Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Math ⋅
  • Probability & Statistics ⋅
  • Independent/Dependent Variables

Definitions of Control, Constant, Independent and Dependent Variables in a Science Experiment

can you have two controls in an experiment

Why Should You Only Test for One Variable at a Time in an Experiment?

The point of an experiment is to help define the cause and effect relationships between components of a natural process or reaction. The factors that can change value during an experiment or between experiments, such as water temperature, are called scientific variables, while those that stay the same, such as acceleration due to gravity at a certain location, are called constants.

The scientific method includes three main types of variables: constants, independent, and dependent variables. In a science experiment, each of these variables define a different measured or constrained aspect of the system.

Constant Variables

Experimental constants are values that should not change either during or between experiments. Many natural forces and properties, such as the speed of light and the atomic weight of gold, are experimental constants. In some cases, a property can be considered constant for the purposes of an experiment even though it technically could change under certain circumstances. The boiling point of water changes with altitude and acceleration due to gravity decreases with distance from the earth, but for experiments in one location these can also be considered constants.

Sometimes also called a controlled variable. A constant is a variable that could change, but that the experimenter intentionally keeps constant in order to more clearly isolate the relationship between the independent variable and the dependent variable.

If extraneous variables are not properly constrained, they are referred to as confounding variables, as they interfere with the interpretation of the results of the experiment.

Some examples of control variables might be found with an experiment examining the relationship between the amount of sunlight plants receive (independent variable) and subsequent plant growth (dependent variable). The experiment should control the amount of water the plants receive and when, what type of soil they are planted in, the type of plant, and as many other different variables as possible. This way, only the amount of light is being changed between trials, and the outcome of the experiment can be directly applied to understanding only this relationship.

Independent Variable

The independent variable in an experiment is the variable whose value the scientist systematically changes in order to see what effect the changes have. A well-designed experiment has only one independent variable in order to maintain a fair test. If the experimenter were to change two or more variables, it would be harder to explain what caused the changes in the experimental results. For example, someone trying to find how quickly water boils could alter the volume of water or the heating temperature, but not both.

Dependent Variable

A dependent variable – sometimes called a responding variable – is what the experimenter observes to find the effect of systematically varying the independent variable. While an experiment may have multiple dependent variables, it is often wisest to focus the experiment on one dependent variable so that the relationship between it and the independent variable can be clearly isolated. For example, an experiment could examine how much sugar can dissolve in a set volume of water at various temperatures. The experimenter systematically alters temperature (independent variable) to see its effect on the quantity of dissolved sugar (dependent variable).

Control Groups

In some experiment designs, there might be one effect or manipulated variable that is being measured. Sometimes there might be one collection of measurements or subjects completely separated from this variable called the control group. These control groups are held as a standard to measure the results of a scientific experiment.

An example of such a situation might be a study regarding the effectiveness of a certain medication. There might be multiple experimental groups that receive the medication in varying doses and applications, and there would likely be a control group that does not receive the medication at all.

Representing Results

Identifying which variables are independent, dependent, and controlled helps to collect data, perform useful experiments, and accurately communicate results. When graphing or displaying data, it is crucial to represent data accurately and understandably. Typically, the independent variable goes on the x-axis, and the dependent variable goes on the y-axis.

Related Articles

Why should you only test for one variable at a time..., difference between manipulative & responding variable, what is the meaning of variables in research, what is the difference between a control & a controlled..., what are constants & controls of a science project..., what is a constant in a science fair project, what are comparative experiments, how to grow a plant from a bean as a science project, how to calculate experimental value, what is an independent variable in quantitative research, what is a responding variable in science projects, what is a positive control in microbiology, how to write a testable hypothesis, how to use the pearson correlation coefficient, 5 components of a well-designed scientific experiment, distinguishing between descriptive & causal studies, how to write a protocol for biology experiments, what is a standardized variable in biology, school science projects for juniors, how to write a summary on a science project.

