent variables.

Population : The specific group or individuals to which the hypothesis applies.

How Do You Formulate a Hypothesis

To formulate a hypothesis, follow these steps:

Identify the Research Topic : Clearly define the area or phenomenon you want to study.

Conduct Background Research : Review existing literature and research to gain knowledge about the topic.

Formulate a Research Question : Ask a clear and focused question that you want to answer through your hypothesis.

State the Null and Alternative Hypotheses : Develop a null hypothesis to assume no effect or relationship, and an alternative hypothesis to propose a significant effect or relationship.

Decide on Variables and Relationships : Determine the independent and dependent variables and the predicted relationship between them.

Refine and Test : Refine your hypothesis, ensuring it is clear, testable, and falsifiable. Then, design experiments or gather data to support or reject it.

What Is a Characteristic of a Hypothesis MCQ

Multiple-choice questions (MCQ) regarding the characteristics of a hypothesis often assess knowledge on the testability and falsifiability of hypotheses. They may ask about the criteria that distinguish a good hypothesis from a poor one or the importance of making specific predictions. Remember to choose answers that emphasize the empirical and testable nature of hypotheses.

What Five Criteria Must Be Satisfied for a Hypothesis to Be Scientific

For a hypothesis to be considered scientific, it must satisfy the following five criteria:

Testability : The hypothesis must be formulated in a way that allows it to be tested through experimentation or data collection.

Falsifiability : It should make specific predictions that can be potentially refuted or supported by empirical evidence.

Empirical Basis : The hypothesis should be based on empirical observations or existing theories and knowledge.

Relevance : It must directly address the research question or problem being investigated.

Objective : A scientific hypothesis should be free from personal biases or subjective opinions, focusing on objective observations and analysis.

What Are the Steps of Theory Development in Scientific Methods

In scientific methods, theory development typically involves the following steps:

Observation : Identifying a phenomenon or pattern worthy of investigation through observation or empirical data.

Formulation of a Hypothesis : Constructing a hypothesis that explains the observed phenomena or predicts a relationship between variables.

Data Collection : Gathering relevant data through experiments, surveys, observations, or other research methods.

Analysis : Analyzing the collected data to evaluate the hypothesis’s predictions and determine their validity.

Revision and Refinement : Based on the analysis, refining the hypothesis, modifying the theory, or formulating new hypotheses for further investigation.

Which of the Following Makes a Good Hypothesis

A good hypothesis is characterized by:

Testability : The ability to form experiments or gather data to support or refute the hypothesis.

Falsifiability : The potential for the hypothesis’s predictions to be proven wrong based on empirical evidence.

Clarity : A clear and concise statement or question that leaves no room for ambiguity.

Relevancy : Directly addressing the research question or problem at hand.

Remember, it is important to select the option that encompasses all these characteristics.

What Are the Characteristics of a Good Hypothesis

A good hypothesis possesses several characteristics, such as:

Testability : It should allow for empirical testing through experiments or data collection.

Falsifiability : The hypothesis should make specific predictions that can be potentially refuted or supported by evidence.

Clarity : It must be clearly and precisely formulated, leaving no room for ambiguity or multiple interpretations.

Relevance : The hypothesis should directly relate to the research question or problem being investigated.

What Is the Five-Step p-value Approach to Hypothesis Testing

The five-step p-value approach is a commonly used framework for hypothesis testing:

Step 1: Formulating the Hypotheses : The null hypothesis (H0) assumes no effect or relationship, while the alternative hypothesis (HA) proposes a significant effect or relationship.

Step 2: Setting the Significance Level : Decide on the level of significance (α), which represents the probability of rejecting the null hypothesis when it is true. The commonly used level is 0.05 (5%).

Step 3: Collecting Data and Performing the Test : Acquire and analyze the data, calculating the test statistic and the corresponding p-value.

Step 4: Comparing the p-value with the Significance Level : If the p-value is less than the significance level (α), reject the null hypothesis. Otherwise, fail to reject the null hypothesis.

Step 5: Drawing Conclusions : Based on the comparison in Step 4, interpret the results and draw conclusions about the hypothesis.

What Are the Stages of Hypothesis

The stages of hypothesis generally include:

Observation : Identifying a pattern, phenomenon, or research question that warrants investigation.

Formulation : Developing a hypothesis that explains or predicts the relationship or difference between variables.

Testing : Collecting data, designing experiments, or conducting studies to gather evidence supporting or refuting the hypothesis.

Analysis : Assessing the collected data to determine whether the results support or reject the hypothesis.

Conclusion : Drawing conclusions based on the analysis and making further iterations, refinements, or new hypotheses for future research.

What Is a Characteristic of a Good Hypothesis

A characteristic of a good hypothesis is its ability to make specific predictions about the relationship or difference between variables. Good hypotheses avoid vague statements and clearly articulate the expected outcomes. By doing so, researchers can design experiments or gather data that directly test the predictions, leading to meaningful results.

How Do You Write a Good Hypothesis Example

To write a good hypothesis example, follow these guidelines:

If possible, use the “If…then…” format to express a conditional relationship between variables.

Be clear and concise in stating the variables involved, the predicted relationship, and the expected outcome.

Ensure the hypothesis is testable, meaning it can be evaluated through experiments or data collection.

For instance, consider the following example:

If students study for longer periods of time, then their test scores will improve because increased study time allows for better retention of information and increased proficiency.

What Is the Difference Between Hypothesis and Hypotheses

The main difference between a hypothesis and hypotheses lies in their grammatical number. A hypothesis refers to a single statement or proposition that is formulated to explain or predict the relationship between variables. On the other hand, hypotheses is the plural form of the term hypothesis, commonly used when multiple statements or propositions are proposed and tested simultaneously.

What Is a Good Hypothesis Statement

A good hypothesis statement exhibits the following qualities:

Clarity : It is written in clear and concise language, leaving no room for confusion or ambiguity.

Testability : The hypothesis should be formulated in a way that enables testing through experiments or data collection.

Specificity : It must clearly state the predicted relationship or difference between variables.

By adhering to these criteria, a good hypothesis statement guides research efforts effectively.

What Is Not a Characteristic of a Good Hypothesis

A characteristic that does not align with a good hypothesis is subjectivity . A hypothesis should be objective, based on empirical observations or existing theories, and free from personal bias. While personal interpretations and opinions can inspire the formulation of a hypothesis, it must ultimately rely on objective observations and be open to empirical testing.

By now, you’ve gained insights into the characteristics of a good hypothesis, including testability, falsifiability, clarity,

  • characteristics
  • falsifiable
  • good hypothesis
  • hypothesis testing
  • null hypothesis
  • observations
  • scientific rigor

' src=

Brian Thomas

You may also like, does vicks vapor rub help tighten skin.

  • by Laura Rodriguez

What Part of Lake Tahoe Gets the Most Snow?

  • by Brandon Thompson

How Many Centimeters is a Grapefruit? Exploring the Dimensions of Common Objects

  • by Donna Gonzalez

Can I Put Pine-Sol in My Toilet Tank? Find Out the Surprising Answer!

Who makes food lion milk unraveling the mystery behind your grocery store’s dairy product, how to remove sodium from frozen chicken.

Geektonight

What is Hypothesis? Definition, Meaning, Characteristics, Sources

  • Post last modified: 10 January 2022
  • Reading time: 18 mins read
  • Post category: Research Methodology

characteristics of a good hypothesis in research methods

  • What is Hypothesis?

Hypothesis is a prediction of the outcome of a study. Hypotheses are drawn from theories and research questions or from direct observations. In fact, a research problem can be formulated as a hypothesis. To test the hypothesis we need to formulate it in terms that can actually be analysed with statistical tools.

As an example, if we want to explore whether using a specific teaching method at school will result in better school marks (research question), the hypothesis could be that the mean school marks of students being taught with that specific teaching method will be higher than of those being taught using other methods.

In this example, we stated a hypothesis about the expected differences between groups. Other hypotheses may refer to correlations between variables.

Table of Content

  • 1 What is Hypothesis?
  • 2 Hypothesis Definition
  • 3 Meaning of Hypothesis
  • 4.1 Conceptual Clarity
  • 4.2 Need of empirical referents
  • 4.3 Hypothesis should be specific
  • 4.4 Hypothesis should be within the ambit of the available research techniques
  • 4.5 Hypothesis should be consistent with the theory
  • 4.6 Hypothesis should be concerned with observable facts and empirical events
  • 4.7 Hypothesis should be simple
  • 5.1 Observation
  • 5.2 Analogies
  • 5.4 State of Knowledge
  • 5.5 Culture
  • 5.6 Continuity of Research
  • 6.1 Null Hypothesis
  • 6.2 Alternative Hypothesis

Thus, to formulate a hypothesis, we need to refer to the descriptive statistics (such as the mean final marks), and specify a set of conditions about these statistics (such as a difference between the means, or in a different example, a positive or negative correlation). The hypothesis we formulate applies to the population of interest.

The null hypothesis makes a statement that no difference exists (see Pyrczak, 1995, pp. 75-84).

Hypothesis Definition

A hypothesis is ‘a guess or supposition as to the existence of some fact or law which will serve to explain a connection of facts already known to exist.’ – J. E. Creighton & H. R. Smart

Hypothesis is ‘a proposition not known to be definitely true or false, examined for the sake of determining the consequences which would follow from its truth.’ – Max Black

Hypothesis is ‘a proposition which can be put to a test to determine validity and is useful for further research.’ – W. J. Goode and P. K. Hatt

A hypothesis is a proposition, condition or principle which is assumed, perhaps without belief, in order to draw out its logical consequences and by this method to test its accord with facts which are known or may be determined. – Webster’s New International Dictionary of the English Language (1956)

Meaning of Hypothesis

From the above mentioned definitions of hypothesis, its meaning can be explained in the following ways.

  • At the primary level, a hypothesis is the possible and probable explanation of the sequence of happenings or data.
  • Sometimes, hypothesis may emerge from an imagination, common sense or a sudden event.
  • Hypothesis can be a probable answer to the research problem undertaken for study. 4. Hypothesis may not always be true. It can get disproven. In other words, hypothesis need not always be a true proposition.
  • Hypothesis, in a sense, is an attempt to present the interrelations that exist in the available data or information.
  • Hypothesis is not an individual opinion or community thought. Instead, it is a philosophical means which is to be used for research purpose. Hypothesis is not to be considered as the ultimate objective; rather it is to be taken as the means of explaining scientifically the prevailing situation.

The concept of hypothesis can further be explained with the help of some examples. Lord Keynes, in his theory of national income determination, made a hypothesis about the consumption function. He stated that the consumption expenditure of an individual or an economy as a whole is dependent on the level of income and changes in a certain proportion.

Later, this proposition was proved in the statistical research carried out by Prof. Simon Kuznets. Matthus, while studying the population, formulated a hypothesis that population increases faster than the supply of food grains. Population studies of several countries revealed that this hypothesis is true.

Validation of the Malthus’ hypothesis turned it into a theory and when it was tested in many other countries it became the famous Malthus’ Law of Population. It thus emerges that when a hypothesis is tested and proven, it becomes a theory. The theory, when found true in different times and at different places, becomes the law. Having understood the concept of hypothesis, few hypotheses can be formulated in the areas of commerce and economics.

  • Population growth moderates with the rise in per capita income.
  • Sales growth is positively linked with the availability of credit.
  • Commerce education increases the employability of the graduate students.
  • High rates of direct taxes prompt people to evade taxes.
  • Good working conditions improve the productivity of employees.
  • Advertising is the most effecting way of promoting sales than any other scheme.
  • Higher Debt-Equity Ratio increases the probability of insolvency.
  • Economic reforms in India have made the public sector banks more efficient and competent.
  • Foreign direct investment in India has moved in those sectors which offer higher rate of profit.
  • There is no significant association between credit rating and investment of fund.

Characteristics of Hypothesis

Not all the hypotheses are good and useful from the point of view of research. It is only a few hypotheses satisfying certain criteria that are good, useful and directive in the research work undertaken. The characteristics of such a useful hypothesis can be listed as below:

Conceptual Clarity

Need of empirical referents, hypothesis should be specific, hypothesis should be within the ambit of the available research techniques, hypothesis should be consistent with the theory, hypothesis should be concerned with observable facts and empirical events, hypothesis should be simple.