  • ScienceBuddies.org: Variables in Your Science Fair Project

About the Author

Benjamin Twist has worked as a writer, editor and consultant since 2007. He writes fiction and nonfiction for online and print publications, as well as offering one-on-one writing consultations and tutoring. Twist holds a Master of Arts in Bible exposition from Columbia International University.

Find Your Next Great Science Fair Project! GO

logo

Home » experimental control important

What An Experimental Control Is And Why It’s So Important

' src=

Daniel Nelson

can you have two controls in an experiment

An experimental control is used in scientific experiments to minimize the effect of variables which are not the interest of the study. The control can be an object, population, or any other variable which a scientist would like to “control.”

You may have heard of experimental control, but what is it? Why is an experimental control important? The function of an experimental control is to hold constant the variables that an experimenter isn’t interested in measuring.

This helps scientists ensure that there have been no deviations in the environment of the experiment that could end up influencing the outcome of the experiment, besides the variable they are investigating. Let’s take a closer look at what this means.

You may have ended up here to understand why a control is important in an experiment. A control is important for an experiment because it allows the experiment to minimize the changes in all other variables except the one being tested.

To start with, it is important to define some terminology.

Terminology Of A Scientific Experiment

Randomization is important as it allows for more non-biased results in experiments. Random numbers generators are often used both in scientific studies as well as on 지노 사이트 to make outcomes fairer.

Scientists use the scientific method to ask questions and come to conclusions about the nature of the world. After making an observation about some sort of phenomena they would like to investigate, a scientist asks what the cause of that phenomena could be. The scientist creates a hypothesis, a proposed explanation that answers the question they asked. A hypothesis doesn’t need to be correct, it just has to be testable.

The hypothesis is a prediction about what will happen during the experiment, and if the hypothesis is correct then the results of the experiment should align with the scientist’s prediction. If the results of the experiment do not align with the hypothesis, then a good scientist will take this data into consideration and form a new hypothesis that can better explain the phenomenon in question.

Independent and Dependent Variables

In order to form an effective hypothesis and do meaningful research, the researcher must define the experiment’s independent and dependent variables . The independent variable is the variable which the experimenter either manipulates or controls in an experiment to test the effects of this manipulation on the dependent variable. A dependent variable is a variable being measured to see if the manipulation has any effect.

can you have two controls in an experiment

Photo: frolicsomepl via Pixabay, CC0

For instance, if a researcher wanted to see how temperature impacts the behavior of a certain gas, the temperature they adjust would be the independent variable and the behavior of the gas the dependent variable.

Control Groups and Experimental Groups

There will frequently be two groups under observation in an experiment, the experimental group, and the control group . The control group is used to establish a baseline that the behavior of the experimental group can be compared to. If two groups of people were receiving an experimental treatment for a medical condition, one would be given the actual treatment (the experimental group) and one would typically be given a placebo or sugar pill (the control group).

Without an experimental control group, it is difficult to determine the effects of the independent variable on the dependent variable in an experiment. This is because there can always be outside factors that are influencing the behavior of the experimental group. The function of a control group is to act as a point of comparison, by attempting to ensure that the variable under examination (the impact of the medicine) is the thing responsible for creating the results of an experiment. The control group is holding other possible variables constant, such as the act of seeing a doctor and taking a pill, so only the medicine itself is being tested.

Why Are Experimental Controls So Important?

Experimental controls allow scientists to eliminate varying amounts of uncertainty in their experiments. Whenever a researcher does an experiment and wants to ensure that only the variable they are interested in changing is changing, they need to utilize experimental controls.

Experimental controls have been dubbed “controls” precisely because they allow researchers to control the variables they think might have an impact on the results of the study. If a researcher believes that some outside variables could influence the results of their research, they’ll use a control group to try and hold that thing constant and measure any possible influence it has on the results. It is important to note that there may be many different controls for an experiment, and the more complex a phenomenon under investigation is, the more controls it is likely to have.