The concepts used while framing hypothesis should be crystal clear and unambiguous. Such concepts must be clearly defined so that they become lucid and acceptable to everyone. How are the newly developed concepts interrelated and how are they linked with the old one is to be very clear so that the hypothesis framed on their basis also carries the same clarity.

A hypothesis embodying unclear and ambiguous concepts can to a great extent undermine the successful completion of the research work.

A hypothesis can be useful in the research work undertaken only when it has links with some empirical referents. Hypothesis based on moral values and ideals are useless as they cannot be tested. Similarly, hypothesis containing opinions as good and bad or expectation with respect to something are not testable and therefore useless.

For example, ‘current account deficit can be lowered if people change their attitude towards gold’ is a hypothesis encompassing expectation. In case of such a hypothesis, the attitude towards gold is something which cannot clearly be described and therefore a hypothesis which embodies such an unclean thing cannot be tested and proved or disproved. In short, the hypothesis should be linked with some testable referents.

For the successful conduction of research, it is necessary that the hypothesis is specific and presented in a precise manner. Hypothesis which is general, too ambitious and grandiose in scope is not to be made as such hypothesis cannot be easily put to test. A hypothesis is to be based on such concepts which are precise and empirical in nature. A hypothesis should give a clear idea about the indicators which are to be used.

For example, a hypothesis that economic power is increasingly getting concentrated in a few hands in India should enable us to define the concept of economic power. It should be explicated in terms of measurable indicator like income, wealth, etc. Such specificity in the formulation of a hypothesis ensures that the research is practicable and significant.

While framing the hypothesis, the researcher should be aware of the available research techniques and should see that the hypothesis framed is testable on the basis of them. In other words, a hypothesis should be researchable and for this it is important that a due thought has been given to the methods and techniques which can be used to measure the concepts and variables embodied in the hypothesis.

It does not however mean that hypotheses which are not testable with the available techniques of research are not to be made. If the problem is too significant and therefore the hypothesis framed becomes too ambitious and complex, it’s testing becomes possible with the development of new research techniques or the hypothesis itself leads to the development of new research techniques.

A hypothesis must be related to the existing theory or should have a theoretical orientation. The growth of knowledge takes place in the sequence of facts, hypothesis, theory and law or principles. It means the hypothesis should have a correspondence with the existing facts and theory.

If the hypothesis is related to some theory, the research work will enable us to support, modify or refute the existing theory. Theoretical orientation of the hypothesis ensures that it becomes scientifically useful. According to Prof. Goode and Prof. Hatt, research work can contribute to the existing knowledge only when the hypothesis is related with some theory.

This enables us to explain the observed facts and situations and also verify the framed hypothesis. In the words of Prof. Cohen and Prof. Nagel, “hypothesis must be formulated in such a manner that deduction can be made from it and that consequently a decision can be reached as to whether it does or does not explain the facts considered.”

If the research work based on a hypothesis is to be successful, it is necessary that the later is as simple and easy as possible. An ambition of finding out something new may lead the researcher to frame an unrealistic and unclear hypothesis. Such a temptation is to be avoided. Framing a simple, easy and testable hypothesis requires that the researcher is well acquainted with the related concepts.

Sources of Hypothesis

Hypotheses can be derived from various sources. Some of the sources is given below:

Observation

State of knowledge, continuity of research.

Hypotheses can be derived from observation from the observation of price behavior in a market. For example the relationship between the price and demand for an article is hypothesized.

Analogies are another source of useful hypotheses. Julian Huxley has pointed out that casual observations in nature or in the framework of another science may be a fertile source of hypotheses. For example, the hypotheses that similar human types or activities may be found in similar geophysical regions come from plant ecology.

This is one of the main sources of hypotheses. It gives direction to research by stating what is known logical deduction from theory lead to new hypotheses. For example, profit / wealth maximization is considered as the goal of private enterprises. From this assumption various hypotheses are derived’.

An important source of hypotheses is the state of knowledge in any particular science where formal theories exist hypotheses can be deduced. If the hypotheses are rejected theories are scarce hypotheses are generated from conception frameworks.

Another source of hypotheses is the culture on which the researcher was nurtured. Western culture has induced the emergence of sociology as an academic discipline over the past decade, a large part of the hypotheses on American society examined by researchers were connected with violence. This interest is related to the considerable increase in the level of violence in America.

The continuity of research in a field itself constitutes an important source of hypotheses. The rejection of some hypotheses leads to the formulation of new ones capable of explaining dependent variables in subsequent research on the same subject.

Null and Alternative Hypothesis

Null hypothesis.

The hypothesis that are proposed with the intent of receiving a rejection for them are called Null Hypothesis . This requires that we hypothesize the opposite of what is desired to be proved. For example, if we want to show that sales and advertisement expenditure are related, we formulate the null hypothesis that they are not related.

Similarly, if we want to conclude that the new sales training programme is effective, we formulate the null hypothesis that the new training programme is not effective, and if we want to prove that the average wages of skilled workers in town 1 is greater than that of town 2, we formulate the null hypotheses that there is no difference in the average wages of the skilled workers in both the towns.

Since we hypothesize that sales and advertisement are not related, new training programme is not effective and the average wages of skilled workers in both the towns are equal, we call such hypotheses null hypotheses and denote them as H 0 .

Alternative Hypothesis

Rejection of null hypotheses leads to the acceptance of alternative hypothesis . The rejection of null hypothesis indicates that the relationship between variables (e.g., sales and advertisement expenditure) or the difference between means (e.g., wages of skilled workers in town 1 and town 2) or the difference between proportions have statistical significance and the acceptance of the null hypotheses indicates that these differences are due to chance.

As already mentioned, the alternative hypotheses specify that values/relation which the researcher believes hold true. The alternative hypotheses can cover a whole range of values rather than a single point. The alternative hypotheses are denoted by H 1 .

Business Ethics

( Click on Topic to Read )

  • What is Ethics?
  • What is Business Ethics?
  • Values, Norms, Beliefs and Standards in Business Ethics
  • Indian Ethos in Management
  • Ethical Issues in Marketing
  • Ethical Issues in HRM
  • Ethical Issues in IT
  • Ethical Issues in Production and Operations Management
  • Ethical Issues in Finance and Accounting
  • What is Corporate Governance?
  • What is Ownership Concentration?
  • What is Ownership Composition?
  • Types of Companies in India
  • Internal Corporate Governance
  • External Corporate Governance
  • Corporate Governance in India
  • What is Enterprise Risk Management (ERM)?
  • What is Assessment of Risk?
  • What is Risk Register?
  • Risk Management Committee

Corporate social responsibility (CSR)

  • Theories of CSR
  • Arguments Against CSR
  • Business Case for CSR
  • Importance of CSR in India
  • Drivers of Corporate Social Responsibility
  • Developing a CSR Strategy
  • Implement CSR Commitments
  • CSR Marketplace
  • CSR at Workplace
  • Environmental CSR
  • CSR with Communities and in Supply Chain
  • Community Interventions
  • CSR Monitoring
  • CSR Reporting
  • Voluntary Codes in CSR
  • What is Corporate Ethics?

Lean Six Sigma

  • What is Six Sigma?
  • What is Lean Six Sigma?
  • Value and Waste in Lean Six Sigma
  • Six Sigma Team
  • MAIC Six Sigma
  • Six Sigma in Supply Chains
  • What is Binomial, Poisson, Normal Distribution?
  • What is Sigma Level?
  • What is DMAIC in Six Sigma?
  • What is DMADV in Six Sigma?
  • Six Sigma Project Charter
  • Project Decomposition in Six Sigma
  • Critical to Quality (CTQ) Six Sigma
  • Process Mapping Six Sigma
  • Flowchart and SIPOC
  • Gage Repeatability and Reproducibility
  • Statistical Diagram
  • Lean Techniques for Optimisation Flow
  • Failure Modes and Effects Analysis (FMEA)
  • What is Process Audits?
  • Six Sigma Implementation at Ford
  • IBM Uses Six Sigma to Drive Behaviour Change
  • Research Methodology
  • What is Research?
  • Sampling Method

Research Methods

Data collection in research.

  • Methods of Collecting Data

Application of Business Research

  • Levels of Measurement
  • What is Sampling?
  • Hypothesis Testing
  • Research Report
  • What is Management?
  • Planning in Management
  • Decision Making in Management
  • What is Controlling?
  • What is Coordination?
  • What is Staffing?
  • Organization Structure
  • What is Departmentation?
  • Span of Control
  • What is Authority?
  • Centralization vs Decentralization
  • Organizing in Management
  • Schools of Management Thought
  • Classical Management Approach
  • Is Management an Art or Science?
  • Who is a Manager?

Operations Research

  • What is Operations Research?
  • Operation Research Models
  • Linear Programming
  • Linear Programming Graphic Solution
  • Linear Programming Simplex Method
  • Linear Programming Artificial Variable Technique
  • Duality in Linear Programming
  • Transportation Problem Initial Basic Feasible Solution
  • Transportation Problem Finding Optimal Solution
  • Project Network Analysis with Critical Path Method
  • Project Network Analysis Methods
  • Project Evaluation and Review Technique (PERT)
  • Simulation in Operation Research
  • Replacement Models in Operation Research

Operation Management

  • What is Strategy?
  • What is Operations Strategy?
  • Operations Competitive Dimensions
  • Operations Strategy Formulation Process
  • What is Strategic Fit?
  • Strategic Design Process
  • Focused Operations Strategy
  • Corporate Level Strategy
  • Expansion Strategies
  • Stability Strategies
  • Retrenchment Strategies
  • Competitive Advantage
  • Strategic Choice and Strategic Alternatives
  • What is Production Process?
  • What is Process Technology?
  • What is Process Improvement?
  • Strategic Capacity Management
  • Production and Logistics Strategy
  • Taxonomy of Supply Chain Strategies
  • Factors Considered in Supply Chain Planning
  • Operational and Strategic Issues in Global Logistics
  • Logistics Outsourcing Strategy
  • What is Supply Chain Mapping?
  • Supply Chain Process Restructuring
  • Points of Differentiation
  • Re-engineering Improvement in SCM
  • What is Supply Chain Drivers?
  • Supply Chain Operations Reference (SCOR) Model
  • Customer Service and Cost Trade Off
  • Internal and External Performance Measures
  • Linking Supply Chain and Business Performance
  • Netflix’s Niche Focused Strategy
  • Disney and Pixar Merger
  • Process Planning at Mcdonald’s

Service Operations Management

  • What is Service?
  • What is Service Operations Management?
  • What is Service Design?
  • Service Design Process
  • Service Delivery
  • What is Service Quality?
  • Gap Model of Service Quality
  • Juran Trilogy
  • Service Performance Measurement
  • Service Decoupling
  • IT Service Operation
  • Service Operations Management in Different Sector

Procurement Management

  • What is Procurement Management?
  • Procurement Negotiation
  • Types of Requisition
  • RFX in Procurement
  • What is Purchasing Cycle?
  • Vendor Managed Inventory
  • Internal Conflict During Purchasing Operation
  • Spend Analysis in Procurement
  • Sourcing in Procurement
  • Supplier Evaluation and Selection in Procurement
  • Blacklisting of Suppliers in Procurement
  • Total Cost of Ownership in Procurement
  • Incoterms in Procurement
  • Documents Used in International Procurement
  • Transportation and Logistics Strategy
  • What is Capital Equipment?
  • Procurement Process of Capital Equipment
  • Acquisition of Technology in Procurement
  • What is E-Procurement?
  • E-marketplace and Online Catalogues
  • Fixed Price and Cost Reimbursement Contracts
  • Contract Cancellation in Procurement
  • Ethics in Procurement
  • Legal Aspects of Procurement
  • Global Sourcing in Procurement
  • Intermediaries and Countertrade in Procurement

Strategic Management

  • What is Strategic Management?
  • What is Value Chain Analysis?
  • Mission Statement
  • Business Level Strategy
  • What is SWOT Analysis?
  • What is Competitive Advantage?
  • What is Vision?
  • What is Ansoff Matrix?
  • Prahalad and Gary Hammel
  • Strategic Management In Global Environment
  • Competitor Analysis Framework
  • Competitive Rivalry Analysis
  • Competitive Dynamics
  • What is Competitive Rivalry?
  • Five Competitive Forces That Shape Strategy
  • What is PESTLE Analysis?
  • Fragmentation and Consolidation Of Industries
  • What is Technology Life Cycle?
  • What is Diversification Strategy?
  • What is Corporate Restructuring Strategy?
  • Resources and Capabilities of Organization
  • Role of Leaders In Functional-Level Strategic Management
  • Functional Structure In Functional Level Strategy Formulation
  • Information And Control System
  • What is Strategy Gap Analysis?
  • Issues In Strategy Implementation
  • Matrix Organizational Structure
  • What is Strategic Management Process?

Supply Chain

  • What is Supply Chain Management?
  • Supply Chain Planning and Measuring Strategy Performance
  • What is Warehousing?
  • What is Packaging?
  • What is Inventory Management?
  • What is Material Handling?
  • What is Order Picking?
  • Receiving and Dispatch, Processes
  • What is Warehouse Design?
  • What is Warehousing Costs?

You Might Also Like

Types of charts used in data analysis, what is questionnaire design characteristics, types, don’t, research process | types, what is causal research advantages, disadvantages, how to perform, what is sampling need, advantages, limitations, what is research types, purpose, characteristics, process, what is research problem components, identifying, formulating,, what is hypothesis testing procedure, what is research design features, components, leave a reply cancel reply.

You must be logged in to post a comment.

World's Best Online Courses at One Place

We’ve spent the time in finding, so you can spend your time in learning

Digital Marketing

Personal growth.

characteristics of a good hypothesis in research methods

Development

characteristics of a good hypothesis in research methods

2.4 Developing a Hypothesis

Learning objectives.

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis it is imporant to distinguish betwee a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition. He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observation before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [1] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). A researcher begins with a set of phenomena and either constructs a theory to explain or interpret them or chooses an existing theory to work with. He or she then makes a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researcher then conducts an empirical study to test the hypothesis. Finally, he or she reevaluates the theory in light of the new results and revises it if necessary. This process is usually conceptualized as a cycle because the researcher can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.2  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

Figure 4.4 Hypothetico-Deductive Method Combined With the General Model of Scientific Research in Psychology Together they form a model of theoretically motivated research.

Figure 2.2 Hypothetico-Deductive Method Combined With the General Model of Scientific Research in Psychology Together they form a model of theoretically motivated research.

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [2] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans (Zajonc & Sales, 1966) [3] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be  logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be  positive.  That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that really it does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

Key Takeaways

  • A theory is broad in nature and explains larger bodies of data. A hypothesis is more specific and makes a prediction about the outcome of a particular study.
  • Working with theories is not “icing on the cake.” It is a basic ingredient of psychological research.
  • Like other scientists, psychologists use the hypothetico-deductive method. They construct theories to explain or interpret phenomena (or work with existing theories), derive hypotheses from their theories, test the hypotheses, and then reevaluate the theories in light of the new results.
  • Practice: Find a recent empirical research report in a professional journal. Read the introduction and highlight in different colors descriptions of theories and hypotheses.
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

Creative Commons License

Share This Book

  • Increase Font Size

Research Graduate

The Best PhD and Masters Consulting Company

Characteristics Of A Good Hypothesis

Characteristics Of A Good Hypothesis​

What exactly is a hypothesis.

A hypothesis is a conclusion reached after considering the evidence. This is the first step in any investigation, where the research questions are translated into a prediction. Variables, population, and the relationship between the variables are all included. A research hypothesis is a hypothesis that is tested to see if two or more variables have a relationship. Now let’s have a look at the characteristics of a  good hypothesis.

 Characteristics of

A good hypothesis has the following characteristics.

 Ability To Predict

Closest to things that can be seen, testability, relevant to the issue, techniques that are applicable, new discoveries have been made as a result of this ., harmony & consistency.

  • The similarity between the two phenomena.
  • Observations from previous studies, current experiences, and feedback from rivals.
  • Theories based on science.
  • People’s thinking processes are influenced by general patterns.
  • A straightforward hypothesis
  • Complex Hypothesis
  • Hypothesis  with a certain direction
  •  Non-direction Hypothesis
  • Null Hypothesis
  • Hypothesis of association and chance

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

In research, a hypothesis is a clear, testable statement predicting the relationship between variables or the outcome of a study. Hypotheses form the foundation of scientific inquiry, providing a direction for investigation and guiding the data collection and analysis process. Hypotheses are typically used in quantitative research but can also inform some qualitative studies by offering a preliminary assumption about the subject being explored.

What is a Hypothesis

A hypothesis is a specific, testable prediction or statement that suggests an expected relationship between variables in a study. It acts as a starting point, guiding researchers to examine whether their predictions hold true based on collected data. For a hypothesis to be useful, it must be clear, concise, and based on prior knowledge or theoretical frameworks.

Key Characteristics of a Hypothesis :

  • Testable : Must be possible to evaluate or observe the outcome through experimentation or analysis.
  • Specific : Clearly defines variables and the expected relationship or outcome.
  • Predictive : States an anticipated effect or association that can be confirmed or refuted.

Example : “Increasing the amount of daily physical exercise will lead to a reduction in stress levels among college students.”

Types of Hypotheses

Hypotheses can be categorized into several types, depending on their structure, purpose, and the type of relationship they suggest. The most common types include null hypothesis , alternative hypothesis , directional hypothesis , and non-directional hypothesis .

1. Null Hypothesis (H₀)

Definition : The null hypothesis states that there is no relationship between the variables being studied or that any observed effect is due to chance. It serves as the default position, which researchers aim to test against to determine if a significant effect or association exists.

Purpose : To provide a baseline that can be statistically tested to verify if a relationship or difference exists.

Example : “There is no difference in academic performance between students who receive additional tutoring and those who do not.”

2. Alternative Hypothesis (H₁ or Hₐ)

Definition : The alternative hypothesis proposes that there is a relationship or effect between variables. This hypothesis contradicts the null hypothesis and suggests that any observed result is not due to chance.

Purpose : To present an expected outcome that researchers aim to support with data.

Example : “Students who receive additional tutoring will perform better academically than those who do not.”

3. Directional Hypothesis

Definition : A directional hypothesis specifies the direction of the expected relationship between variables, predicting either an increase, decrease, positive, or negative effect.

Purpose : To provide a more precise prediction by indicating the expected direction of the relationship.

Example : “Increasing the duration of daily exercise will lead to a decrease in stress levels among adults.”

4. Non-Directional Hypothesis

Definition : A non-directional hypothesis states that there is a relationship between variables but does not specify the direction of the effect.

Purpose : To allow for exploration of the relationship without committing to a particular direction.

Example : “There is a difference in stress levels between adults who exercise regularly and those who do not.”

Examples of Hypotheses in Different Fields

  • Null Hypothesis : “There is no difference in anxiety levels between individuals who practice mindfulness and those who do not.”
  • Alternative Hypothesis : “Individuals who practice mindfulness will report lower anxiety levels than those who do not.”
  • Directional Hypothesis : “Providing feedback will improve students’ motivation to learn.”
  • Non-Directional Hypothesis : “There is a difference in motivation levels between students who receive feedback and those who do not.”
  • Null Hypothesis : “There is no association between diet and energy levels among teenagers.”
  • Alternative Hypothesis : “A balanced diet is associated with higher energy levels among teenagers.”
  • Directional Hypothesis : “An increase in employee engagement activities will lead to improved job satisfaction.”
  • Non-Directional Hypothesis : “There is a relationship between employee engagement activities and job satisfaction.”
  • Null Hypothesis : “The introduction of green spaces does not affect urban air quality.”
  • Alternative Hypothesis : “Green spaces improve urban air quality.”

Writing Guide for Hypotheses

Writing a clear, testable hypothesis involves several steps, starting with understanding the research question and selecting variables. Here’s a step-by-step guide to writing an effective hypothesis.

Step 1: Identify the Research Question

Start by defining the primary research question you aim to investigate. This question should be focused, researchable, and specific enough to allow for hypothesis formation.

Example : “Does regular physical exercise improve mental well-being in college students?”

Step 2: Conduct Background Research

Review relevant literature to gain insight into existing theories, studies, and gaps in knowledge. This helps you understand prior findings and guides you in forming a logical hypothesis based on evidence.

Example : Research shows a positive correlation between exercise and mental well-being, which supports forming a hypothesis in this area.

Step 3: Define the Variables

Identify the independent and dependent variables. The independent variable is the factor you manipulate or consider as the cause, while the dependent variable is the outcome or effect you are measuring.

  • Independent Variable : Amount of physical exercise
  • Dependent Variable : Mental well-being (measured through self-reported stress levels)

Step 4: Choose the Hypothesis Type

Select the hypothesis type based on the research question. If you predict a specific outcome or direction, use a directional hypothesis. If not, a non-directional hypothesis may be suitable.

Example : “Increasing the frequency of physical exercise will reduce stress levels among college students” (directional hypothesis).

Step 5: Write the Hypothesis

Formulate the hypothesis as a clear, concise statement. Ensure it is specific, testable, and focuses on the relationship between the variables.

Example : “College students who exercise at least three times per week will report lower stress levels than those who do not exercise regularly.”

Step 6: Test and Refine (Optional)

In some cases, it may be necessary to refine the hypothesis after conducting a preliminary test or pilot study. This ensures that your hypothesis is realistic and feasible within the study parameters.

Tips for Writing an Effective Hypothesis

  • Use Clear Language : Avoid jargon or ambiguous terms to ensure your hypothesis is easily understandable.
  • Be Specific : Specify the expected relationship between the variables, and, if possible, include the direction of the effect.
  • Ensure Testability : Frame the hypothesis in a way that allows for empirical testing or observation.
  • Focus on One Relationship : Avoid complexity by focusing on a single, clear relationship between variables.
  • Make It Measurable : Choose variables that can be quantified or observed to simplify data collection and analysis.

Common Mistakes to Avoid

  • Vague Statements : Avoid vague hypotheses that don’t specify a clear relationship or outcome.
  • Unmeasurable Variables : Ensure that the variables in your hypothesis can be observed, measured, or quantified.
  • Overly Complex Hypotheses : Keep the hypothesis simple and focused, especially for beginner researchers.
  • Using Personal Opinions : Avoid subjective or biased language that could impact the neutrality of the hypothesis.

Examples of Well-Written Hypotheses

  • Psychology : “Adolescents who spend more than two hours on social media per day will report higher levels of anxiety than those who spend less than one hour.”
  • Business : “Increasing customer service training will improve customer satisfaction ratings among retail employees.”
  • Health : “Consuming a diet rich in fruits and vegetables is associated with lower cholesterol levels in adults.”
  • Education : “Students who participate in active learning techniques will have higher retention rates compared to those in traditional lecture-based classrooms.”
  • Environmental Science : “Urban areas with more green spaces will report lower average temperatures than those with minimal green coverage.”

A well-formulated hypothesis is essential to the research process, providing a clear and testable prediction about the relationship between variables. Understanding the different types of hypotheses, following a structured writing approach, and avoiding common pitfalls help researchers create hypotheses that effectively guide data collection, analysis, and conclusions. Whether working in psychology, education, health sciences, or any other field, an effective hypothesis sharpens the focus of a study and enhances the rigor of research.

  • Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5th ed.). SAGE Publications.
  • Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics (4th ed.). SAGE Publications.
  • Trochim, W. M. K. (2006). The Research Methods Knowledge Base (3rd ed.). Atomic Dog Publishing.
  • McLeod, S. A. (2019). What is a Hypothesis? Retrieved from https://www.simplypsychology.org/what-is-a-hypotheses.html
  • Walliman, N. (2017). Research Methods: The Basics (2nd ed.). Routledge.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Thesis

Thesis – Outline, Structure and Writing Guide

Scope of the Research

Scope of the Research – Writing Guide and...

Appendices

Appendices – Writing Guide, Types and Examples

Appendix in Research Paper

Appendix in Research Paper – Examples and...

Table of Contents

Table of Contents – Types, Formats, Examples

Ethical Considerations

Ethical Considerations – Types, Examples and...