Not only do controls establish a baseline that the results of an experiment can be compared to, they also allow researchers to correct for possible errors. If something goes wrong in the experiment, a scientist can check on the controls of the experiment to see if the error had to do with the controls. If so, they can correct this next time the experiment is done.

A Practical Example

Let’s take a look at a concrete example of experimental control. If an experimenter wanted to determine how different soil types impacted the germination period of seeds , they could set up four different pots. Each pot would be filled with a different soil type, planted with seeds, then watered and exposed to sunlight. Measurements would be taken regarding how long it took for the seeds to sprout in the different soil types.

can you have two controls in an experiment

Photo: Kaz via Pixabay, CC0

A control for this experiment might be to fill more pots with just the different types of soil and no seeds or to set aside some seeds in a pot with no soil. The goal is to try and determine that it isn’t something else other than the soil, like the nature of the seeds themselves, the amount of sun they were exposed to, or how much water they are given, that affected how quickly the seeds sprouted. The more variables a researcher controlled for, the surer they could be that it was the type of soil having an impact on the germination period.

  Not All Experiments Are Controlled

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s wrong.” — Richard P. Feynman

While experimental controls are important , it is also important to remember that not all experiments are controlled. In the real world, there are going to be limitations on what variables a researcher can control for, and scientists often try to record as much data as they can during an experiment so they can compare factors and variables with one another to see if any variables they didn’t control for might have influenced the outcome. It’s still possible to draw useful data from experiments that don’t have controls, but it is much more difficult to draw meaningful conclusions based on uncontrolled data.

Though it is often impossible in the real world to control for every possible variable, experimental controls are an invaluable part of the scientific process and the more controls an experiment has the better off it is.

← Previous post

Next post →

Related Posts

can you have two controls in an experiment

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Controlled Experiments | Methods & Examples of Control

Controlled Experiments | Methods & Examples of Control

Published on 19 April 2022 by Pritha Bhandari . Revised on 10 October 2022.

In experiments , researchers manipulate independent variables to test their effects on dependent variables. In a controlled experiment , all variables other than the independent variable are controlled or held constant so they don’t influence the dependent variable.

Controlling variables can involve:

  • Holding variables at a constant or restricted level (e.g., keeping room temperature fixed)
  • Measuring variables to statistically control for them in your analyses
  • Balancing variables across your experiment through randomisation (e.g., using a random order of tasks)

Table of contents

Why does control matter in experiments, methods of control, problems with controlled experiments, frequently asked questions about controlled experiments.

Control in experiments is critical for internal validity , which allows you to establish a cause-and-effect relationship between variables.

  • Your independent variable is the colour used in advertising.
  • Your dependent variable is the price that participants are willing to pay for a standard fast food meal.

Extraneous variables are factors that you’re not interested in studying, but that can still influence the dependent variable. For strong internal validity, you need to remove their effects from your experiment.

  • Design and description of the meal
  • Study environment (e.g., temperature or lighting)
  • Participant’s frequency of buying fast food
  • Participant’s familiarity with the specific fast food brand
  • Participant’s socioeconomic status

Prevent plagiarism, run a free check.

You can control some variables by standardising your data collection procedures. All participants should be tested in the same environment with identical materials. Only the independent variable (e.g., advert colour) should be systematically changed between groups.

Other extraneous variables can be controlled through your sampling procedures . Ideally, you’ll select a sample that’s representative of your target population by using relevant inclusion and exclusion criteria (e.g., including participants from a specific income bracket, and not including participants with colour blindness).

By measuring extraneous participant variables (e.g., age or gender) that may affect your experimental results, you can also include them in later analyses.

After gathering your participants, you’ll need to place them into groups to test different independent variable treatments. The types of groups and method of assigning participants to groups will help you implement control in your experiment.