  • Essay Editor

How to Write a Hypothesis: Step-By-Step Guide

How to Write a Hypothesis: Step-By-Step Guide

A hypothesis is a testable statement that guides scientific research. Want to know how to write a hypothesis for your research paper? This guide will show you the key steps involved, including defining your variables and phrasing your hypothesis correctly.

Key Takeaways

  • A hypothesis is a testable statement proposed for investigation, grounded in existing knowledge, essential for guiding scientific research.
  • Understanding different types of hypotheses, including simple, complex, null, and alternative, is crucial for selecting appropriate research approaches.
  • Crafting a strong hypothesis involves a systematic process including defining variables, phrasing it as an if-then statement, and ensuring it is clear, specific, and testable.

Understanding a Hypothesis

An empirical hypothesis is not just a simple guess. It represents a preliminary concept that stands to be scrutinized through Research and experimentation. A well-constructed hypothesis is a fundamental component of the scientific method, guiding experiments and leading to conclusions. Within the realm of science, such hypotheses are crafted after an extensive examination of current knowledge, ensuring their foundation on already established evidence prior to beginning any new inquiry.

Essentially, a hypothesis in the scientific community must present itself as something capable of being tested, this characteristic distinguishes it from mere speculation by allowing its potential verification or falsification through methodical scrutiny. Hypotheses serve as crucial instruments within scientific studies, directing these investigations toward particular queries and forming the backbone upon which all experiments rest in their pursuit for advancements in comprehension.

When formulating a hypothesis for testing within research activities, one should employ language that remains neutral and detached from subjective bias thereby bolstering the legitimacy of outcomes produced during the study. This precision fosters greater confidence in results obtained under rigorous evaluation standards among peers.

Characteristics of a Good Hypothesis

A good hypothesis is the cornerstone of any successful scientific research. It should be clear, concise, and testable, providing a solid foundation for your investigation. Here are some key characteristics that define a good hypothesis:

  • Clarity : A good hypothesis should be easy to understand and clearly state the expected outcome of the research. For example , “Increased exposure to sunlight will result in taller plant growth” is a clear and straightforward hypothesis.
  • Conciseness : Avoid unnecessary complexity or jargon. A concise hypothesis is brief and to the point, making it easier to test and analyze. For instance, “Exercise improves mental health” is concise and direct.
  • Testability : A good hypothesis must be testable and falsifiable, meaning it can be proven or disproven through scientific research methods. For example, “Consuming vitamin C reduces the duration of the common cold” is a testable hypothesis.
  • Relevance : Ensure your hypothesis is relevant to the research question or problem and aligned with your research objectives. For example, if your research question is about the impact of diet on health, a relevant hypothesis could be “A high-fiber diet reduces the risk of heart disease.”
  • Specificity : A good hypothesis should be specific and focused on a particular aspect of the research question. For example, “Daily meditation reduces stress levels in college students” is specific and targeted.
  • Measurability : Your hypothesis should be measurable, meaning it can be quantified or observed. For example, “Regular physical activity lowers blood pressure” is a measurable hypothesis.

By ensuring your hypothesis possesses these characteristics, you set a strong foundation for your scientific research, guiding your investigation towards meaningful and reliable results.

Types of Hypotheses

Scientific research incorporates a range of research hypotheses, which are crucial for proposing relationships between different variables and steering the direction of the investigation. These seven unique forms of hypotheses cater to diverse needs within the realm of scientific inquiry.

Comprehending these various types is essential in selecting an appropriate method for conducting research. To delve into details, we have simple, complex, null and alternative hypotheses. Each brings its distinct features and practical implications to the table. It underscores why recognizing how they diverge and what purposes they serve is fundamental in any scientific study.

Simple Hypothesis

A basic hypothesis suggests a fundamental relationship between two elements: the independent and dependent variable. Take, for example, a hypothesis that says, “The taller growth of plants (dependent variable) is due to increased exposure to sunlight (independent variable).” Such hypotheses are clear-cut and easily testable as they concentrate on one direct cause-and-effect link.

These types of straightforward hypotheses are very beneficial in scientific experiments because they permit the isolation of variables for precise outcome measurement. Their simplicity lends itself well to being an essential component in conducting scientific research, thanks to their unambiguous nature and targeted focus on specific relationships.

Complex Hypothesis

Alternatively, a complex hypothesis proposes an interconnection amongst several variables. It builds on the concept of numerous variable interactions within research parameters. Take for instance a causal hypothesis which asserts that sustained alcohol consumption (the independent variable) leads to liver impairment (the dependent variable), with additional influences like use duration and general health results impacting this relationship.

Involving various factors, complex hypotheses reveal the nuanced interaction of elements that affect results. Although they provide extensive insight into studied phenomena, such hypotheses necessitate advanced research frameworks and analysis techniques to be understood properly.

Null Hypothesis

In the realm of hypothesis testing, the null hypothesis (H0) serves as a fundamental presumption suggesting that there exists no association between the variables under investigation. It posits that variations within the dependent variable are attributed to random chance and not an influential relationship. Take for instance a null hypothesis which could propose “There is no impact of sleep duration on productivity levels.”

The significance of the null hypothesis lies in its role as a reference point which researchers strive to refute during their investigations. Upon uncovering statistical evidence indicative of a substantial linkage, it becomes necessary to discard the null hypothesis. The act of rejecting this foundational assumption is critical for affirming research findings and assessing their importance with respect to outcomes observed.

Alternative Hypothesis

The alternative hypothesis, often represented by H1 or Ha, contradicts the null hypothesis and proposes a meaningful link between variables under examination. For example, where the null hypothesis asserts that a particular medication is ineffective, the alternative might posit that “Compared to placebo treatment, the new drug yields beneficial effects.”

By claiming outcomes are non-random and carry weight, the alternative hypothesis bolsters theoretical assertions. Its testable prediction propels scientific investigation forward as it aims either to corroborate or debunk what’s posited by the null hypothesis.

Consider an assertive statement like “Productivity is influenced by sleep duration” which serves as a crisp articulation of an alternative hypothesis.

Steps to Write a Hypothesis

Crafting a hypothesis is a methodical process that begins with curiosity and culminates in a testable prediction. Writing a hypothesis involves following structured steps to ensure clarity, focus, and researchability. Steps include asking a research question, conducting preliminary research, defining variables, and phrasing the hypothesis as an if-then statement.

Each step is critical in formulating a strong hypothesis to guide research and lead to meaningful discoveries.

Ask a Research Question

A well-defined research question forms the cornerstone of a strong hypothesis, guiding your investigation towards a significant and targeted exploration. By rooting this question in observations and existing studies, it becomes pertinent and ripe for research. For example, noting that certain snacks are more popular could prompt the inquiry: “Does providing healthy snack options in an office setting enhance employee productivity?”.

Such a thoughtfully constructed question lays the groundwork for your research hypothesis, steering your scholarly work to be concentrated and purposeful.

Conduct Preliminary Research

Begin your research endeavor by conducting preliminary investigations into established theories, past studies, and available data. This initial stage is crucial as it equips you with a comprehensive background to craft an informed hypothesis while pinpointing any existing voids in current knowledge. Understanding the concept of a statistical hypothesis can also be beneficial, as it involves drawing conclusions about a population based on a sample and applying statistical evidence.

By reviewing literature and examining previously published research papers, one can discern the various variables of interest and their interconnections. Should the findings from these early inquiries refute your original hypothesis, adjust it accordingly so that it resonates with already recognized evidence.

Define Your Variables

A well-formed hypothesis should unambiguously identify the independent and dependent variables involved. In an investigation exploring how plant growth is affected by sunlight, for instance, plant height represents the dependent variable, while the quantity of sunlight exposure constitutes the independent variable.

It is essential to explicitly state all the variables included in a study so that the hypothesis can be tested with accuracy and specificity. Defining these variables distinctly facilitates a targeted and quantifiable examination.

Phrase as an If-Then Statement

A good hypothesis is typically structured in the form of if-then statements, allowing for a clear demonstration of the anticipated link between different variables. Take, for example, stating that administering drug X could result in reduced fatigue among patients. This outcome would be especially advantageous to individuals receiving cancer therapy. The structure aids in explicitly defining the cause-and-effect dynamic.

In order to craft a strong hypothesis, it should be capable of being tested and grounded on existing knowledge or theoretical frameworks. It should also be framed as a statement that can potentially be refuted by experimental data, which qualifies it as a solidly formulated hypothesis.

Collect Data to Support Your Hypothesis

Once you have formulated a hypothesis, the next crucial step is to collect data to support or refute it. This involves designing and conducting experiments or studies that test the hypothesis, and collecting and analyzing data to determine whether the hypothesis holds true.

Here are the key steps in collecting data to support your hypothesis:

  • Designing an Experiment or Study : Start by identifying your research question or problem. Design a study or experiment that specifically tests your hypothesis. For example, if your hypothesis is “Daily exercise improves cognitive function,” design an experiment that measures cognitive function in individuals who exercise daily versus those who do not.
  • Collecting Data : Gather data through various methods such as experiments, surveys, observations, or other techniques. Ensure your data collection methods are reliable and valid. For instance, use standardized tests to measure cognitive function in your exercise study.
  • Analyzing Data : Use statistical methods or other techniques to analyze the data. This step involves determining whether the data supports or refutes your hypothesis. For example, use statistical tests to compare cognitive function scores between the exercise and non-exercise groups .
  • Interpreting Results : Interpret the results of your data analysis to determine whether your hypothesis is supported. For instance, if the exercise group shows significantly higher cognitive function scores, your hypothesis is supported. If not, you may need to refine your hypothesis or explore other variables.

By following these steps, you can systematically collect and analyze data to support or refute your hypothesis, ensuring your research is grounded in empirical evidence.

Refining Your Hypothesis

To ensure your hypothesis is precise, comprehensible, verifiable, straightforward, and pertinent, you must refine it meticulously. Creating a compelling hypothesis involves careful consideration of its transparency, purposeful direction and the potential results. This requires unmistakably delineating the subject matter and central point of your experiment.

Your hypothesis should undergo stringent examination to remove any uncertainties and define parameters that guarantee both ethical integrity and scientific credibility. An effective hypothesis not only questions prevailing assumptions, but also maintains an ethically responsible framework.

Testing Your Hypothesis

Having a robust research methodology is essential for efficiently evaluating your hypothesis. It is important to ensure that the integrity and validity of the research are upheld through adherence to ethical standards. The data gathered ought to be both representative and tailored specifically towards validating or invalidating the hypothesis.

In order to ascertain whether there’s any significant difference, statistical analyses measure variations both within and across groups. Frequently, the decision on whether to discard the null hypothesis hinges on establishing a p-value cut-off point, which conventionally stands at 0.05.

Tips for Writing a Research Hypothesis

Writing a research hypothesis can be a challenging task, but with the right approach, you can craft a strong and testable hypothesis. Here are some tips to help you write a research hypothesis:

  • Start with a Research Question : A good hypothesis starts with a clear and focused research question. For example, “Does regular exercise improve mental health?” can lead to a hypothesis like “Regular exercise reduces symptoms of depression.”
  • Conduct Preliminary Research : Conducting preliminary research helps you identify a knowledge gap in your field and develop a hypothesis that is relevant and testable. Review existing literature and studies to inform your hypothesis.
  • Use Clear and Concise Language : A good hypothesis should be easy to understand and use clear and concise language. Avoid jargon and complex terms. For example, “Increased screen time negatively impacts sleep quality” is clear and straightforward.
  • Avoid Ambiguity and Vagueness : Ensure your hypothesis is free from ambiguity and vagueness. Clearly state the expected outcome of the research. For example, “Consuming caffeine before bedtime reduces sleep duration” is specific and unambiguous.
  • Make Sure It Is Testable : A good hypothesis should be testable and falsifiable, meaning it can be proven or disproven through scientific research methods. For example, “A high-protein diet increases muscle mass” is a testable hypothesis.
  • Use Existing Knowledge and Research : Base your hypothesis on existing knowledge and research. Align it with your research objectives and ensure it is grounded in established theories or findings.

Common mistakes to avoid when writing a research hypothesis include:

  • Making It Too Broad or Too Narrow : A good hypothesis should be specific and focused on a particular aspect of the research question. Avoid overly broad or narrow hypotheses.
  • Making It Too Vague or Ambiguous : Ensure your hypothesis is clear and concise, avoiding ambiguity and vagueness.
  • Failing to Make It Testable : A good hypothesis should be testable and falsifiable. Ensure it can be proven or disproven through scientific research methods.
  • Failing to Use Existing Knowledge and Research : Base your hypothesis on existing knowledge and research. Align it with your research objectives and ensure it is grounded in established theories or findings.

By following these tips and avoiding common mistakes, you can write a strong and testable research hypothesis that will guide your scientific investigation towards meaningful and reliable results.

Examples of Good and Bad Hypotheses

A well-constructed hypothesis is distinct, precise, and capable of being empirically verified. To be considered a good hypothesis, it must offer measurable and examinable criteria through experimental means. Take the claim “Working from home boosts job satisfaction” as an example. This posits a testable outcome related to work environments.

On the other hand, a subpar hypothesis such as “Garlic repels vampires” falls short because it hinges on fantastical elements that cannot be substantiated or refuted in reality. The ability to distinguish between strong and weak hypotheses plays an essential role in conducting successful research.

Importance of a Testable Hypothesis

A hypothesis that can be subjected to testing forms the basis of a scientific experiment, outlining anticipated results. For a hypothesis to qualify as testable, it must possess key attributes such as being able to be falsified and verifiable or disprovable via experimental means. It serves as an essential platform for conducting fresh research with the potential to confirm or debunk it.

Crafting a robust testable hypothesis yields clear forecasts derived from previous studies. Should both the predictions and outcomes stemming from a hypothesis lack this critical aspect of testability, they will remain ambiguous, rendering the associated experiment ineffective in conclusively proving or negating anything of substance.

In summary, crafting a strong hypothesis constitutes an essential ability within the realm of scientific research. Grasping the various forms of hypotheses and mastering the process for their formulation and refinement are critical to establishing your research as solid and significant. It is crucial to underscore that having a testable hypothesis serves as the bedrock for successful scientific investigation.

Frequently Asked Questions

How can you formulate a hypothesis.

To formulate a hypothesis, first state the question your experiment aims to answer and identify the independent and dependent variables.

Then create an “If, Then” statement that succinctly defines the relationship between these variables.

What is a hypothesis in scientific research?

In the research process, a hypothesis acts as a tentative concept that is put forward for additional scrutiny and examination, establishing the bedrock upon which scientific experiments are built. It steers the course of research by forecasting possible results.

What are the different types of hypotheses?

Hypotheses can be classified into simple, complex, null, and alternative types, each type fulfilling distinct roles in scientific research.

Understanding these differences is crucial for effective hypothesis formulation.

How do I write a hypothesis?

To write a hypothesis, start by formulating a research question and conducting preliminary research.

Then define your variables and express your hypothesis in the form of an if-then statement.

Why is a testable hypothesis important?

Having a testable hypothesis is vital because it provides a definitive structure for conducting research, allowing for particular predictions that experimentation can either verify or refute.

Such an element significantly improves the process of scientific investigation.

Related articles

How long is an essay.

If you are a student, you undoubtedly face the question of how long your essays should be. The short answer to this question is that it depends. However, there are certain constructs that you should keep in mind regardless of the length of time your professor requires. Academic writing is a fine art, after all. In this article, we will provide an overview of typical essay lengths and the components that they should include.  One thing that you should keep in mind is that essays are different f ...

How to Write A College Essay

Every high school student knows that the college essay is a make-or-break part of the application process. There are, of course, distinct requirements involved and strict scoring criteria. It is a personal statement about you and your character. In this article, we will provide a comprehensive overview of how to write the common application essay, what colleges are looking for, and some important dos and don’ts to keep in mind for college essays. Remember that you should start writing college ...

What is a Hook in an Essay and How to Write One Effectively?

When you start reading an essay, it only takes a couple of lines to know how captivated you are going to be for the next 15 minutes. So, an essay hook is an opening sentence or a few lines designed to grab the reader’s attention and hold it. Its purpose is to intrigue, captivate, and compel the reader to continue reading your essay. No matter what your purpose in writing your essay is, a strong hook can set the tone and create a solid foundation for the rest of your work. So let’s learn some se ...

How to Cite a PDF in APA Format according to 7th edition

Citation is a vital part of any academic paper. There are many reasons its presence can improve your work, such as making it more credible and persuasive and providing references to the original authors and researchers to avoid accidental plagiarism. Adding correct generated APA citations according to the chosen style is required by any committee or review team. In this article, you will learn about citing a PDF document in the American Psychological Association (APA) style. Additionally, we w ...

APA Title Page

When creating a professional or student paper in APA style, you are required to add a title page. There are 2 versions, based on who is writing the research. All students must apply a student version. Thus, there are exceptions where the curator or faculty recommends using a professional version. Both types of title pages include different elements and information placement. The 7th edition of APA's guidelines can be of use for both students and professionals. It can also help you look for an a ...

College Essay Format: Your Little Guide to Crafting a Perfect Admission Essay

Writing a full college application essay is an essential part of the learning process, and it is important to present yourself to the admissions office using this format. A well-structured college application essay template reflects your ideas and demonstrates your ability to communicate effectively. Understanding the typical college application essay essay format is essential to making a strong impression on admissions officers. In this short guide, we will explain what constitutes a “good ess ...

What Is a Dissertation? How Doctoral Students Navigate the Process?

So, when does a person start getting interested in writing a dissertation? You can still be a university student, thinking about starting the doctorate program, or maybe you are already done with the comprehensive exams, and the dissertation process is about to start. Surely, all doctoral candidates must write a dissertation to get the degree they have been working on for years, yet what else? In this article, you will learn about what a dissertation is, as well as dive into the step-by-step pr ...

Chicago Manual of Style: Chicago Style Footnotes

Essays and similar educational papers when you are working on your master's degree are an essential part of any student's life. Even when you become a professional, stating your opinion or establishing a viewpoint might require assembling a written article to reach the necessary audience. And 99% of the time, you will be basing your text on any kind of published work of another specialist. Surely, the process of writing an entire essay requires the most time and effort from the creator. However ...

Logo

What is Research Hypothesis: Definition, Types, and How to Develop

Read the blog to learn how a research hypothesis provides a clear and focused direction for a study and helps formulate research questions.

June 28, 2024

characteristics of a good hypothesis in research methods

In this Article

Short on time? Get an AI generated summary 
of this article instead

AI-generated article summary

The key crux points of the article  include:    Definition of a Research Hypothesis: A precise, testable statement  predicting the relationship between variables, crucial for guiding research  direction.    Importance of Hypothesis in Research: It helps guide the research process,  define variables, enhance objectivity, and facilitates structured analysis  and interpretation. Examples Across Fields: Different examples illustrate how research  hypotheses work in psychology, education, marketing, economics, and  technology.    Types of Hypotheses: Various hypotheses, such as simple, complex,  associative, causal, and null hypotheses, define relationships between  variables in scientific research.    Steps to Develop a Hypothesis: Identifying the research question, reviewing  literature, specifying variables, and ensuring the hypothesis is testable are  essential steps.    Characteristics of a Good Hypothesis: It should be clear, testable, falsifiable,  grounded in theory, and concise.    Role of Decode: Decode is highlighted as a tool  that simplifies survey design, data collection, and analysis, supporting the  entire research hypothesis testing process.

Get fast AI summaries of customer calls and feedback with magic summarize in Decode

A research hypothesis provides a clear, testable statement that guides the direction and focus of a study.

The benefit is that the hypothesis makes selecting appropriate research methods or statistical means possible, making the analysis more effective and achieving a result. Above all, the idea selected for the research also makes the study more focused, and the hypothesis does that best of all. Finally, when researchers propose and test a hypothesis, they can confirm, enhance, reconsider, or reject any theories.

In this blog, we'll explore the concept of a research hypothesis, its significance in research, and the various types utilized in scientific studies. Additionally, we'll provide a step-by-step guide on formulating your research hypothesis and methods for testing and evaluating it.

What is a Research Hypothesis? 

A research hypothesis is a foundational element in both qualitative and quantitative research . It is a precise, testable statement that predicts a possible relationship between two or more variables. This hypothesis is developed based on existing theories, observations, or previous research and aims to provide a direction for further investigation.

A research hypothesis starts with a question a researcher is trying to answer. It implies its effect or outcome and provides a basic ground to construct investigations, surveys, or other methods. It explains what a researcher can expect to find. Once the expectations are clearly stated, a researcher will build the methodology by choosing methods and tools for data collection and analysis.

Examples of Research Hypothesis

Here are some examples of research hypotheses across various fields:

  • Hypothesis: Individuals who practice mindfulness meditation daily will report lower levels of stress compared to those who do not practice mindfulness.
  • Independent Variable: Mindfulness meditation practice.
  • Dependent Variable: Levels of stress.
  • Hypothesis: Students who receive personalized tutoring in math will perform better on standardized tests than those who do not.
  • Independent Variable: Personalized tutoring in math.
  • Dependent Variable: Performance on standardized tests.
  • Hypothesis: Consumers exposed to advertisements with emotional appeals will have a higher purchase intention than those with rational appeals.
  • Independent Variable: Type of advertisement appeal (emotional vs. rational).
  • Dependent Variable: Purchase intent .
  • Hypothesis: Increasing the minimum wage will decrease employee turnover rates in the retail sector.
  • Independent Variable: Minimum wage increase.
  • Dependent Variable: Employee turnover rates in the retail sector.

Technology:

  • Hypothesis: Users who receive personalized recommendations on a streaming platform will spend more time watching content than users who do not receive personalized recommendations.
  • Independent Variable: Personalized recommendations.
  • Dependent Variable: Time spent watching content.

[ Note : Here, Independent Variable is the factor manipulated or controlled in an experiment to observe its effect.

Dependent Variable is the factor that is measured or observed in an experiment to assess the impact of the independent variable.]

What is the Importance of Hypothesis in Research?

characteristics of a good hypothesis in research methods

The importance of a hypothesis in research cannot be overstated, as it serves several crucial functions in the scientific inquiry process. 

Here are the key reasons why hypotheses are fundamental to research:

1. Guides the Research Process

A hypothesis gives a study a clear direction as it outlines what you intend to study and establishes the relationship you are trying to find between variables. It is precise and to the point, which helps formulate your research questions and plan your methods. Using a hypothesis helps organize the testing process from the beginning to the end of the study.

2. Defines the Variables

A well-formulated hypothesis specifies the independent and dependent variables. It defines the object of manipulation and measurement. According to the definition, the hypothesis is an assumption about the relationship between the objects of study. Since statistics is a field of research, the hypothesis is a predictive statement that can be tested empirically.

3. Facilitates Testability and Empirical Investigation

A well-defined hypothesis indicates a clear relationship between the studied variables, thus providing a foundation for designing experiments and observations. In some cases, a null hypothesis is stated to subsequently apply the appropriate statistical test to either validate an already formulated and appropriate hypothesis or reject it.

4. Enhances Objectivity

A hypothesis helps minimize researcher bias by proposing a specific prediction. It forces the researcher to rely on empirical data rather than subjective opinions or beliefs. This objectivity is crucial for maintaining the integrity of the scientific process and ensuring that the findings are credible and reliable.

5. Promotes Critical Thinking and Theoretical Frameworks

Creating a reasonable and viable hypothesis starts with deeply understanding the problem and the field. With a clear sense of the scope of existing evidence and knowledge, there would be a way to go beyond what other researchers have already done. By thoroughly reviewing the literature, researchers are in a position to critically evaluate it and identify problems or questions that remain unresolved. 

6. Enables Structured Analysis and Interpretation

A hypothesis is a tentative assumption that provides a context for data analysis and interpretation. It allows for determining specific statistical tests to run and understanding how to interpret them. If the results support the hypothesis, then there is sufficient evidence to claim and infer that the chosen variables are related in a particular way to each other. 

If the hypothesis does not match the outcomes, it raises the question of the theoretical assumptions supporting it and additional testing that may be indicated.

7. Drives Scientific Progress

Testing hypotheses continually allows researchers to enrich knowledge beyond merely investigating a particular aspect. The data supporting both hypotheses, the data refuting them, may give rise to new theories, which may serve as the foundation for new research. Such a loop significantly benefits researchers who need to extend their understanding of a particular aspect of the outer world.

{{cta-button}}

What Are The Types of Research Hypotheses?

Research hypotheses can broadly be categorized into several types, each serving different purposes in scientific inquiry. 

Here are the main types of research hypotheses:

1. Simple Hypothesis

A simple hypothesis posits a relationship between two variables. It suggests a direct cause-and-effect relationship without specifying the direction of the effect. For example:

"Increased exercise leads to improved cardiovascular health."

2. Complex Hypothesis

Complex hypotheses involve relationships between multiple variables. These hypotheses may propose how several factors interact to produce a particular outcome. For example:

"The interaction between genetic predisposition, diet, and exercise influences longevity."

3. Associative Hypothesis

An associative hypothesis suggests that there is a relationship between two variables, but it does not imply causation. It states that changes in one variable are associated with changes in another. For example:

"There is a correlation between income level and access to healthcare services."

4. Causal Hypothesis

A causal hypothesis asserts that changes in one variable directly cause changes in another. It implies a cause-and-effect relationship that can be tested through experimentation or controlled observation. For example:

"Increased consumption of sugary drinks causes an increase in body weight."

5. Directional Hypothesis

A directional hypothesis predicts the direction of the relationship between variables. It specifies whether one variable will increase or decrease in response to changes in another variable. For example:

"Higher levels of education lead to higher income levels."

6. Non-directional Hypothesis

A non-directional hypothesis does not predict the direction of the relationship between variables. It simply suggests that there is a relationship without specifying whether one variable will increase or decrease in response to changes in another variable. For example:

"There is a relationship between social media use and levels of anxiety."

7. Null Hypothesis (H₀)

The null hypothesis states no significant relationship exists between the variables being studied. It proposes that any observed differences or effects are due to random chance or sampling error. It is often used to test against the alternative hypothesis (H₁), which proposes the existence of a relationship or effect. For example:

"There is no significant difference in test scores between students who study with music and students who study in silence."

How to Develop a Research Hypothesis?

characteristics of a good hypothesis in research methods

Developing a research hypothesis involves a systematic process to ensure clarity, testability, and relevance to the research question. Here’s a step-by-step guide on how to develop a research hypothesis:

Step 1: Identify the Research Problem or Question

Start by clearly defining the research problem or question you want to investigate. This could be based on gaps in existing literature, observations, theories, or practical issues.

Step 2: Review Existing Literature

Conduct a thorough review of relevant literature to understand what is already known about the topic. Identify theories, findings, and gaps in knowledge that can help inform the development of your hypothesis.

Step 3: Specify Variables

Identify the variables involved in your study. Variables are measurable traits, conditions, or characteristics that can change or vary. 

Specifically, determine:

Independent Variable: The factor you manipulate or study in your research.

Dependent Variable: The outcome or response you are measuring or observing about the independent variable.

Step 4: Formulate a Hypothesis

Formulate a clear and specific hypothesis based on your research problem, literature review, and identified variables. A good hypothesis should:

State the expected relationship between the independent and dependent variables.

Be testable through empirical research methods (e.g., experiments, surveys, observations).

Be concise and specific, avoiding ambiguity.

Simple hypothesis: "Increased exposure to sunlight leads to higher levels of vitamin D in humans."

Directional hypothesis: "Children who participate in regular physical activity will have lower levels of obesity than children who do not."

Non-directional hypothesis: "There is a relationship between job satisfaction and employee turnover."

Step 5: Consider Alternative Hypotheses

While formulating your hypothesis, consider alternative explanations or hypotheses that could also explain the relationship between your variables. This helps in ensuring that your hypothesis is well-grounded and comprehensive.

Step 6: Ensure Testability

Ensure that your hypothesis is testable using appropriate research methods and techniques. Define how to measure or manipulate the variables to gather empirical evidence supporting or refuting your hypothesis.

Step 7: Write and Refine

Write down your hypothesis in a clear and concise statement. Revise and refine it as needed to improve clarity and specificity. Ensure that it aligns with the objectives of your study and effectively addresses the research question.

Step 8: Seek Feedback

Before finalizing your hypothesis, seek feedback from colleagues, mentors, or peers in your field. Their input can help identify potential weaknesses or ambiguities in your hypothesis and suggest improvements.

Step 9: Finalize Your Hypothesis

Once you have refined your hypothesis based on feedback and considerations, finalize it as the guiding statement for your research study.

Characteristics of a Good Research Hypothesis

A good research hypothesis possesses several key characteristics that make it effective and suitable for investigation:

1. Clear and Specific

The hypothesis should be precise in its wording and focus. It should clearly state what the researcher intends to investigate or test.

2. Testable

A hypothesis must be capable of being empirically tested and verified or falsified through observation or experimentation. This means there should be a way to gather data that supports or refutes the hypothesis.

3. Falsifiable

There must be a possibility of proving the hypothesis false. A hypothesis that cannot be proven false typically falls outside scientific inquiry. This criterion ensures that research remains objective and open to revision based on evidence.

4. Grounded in Theory

A good hypothesis is usually based on existing theories or literature. It should be informed by a solid understanding of the topic and build upon previous research findings or established principles.

5. Rationale

It should provide a logical rationale or explanation for the expected outcome. This rationale is often derived from the literature review or preliminary observations.

6. Empirical Relevance

The hypothesis should address a question relevant to the field of study and contribute to existing knowledge. It should propose a relationship or difference between variables that is worth investigating.

While the hypothesis should be clear and specific, it should also be concise and to the point. It typically consists of a statement or a few sentences summarizing the expected relationship between variables.

8. Variables

A hypothesis should identify the variables involved and specify how they are expected to relate. This includes independent variables (the factors that are manipulated or controlled) and dependent variables (the outcomes or effects being measured).

9. Observable and Measurable

The variables in the hypothesis should be observable and measurable, allowing for data collection that can be analyzed statistically.

10. Revisable

A hypothesis is not a conclusion but a tentative assumption or prediction that guides the research process. It should be open to revision based on the study's findings.

The Role of Decode in Testing Research Hypotheses

characteristics of a good hypothesis in research methods

Decode is a powerful survey and consumer research platform powered by Insights AI, that can be instrumental in testing research hypotheses. 

Here's how Decode can support you in this process:

  • Survey Design and Data Collection: Craft targeted questions using Decode's intuitive interface to gather relevant data for your research.
  • Exploratory Research: Conduct exploratory research to understand the landscape of your topic—Leverage Decode's functionalities for surveys and feedback mechanisms to gain valuable insights from your target audience.
  • Literature Review and Background Research: Supplement your literature review by collecting data on sample populations' opinions, experiences, and preferences through Decode surveys . This combined data and a thorough literature evaluation can help you build a well-grounded hypothesis with a strong foundation in real-world knowledge.
  • Identifying Variables: Design targeted survey questions within Decode to pinpoint relevant variables crucial to your research topic.
  • Testing Assumptions: Before solidifying your research hypothesis, informally test your assumptions using surveys created on Decode. This allows for early feedback and potential refinement.
  • Data Analysis Tools: Decode provides built-in data analysis tools. Utilize these tools to uncover patterns, correlations, and trends within the data you collect through your surveys.
  • Refining Your Hypotheses: As you gather data through Decode surveys, you can continuously adjust and refine your hypotheses based on the real-world responses you receive. This iterative process ensures your hypothesis stays aligned with the insights you uncover.

Final Words

A research hypothesis serves as a guide for scientists. It is a tested idea that applies across different fields, including medicine, social sciences, and natural sciences. Integrating theories with hands-on information assists researchers in exploring and discovering new information.

Decode is a valuable tool for researchers. It simplifies creating surveys, gathering data, and analyzing information. It supports all types of research, from forming hypotheses to testing them. Start a free trial to explore its features and maximize your research potential.

Frequently Asked Questions

What is a research hypothesis example.

A research hypothesis example is: "Students who receive daily math tutoring will have higher test scores than students who do not."

What do you write in a research hypothesis?

In a research hypothesis, you write a clear and testable statement predicting the relationship between two or more variables. It should specify the variables and the expected outcome.

What is the purpose of a research hypothesis?

A research hypothesis provides a focused direction for research. It guides the study design, data collection, and analysis by predicting a specific outcome that can be tested.

What are the three major types of hypotheses?

The three major types of hypotheses are:

  • Null Hypothesis (H₀): States that there is no effect or relationship between variables.
  • Alternative Hypothesis (H₁): Suggests that there is an effect or relationship between variables.
  • Directional Hypothesis: Specifies the expected direction of the relationship between variables (e.g., positive or negative).

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

With lots of unique blocks, you can easily build a page without coding.

Click on Study templates

Start from scratch

Add blocks to the content

Saving the Template

Publish the Template

Soham is a true Manchester United fan who finds joy in more than just football. Whether navigating the open road, scoring virtual goals in FIFA, reading novels, or enjoying quality time with friends, Soham embraces a life full of diverse passions.

Product Marketing Specialist

Related Articles

characteristics of a good hypothesis in research methods

The Ultimate Guide to Crafting Research Plans: Key Steps, Tips, and Tools

A comprehensive guide to crafting effective research plans with key steps, tips, and tools like Decode & Qatalyst for actionable insights and success.

characteristics of a good hypothesis in research methods

Roadmap to Building an Effective Research Question

Learn the essentials of crafting impactful research questions. Discover strategies to frame and refine questions for clearer, more actionable insights.

characteristics of a good hypothesis in research methods

Synthetic Users: Revolutionizing UX Testing and Digital Performance

Synthetic users simulate real behavior to enhance UX testing and digital performance, enabling businesses to optimize experiences and detect issues pre-emptively.

characteristics of a good hypothesis in research methods

Correlation vs Causation: Applied in UX Research

Discover the critical distinctions between correlation and causation and why they matter in UX Research.

characteristics of a good hypothesis in research methods

Subjective vs Objective Research: A Competitive Analysis

Explore the differences between subjective and objective research methods, their impact on data analysis, and how to apply each approach effectively.

characteristics of a good hypothesis in research methods

Predictive Analytics: Harnessing the Power to Foresee the Future

AI-Driven Predictive Analytics: The Key to Forecasting Market Trends, Boosting Efficiency, and Accelerating Business Growth

characteristics of a good hypothesis in research methods

Mastering the Art of Conceptual Framework in Market Research

Learn how a conceptual framework in market research guides your study, connects theory with practice and ensures a clear structure for effective analysis and results.

characteristics of a good hypothesis in research methods

The Ultimate User Testing Guide

Explore our guide on user testing, covering its importance, methods, and how to enhance user experience through actionable insights. Read more!

characteristics of a good hypothesis in research methods

Stratified Random Sampling: A Complete Guide with Definition, Method, and Examples

Master Stratified Random Sampling: A Step-by-Step Guide to Boost Precision in Research and Decision-Making for Researchers and Product Managers

characteristics of a good hypothesis in research methods

Building Customer Loyalty: Best Practices and Strategies

Customer loyalty is a cornerstone of any successful business. This comprehensive guide will explore various strategies and tactics to help you cultivate a loyal customer base.

characteristics of a good hypothesis in research methods

How to Create Buyer Personas That Drive Product and Marketing Success?

Develop detailed, data-backed buyer personas to improve product development, refine marketing strategies, and deliver personalized experiences.

characteristics of a good hypothesis in research methods

What is a Survey? Benefits, Types, Blocks, Use Cases, and More

Discover the power of surveys: types, benefits, use cases, and how to create effective surveys using the AI-powered platform Decode.

characteristics of a good hypothesis in research methods

Top AI Events You Do Not Want to Miss in 2024

Here are all the top AI events for 2024, curated in one convenient place just for you.

characteristics of a good hypothesis in research methods

Top Insights Events You Do Not Want to Miss in 2024

Here are all the top Insights events for 2024, curated in one convenient place just for you.

characteristics of a good hypothesis in research methods

Top CX Events You Do Not Want to Miss in 2024

Here are all the top CX events for 2024, curated in one convenient place just for you.

characteristics of a good hypothesis in research methods

How to Build an Experience Map: A Complete Guide

An experience map is essential for businesses, as it highlights the customer journey, uncovering insights to improve user experiences and address pain points. Read to find more!

characteristics of a good hypothesis in research methods

Everything You Need to Know about Intelligent Scoring

Are you curious about Intelligent Scoring and how it differs from regular scoring? Discover its applications and benefits. Read on to learn more!

characteristics of a good hypothesis in research methods

Qualitative Research Methods and Its Advantages In Modern User Research

Discover how to leverage qualitative research methods, including moderated sessions, to gain deep user insights and enhance your product and UX decisions.

characteristics of a good hypothesis in research methods

The 10 Best Customer Experience Platforms to Transform Your CX

Explore the top 10 CX platforms to revolutionize customer interactions, enhance satisfaction, and drive business growth.

characteristics of a good hypothesis in research methods

TAM SAM SOM: What It Means and How to Calculate It?

Understanding TAM, SAM, SOM helps businesses gauge market potential. Learn their definitions and how to calculate them for better business decisions and strategy.

characteristics of a good hypothesis in research methods

Understanding Likert Scales: Advantages, Limitations, and Questions

Using Likert scales can help you understand how your customers view and rate your product. Here's how you can use them to get the feedback you need.

characteristics of a good hypothesis in research methods

Mastering the 80/20 Rule to Transform User Research

Find out how the Pareto Principle can optimize your user research processes and lead to more impactful results with the help of AI.

characteristics of a good hypothesis in research methods

Understanding Consumer Psychology: The Science Behind What Makes Us Buy

Gain a comprehensive understanding of consumer psychology and learn how to apply these insights to inform your research and strategies.

characteristics of a good hypothesis in research methods

A Guide to Website Footers: Best Design Practices & Examples

Explore the importance of website footers, design best practices, and how to optimize them using UX research for enhanced user engagement and navigation.

characteristics of a good hypothesis in research methods

Customer Effort Score: Definition, Examples, Tips

A great customer score can lead to dedicated, engaged customers who can end up being loyal advocates of your brand. Here's what you need to know about it.

characteristics of a good hypothesis in research methods

How to Detect and Address User Pain Points for Better Engagement

Understanding user pain points can help you provide a seamless user experiences that makes your users come back for more. Here's what you need to know about it.

characteristics of a good hypothesis in research methods

What is Quota Sampling? Definition, Types, Examples, and How to Use It?

Discover Quota Sampling: Learn its process, types, and benefits for accurate consumer insights and informed marketing decisions. Perfect for researchers and brand marketers!

characteristics of a good hypothesis in research methods

What Is Accessibility Testing? A Comprehensive Guide

Ensure inclusivity and compliance with accessibility standards through thorough testing. Improve user experience and mitigate legal risks. Learn more.

characteristics of a good hypothesis in research methods

Maximizing Your Research Efficiency with AI Transcriptions

Explore how AI transcription can transform your market research by delivering precise and rapid insights from audio and video recordings.

characteristics of a good hypothesis in research methods

Understanding the False Consensus Effect: How to Manage it

The false consensus effect can cause incorrect assumptions and ultimately, the wrong conclusions. Here's how you can overcome it.

characteristics of a good hypothesis in research methods

5 Banking Customer Experience Trends to Watch Out for in 2024

Discover the top 5 banking customer experience trends to watch out for in 2024. Stay ahead in the evolving financial landscape.

characteristics of a good hypothesis in research methods

The Ultimate Guide to Regression Analysis: Definition, Types, Usage & Advantages

Master Regression Analysis: Learn types, uses & benefits in consumer research for precise insights & strategic decisions.

characteristics of a good hypothesis in research methods

EyeQuant Alternative

Meet Qatalyst, your best eyequant alternative to improve user experience and an AI-powered solution for all your user research needs.

characteristics of a good hypothesis in research methods

EyeSee Alternative

Embrace the Insights AI revolution: Meet Decode, your innovative solution for consumer insights, offering a compelling alternative to EyeSee.

characteristics of a good hypothesis in research methods

Skeuomorphism in UX Design: Is It Dead?

Skeuomorphism in UX design creates intuitive interfaces using familiar real-world visuals to help users easily understand digital products. Do you know how?

characteristics of a good hypothesis in research methods

Top 6 Wireframe Tools and Ways to Test Your Designs

Wireframe tools assist designers in planning and visualizing the layout of their websites. Look through this list of wireframing tools to find the one that suits you best.

characteristics of a good hypothesis in research methods

Revolutionizing Customer Interaction: The Power of Conversational AI

Conversational AI enhances customer service across various industries, offering intelligent, context-aware interactions that drive efficiency and satisfaction. Here's how.

characteristics of a good hypothesis in research methods

User Story Mapping: A Powerful Tool for User-Centered Product Development

Learn about user story mapping and how it can be used for successful product development with this blog.

characteristics of a good hypothesis in research methods

Understanding Customer Retention: How to Keep Your Customers Coming Back

Understanding customer retention is key to building a successful brand that has repeat, loyal customers. Here's what you need to know about it.

characteristics of a good hypothesis in research methods

Demographic Segmentation: How Brands Can Use it to Improve Marketing Strategies

Read this blog to learn what demographic segmentation means, its importance, and how it can be used by brands.

characteristics of a good hypothesis in research methods

Mastering Product Positioning: A UX Researcher's Guide

Read this blog to understand why brands should have a well-defined product positioning and how it affects the overall business.

characteristics of a good hypothesis in research methods

Discrete Vs. Continuous Data: Everything You Need To Know

Explore the differences between discrete and continuous data and their impact on business decisions and customer insights.

characteristics of a good hypothesis in research methods

50+ Employee Engagement Survey Questions

Understand how an employee engagement survey provides insights into employee satisfaction and motivation, directly impacting productivity and retention.

characteristics of a good hypothesis in research methods

What is Experimental Research: Definition, Types & Examples

Understand how experimental research enables researchers to confidently identify causal relationships between variables and validate findings, enhancing credibility.

characteristics of a good hypothesis in research methods

A Guide to Interaction Design

Interaction design can help you create engaging and intuitive user experiences, improving usability and satisfaction through effective design principles. Here's how.

characteristics of a good hypothesis in research methods

Exploring the Benefits of Stratified Sampling

Understanding stratified sampling can improve research accuracy by ensuring diverse representation across key subgroups. Here's how.

characteristics of a good hypothesis in research methods

A Guide to Voice Recognition in Enhancing UX Research

Learn the importance of using voice recognition technology in user research for enhanced user feedback and insights.

characteristics of a good hypothesis in research methods

The Ultimate Figma Design Handbook: Design Creation and Testing

The Ultimate Figma Design Handbook covers setting up Figma, creating designs, advanced features, prototyping, and testing designs with real users.

characteristics of a good hypothesis in research methods

The Power of Organization: Mastering Information Architectures

Understanding the art of information architectures can enhance user experiences by organizing and structuring digital content effectively, making information easy to find and navigate. Here's how.

characteristics of a good hypothesis in research methods

Convenience Sampling: Examples, Benefits, and When To Use It

Read the blog to understand how convenience sampling allows for quick and easy data collection with minimal cost and effort.

characteristics of a good hypothesis in research methods

What is Critical Thinking, and How Can it be Used in Consumer Research?

Learn how critical thinking enhances consumer research and discover how Decode's AI-driven platform revolutionizes data analysis and insights.

characteristics of a good hypothesis in research methods

How Business Intelligence Tools Transform User Research & Product Management

This blog explains how Business Intelligence (BI) tools can transform user research and product management by providing data-driven insights for better decision-making.

characteristics of a good hypothesis in research methods

What is Face Validity? Definition, Guide and Examples

Read this blog to explore face validity, its importance, and the advantages of using it in market research.

characteristics of a good hypothesis in research methods

What is Customer Lifetime Value, and How To Calculate It?

Read this blog to understand how Customer Lifetime Value (CLV) can help your business optimize marketing efforts, improve customer retention, and increase profitability.

characteristics of a good hypothesis in research methods

Systematic Sampling: Definition, Examples, and Types

Explore how systematic sampling helps researchers by providing a structured method to select representative samples from larger populations, ensuring efficiency and reducing bias.

characteristics of a good hypothesis in research methods

Understanding Selection Bias: A Guide

Selection bias can affect the type of respondents you choose for the study and ultimately the quality of responses you receive. Here’s all you need to know about it.

characteristics of a good hypothesis in research methods

A Guide to Designing an Effective Product Strategy

Read this blog to explore why a well-defined product strategy is required for brands while developing or refining a product.

characteristics of a good hypothesis in research methods

A Guide to Minimum Viable Product (MVP) in UX: Definition, Strategies, and Examples

Discover what an MVP is, why it's crucial in UX, strategies for creating one, and real-world examples from top companies like Dropbox and Airbnb.

characteristics of a good hypothesis in research methods

Asking Close Ended Questions: A Guide

Asking the right close ended questions is they key to getting quantitiative data from your users. Her's how you should do it.

characteristics of a good hypothesis in research methods

Creating Website Mockups: Your Ultimate Guide to Effective Design

Read this blog to learn website mockups- tools, examples and how to create an impactful website design.

characteristics of a good hypothesis in research methods

Understanding Your Target Market And Its Importance In Consumer Research

Read this blog to learn about the importance of creating products and services to suit the needs of your target audience.

characteristics of a good hypothesis in research methods

What Is a Go-To-Market Strategy And How to Create One?

Check out this blog to learn how a go-to-market strategy helps businesses enter markets smoothly, attract more customers, and stand out from competitors.

characteristics of a good hypothesis in research methods

What is Confirmation Bias in Consumer Research?

Learn how confirmation bias affects consumer research, its types, impacts, and practical tips to avoid it for more accurate and reliable insights.

characteristics of a good hypothesis in research methods

Market Penetration: The Key to Business Success

Understanding market penetration is key to cracking the code to sustained business growth and competitive advantage in any industry. Here's all you need to know about it.

characteristics of a good hypothesis in research methods

How to Create an Effective User Interface

Having a simple, clear user interface helps your users find what they really want, improving the user experience. Here's how you can achieve it.

characteristics of a good hypothesis in research methods

Product Differentiation and What It Means for Your Business

Discover how product differentiation helps businesses stand out with unique features, innovative designs, and exceptional customer experiences.

characteristics of a good hypothesis in research methods

What is Ethnographic Research? Definition, Types & Examples

Read this blog to understand Ethnographic research, its relevance in today’s business landscape and how you can leverage it for your business.

characteristics of a good hypothesis in research methods

Product Roadmap: The 2024 Guide [with Examples]

Read this blog to understand how a product roadmap can align stakeholders by providing a clear product development and delivery plan.

characteristics of a good hypothesis in research methods

Product Market Fit: Making Your Products Stand Out in a Crowded Market

Delve into the concept of product-market fit, explore its significance, and equip yourself with practical insights to achieve it effectively.

characteristics of a good hypothesis in research methods

Consumer Behavior in Online Shopping: A Comprehensive Guide

Ever wondered how online shopping behavior can influence successful business decisions? Read on to learn more.

characteristics of a good hypothesis in research methods

How to Conduct a First Click Test?

Why are users leaving your site so fast? Learn how First Click Testing can help. Discover quick fixes for frustration and boost engagement.

characteristics of a good hypothesis in research methods

What is Market Intelligence? Methods, Types, and Examples

Read the blog to understand how marketing intelligence helps you understand consumer behavior and market trends to inform strategic decision-making.

characteristics of a good hypothesis in research methods

What is a Longitudinal Study? Definition, Types, and Examples

Is your long-term research strategy unclear? Learn how longitudinal studies decode complexity. Read on for insights.

characteristics of a good hypothesis in research methods

What Is the Impact of Customer Churn on Your Business?

Understanding and reducing customer churn is the key to building a healthy business that keeps customers satisfied. Here's all you need to know about it.

characteristics of a good hypothesis in research methods

The Ultimate Design Thinking Guide

Discover the power of design thinking in UX design for your business. Learn the process and key principles in our comprehensive guide.

characteristics of a good hypothesis in research methods

100+ Yes Or No Survey Questions Examples

Yes or no survey questions simplify responses, aiding efficiency, clarity, standardization, quantifiability, and binary decision-making. Read some examples!

characteristics of a good hypothesis in research methods

What is Customer Segmentation? The ULTIMATE Guide

Explore how customer segmentation targets diverse consumer groups by tailoring products, marketing, and experiences to their preferred needs.

characteristics of a good hypothesis in research methods

Crafting User-Centric Websites Through Responsive Web Design

Find yourself reaching for your phone instead of a laptop for regular web browsing? Read on to find out what that means & how you can leverage it for business.

characteristics of a good hypothesis in research methods

How Does Product Placement Work? Examples and Benefits

Read the blog to understand how product placement helps advertisers seek subtle and integrated ways to promote their products within entertainment content.

characteristics of a good hypothesis in research methods

The Importance of Reputation Management, and How it Can Make or Break Your Brand

A good reputation management strategy is crucial for any brand that wants to keep its customers loyal. Here's how brands can focus on it.

characteristics of a good hypothesis in research methods

A Comprehensive Guide to Human-Centered Design

Are you putting the human element at the center of your design process? Read this blog to understand why brands must do so.

characteristics of a good hypothesis in research methods

How to Leverage Customer Insights to Grow Your Business

Genuine insights are becoming increasingly difficult to collect. Read on to understand the challenges and what the future holds for customer insights.

characteristics of a good hypothesis in research methods

The Complete Guide to Behavioral Segmentation

Struggling to reach your target audience effectively? Discover how behavioral segmentation can transform your marketing approach. Read more in our blog!

characteristics of a good hypothesis in research methods

Creating a Unique Brand Identity: How to Make Your Brand Stand Out

Creating a great brand identity goes beyond creating a memorable logo - it's all about creating a consistent and unique brand experience for your cosnumers. Here's everything you need to know about building one.

characteristics of a good hypothesis in research methods

Understanding the Product Life Cycle: A Comprehensive Guide

Understanding the product life cycle, or the stages a product goes through from its launch to its sunset can help you understand how to market it at every stage to create the most optimal marketing strategies.

characteristics of a good hypothesis in research methods

Empathy vs. Sympathy in UX Research

Are you conducting UX research and seeking guidance on conducting user interviews with empathy or sympathy? Keep reading to discover the best approach.

characteristics of a good hypothesis in research methods

What is Exploratory Research, and How To Conduct It?

Read this blog to understand how exploratory research can help you uncover new insights, patterns, and hypotheses in a subject area.

characteristics of a good hypothesis in research methods

First Impressions & Why They Matter in User Research

Ever wonder if first impressions matter in user research? The answer might surprise you. Read on to learn more!

characteristics of a good hypothesis in research methods

Cluster Sampling: Definition, Types & Examples

Read this blog to understand how cluster sampling tackles the challenge of efficiently collecting data from large, spread-out populations.

characteristics of a good hypothesis in research methods

Top Six Market Research Trends

Curious about where market research is headed? Read on to learn about the changes surrounding this field in 2024 and beyond.

characteristics of a good hypothesis in research methods

Lyssna Alternative

Meet Qatalyst, your best lyssna alternative to usability testing, to create a solution for all your user research needs.

characteristics of a good hypothesis in research methods

What is Feedback Loop? Definition, Importance, Types, and Best Practices

Struggling to connect with your customers? Read the blog to learn how feedback loops can solve your problem!

characteristics of a good hypothesis in research methods

UI vs. UX Design: What’s The Difference?

Learn how UI solves the problem of creating an intuitive and visually appealing interface and how UX addresses broader issues related to user satisfaction and overall experience with the product or service.

characteristics of a good hypothesis in research methods

The Impact of Conversion Rate Optimization on Your Business

Understanding conversion rate optimization can help you boost your online business. Read more to learn all about it.

characteristics of a good hypothesis in research methods

Insurance Questionnaire: Tips, Questions and Significance

Leverage this pre-built customizable questionnaire template for insurance to get deep insights from your audience.

characteristics of a good hypothesis in research methods

UX Research Plan Template

Read on to understand why you need a UX Research Plan and how you can use a fully customizable template to get deep insights from your users!

characteristics of a good hypothesis in research methods

Brand Experience: What it Means & Why It Matters

Have you ever wondered how users navigate the travel industry for your research insights? Read on to understand user experience in the travel sector.

characteristics of a good hypothesis in research methods

Validity in Research: Definitions, Types, Significance, and Its Relationship with Reliability

Is validity ensured in your research process? Read more to explore the importance and types of validity in research.

characteristics of a good hypothesis in research methods

The Role of UI Designers in Creating Delightful User Interfaces

UI designers help to create aesthetic and functional experiences for users. Here's all you need to know about them.

Maximize Your Research Potential

Experience why teams worldwide trust our Consumer & User Research solutions.

Book a Demo

characteristics of a good hypothesis in research methods

  • Call for Articles
  •  Login

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

It awesome. It has really positioned me in my research project

Brief and easily digested

Very valuable resource and well done.

Rate this article Cancel Reply

Your email address will not be published.

characteristics of a good hypothesis in research methods

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

characteristics of a good hypothesis in research methods

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

characteristics of a good hypothesis in research methods

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • Plagiarism Checker
  • AI Content Detector
  • Academic Editing
  • Publication Support Services
  • Thesis Editing
  • Enago Reports
  • Journal Finder
  • Thought Leadership
  • Publishing Research
  • Promoting Research
  • Diversity and Inclusion
  • Al in Academia
  • Other Resources
  • Infographics
  • Enago Learn
  • On-Demand Webinar
  • Open Access Week
  • Peer Review Week
  • Publication Integrity Week
  • Conference Videos
  • Call for speakers
  • Author Training

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

characteristics of a good hypothesis in research methods

What features do you prefer in a plagiarism detector? (Select all that apply)

No internet connection.

All search filters on the page have been cleared., your search has been saved..

  • Sign in to my profile My Profile

Not Logged In

Subject index

In an increasingly data-driven world, it is more important than ever for students as well as professionals to better understand basic statistical concepts. 100 Questions (and Answers) About Statistics addresses the essential questions that students ask about statistics in a concise and accessible way. It is perfect for instructors, students, and practitioners as a supplement to more comprehensive materials, or as a desk reference with quick answers to the most frequently asked questions.

What Are the Characteristics of a Good Hypothesis?

  • By: Neil J. Salkind
  • In: 100 Questions (and Answers) About Statistics
  • Chapter DOI: https:// doi. org/10.4135/9781483372334.n61
  • Subject: Engineering , Mathematics
  • Keywords: students
  • Show page numbers Hide page numbers

A well-written and well-thought-out hypothesis can make all the difference between a successful and unsuccessful research effort. This is primarily because a well-written hypothesis reflects a well-conceived research project based on an adequate review of the literature and a logical proposition about the relationship between variables.

Here is a summary of the characteristics of a good hypothesis.

First, a good hypothesis is stated in declarative form and not as a question. For example, “Are retention rates for first-year students at state universities low because students run out of money?” could, with some review of the literature, become, “Retention rates for first-year students at state universities are lower than the average because students cannot afford to return for the second semester due to a shortage of funds.” The hypothesis becomes a direct and clear statement.

Second, a good hypothesis proposes a relationship between variables. In the example we just provided, the variables are whether or not the student remains in school (retention) and the reason for not remaining in school if the student leaves. In this example, the idea that is being tested is that new students do not remain in school because school becomes too expensive.

Third, a good hypothesis reflects the literature or the results of previous studies on which the hypothesis is based. This is where good old-fashioned detective work at the library or online provides the information needed to best understand the possible relationships that might be found and their importance to the overall research mission.

Fourth, a good hypothesis is brief and to the point. It is not a review of the literature or a rationale for the hypothesis itself. Rather it is a concise and clear statement of the relationship between variables such that any other person with some familiarity with the subject matter could read the hypothesis and fully understand the central purpose of the research study.

Finally, a good hypothesis is testable. The variables are clearly understood, as is their proposed relationship. In our example, the central question is the relationship between continued enrollment in school and why [Page 126] that may not occur. The hypothesis narrows that question to look specifically at one reason why continued enrollment may not occur. Given the way the hypothesis is stated, it allows the question to be tested and the results and new knowledge gained to be applied to the next hypothesis and subsequent testing.

More questions? See questions #60 , #63 , and #64 .

What Is a Hypothesis, and Why Is It Important in Scientific Research?

How Do a Sample and a Population Differ From One Another?

Sign in to access this content

Get a 30 day free trial, more like this, sage recommends.

We found other relevant content for you on other Sage platforms.

Have you created a personal profile? Login or create a profile so that you can save clips, playlists and searches

  • Sign in/register

Navigating away from this page will delete your results

Please save your results to "My Self-Assessments" in your profile before navigating away from this page.

Sign in to my profile

Please sign into your institution before accessing your profile

Sign up for a free trial and experience all Sage Learning Resources have to offer.

You must have a valid academic email address to sign up.

Get off-campus access

  • View or download all content my institution has access to.

Sign up for a free trial and experience all Sage Learning Resources has to offer.

  • view my profile
  • view my lists

COMMENTS

  1. 5 Characteristics of a Good Hypothesis: A Guide for Researchers

    What Makes a Good Hypothesis in a Research Paper. In a research paper, a good hypothesis should have the following characteristics: Relevance: It must directly relate to the research topic and address the objectives of the study. Clarity: The hypothesis should be concise and precisely worded to avoid confusion.

  2. What is Hypothesis? Definition, Meaning, Characteristics, Sources

    Characteristics of Hypothesis. Not all the hypotheses are good and useful from the point of view of research. It is only a few hypotheses satisfying certain criteria that are good, useful and directive in the research work undertaken. The characteristics of such a useful hypothesis can be listed as below: Conceptual Clarity; Need of empirical ...

  3. PDF Nature & Characteristics of A Good Hypothesis

    CHARACTERISTICS OF A GOOD HYPOTHESIS A good hypothesis must possess the following main characteristics: 1. Hypothesis should be capable of being tested. In a swamp of untestable hypotheses, many a time the research programmes have bogged down. Some prior study may be done by researcher in order to make hypothesis a testable one.

  4. 2.4 Developing a Hypothesis

    Characteristics of a Good Hypothesis. There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable. We must be able to test the hypothesis using the methods of science and if you'll recall Popper's falsifiability criterion, it must be possible to gather evidence that will disconfirm ...

  5. Characteristics Of A Good Hypothesis

    "A hypothesis would be simple if a researcher has more insight towards the problem," P.V. Young states. W-ocean said, "A theory should be as sharp as a razor's blade". As a result, a good hypothesis must be straightforward and devoid of complication. Clarity A hypothesis must have a coherent conceptual foundation.

  6. What is a Hypothesis

    Hypothesis. A hypothesis is a specific, testable prediction or statement that suggests an expected relationship between variables in a study. It acts as a starting point, guiding researchers to examine whether their predictions hold true based on collected data. For a hypothesis to be useful, it must be clear, concise, and based on prior knowledge or theoretical frameworks.

  7. How to Write a Hypothesis: Step-By-Step Guide and Examples

    Make Sure It Is Testable: A good hypothesis should be testable and falsifiable, meaning it can be proven or disproven through scientific research methods. For example, "A high-protein diet increases muscle mass" is a testable hypothesis. Use Existing Knowledge and Research: Base your hypothesis on existing knowledge and research. Align it ...

  8. What is Research Hypothesis: Definition, Types, and How to Develop

    Characteristics of a Good Research Hypothesis. A good research hypothesis possesses several key characteristics that make it effective and suitable for investigation: 1. Clear and Specific. The hypothesis should be precise in its wording and focus. It should clearly state what the researcher intends to investigate or test. 2. Testable

  9. What is a Research Hypothesis and How to Write a Hypothesis

    Characteristics of a Good Research Hypothesis. As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory. A good research hypothesis involves more effort than just a guess.

  10. What Are the Characteristics of a Good Hypothesis?

    This is primarily because a well-written hypothesis reflects a well-conceived research project based on an adequate review of the literature and a logical proposition about the relationship between variables. Here is a summary of the characteristics of a good hypothesis. First, a good hypothesis is stated in declarative form and not as a question.