Control groups

Controlled experiments require control groups . Control groups allow you to test a comparable treatment, no treatment, or a fake treatment, and compare the outcome with your experimental treatment.

You can assess whether it’s your treatment specifically that caused the outcomes, or whether time or any other treatment might have resulted in the same effects.

  • A control group that’s presented with red advertisements for a fast food meal
  • An experimental group that’s presented with green advertisements for the same fast food meal

Random assignment

To avoid systematic differences between the participants in your control and treatment groups, you should use random assignment .

This helps ensure that any extraneous participant variables are evenly distributed, allowing for a valid comparison between groups .

Random assignment is a hallmark of a ‘true experiment’ – it differentiates true experiments from quasi-experiments .

Masking (blinding)

Masking in experiments means hiding condition assignment from participants or researchers – or, in a double-blind study , from both. It’s often used in clinical studies that test new treatments or drugs.

Sometimes, researchers may unintentionally encourage participants to behave in ways that support their hypotheses. In other cases, cues in the study environment may signal the goal of the experiment to participants and influence their responses.

Using masking means that participants don’t know whether they’re in the control group or the experimental group. This helps you control biases from participants or researchers that could influence your study results.

Although controlled experiments are the strongest way to test causal relationships, they also involve some challenges.

Difficult to control all variables

Especially in research with human participants, it’s impossible to hold all extraneous variables constant, because every individual has different experiences that may influence their perception, attitudes, or behaviors.

But measuring or restricting extraneous variables allows you to limit their influence or statistically control for them in your study.

Risk of low external validity

Controlled experiments have disadvantages when it comes to external validity – the extent to which your results can be generalised to broad populations and settings.

The more controlled your experiment is, the less it resembles real world contexts. That makes it harder to apply your findings outside of a controlled setting.

There’s always a tradeoff between internal and external validity . It’s important to consider your research aims when deciding whether to prioritise control or generalisability in your experiment.

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 10). Controlled Experiments | Methods & Examples of Control. Scribbr. Retrieved 29 October 2024, from https://www.scribbr.co.uk/research-methods/controlled-experiments/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

IMAGES

  1. What Is A Controlled Experiment In Science at Kevin Patterson blog

    can you have two controls in an experiment

  2. Understanding Controls in Science Experiments: What They Are and Why We

    can you have two controls in an experiment

  3. 10 Experimental Control Examples (2024)

    can you have two controls in an experiment

  4. Understanding Controls in Science Experiments: What They Are and Why We

    can you have two controls in an experiment

  5. PPT

    can you have two controls in an experiment

  6. PPT

    can you have two controls in an experiment

VIDEO

  1. Controlled Experiments

  2. Controlled Experiments

  3. Variables in Science: Independent, Dependent and Controlled!

  4. Experimental Design Positive Controls

  5. Experiments Explained: Clear and Simple! Learn the Basics

  6. Controls and Variables Conducting a Controlled Experiment

COMMENTS

  1. What An Experimental Control Is And Why It’s So …

    An experimental control is used in scientific experiments to minimize the effect of variables which are not the interest of the study. The control can be an object, population, or any other variable which a scientist would like …

  2. Can you have two controls in an experiment?

    Using two controls exposes the experimenter to a high risk of confirmation bias. If the experimenter resists the bias and only uses the second control as a validation tool, the …

  3. What Is a Control in an Experiment? (Definition and Guide)

    Understanding the role of a control, also known as the “control variable” or the “control group,” in an experiment can help you to conduct efficient experiments that meet …

  4. What Is a Control Variable? Definition and Examples

    Unlike the independent and dependent variables, control variables aren’t a part of the experiment, but they are important because they could affect the outcome. Take a look at the difference between a control …

  5. Scientific control

    The simplest types of control are negative and positive controls, and both are found in many different types of experiments. [2] These two controls, when both are successful, are usually sufficient to eliminate most potential confounding …

  6. Controlled Experiments

    In experiments, researchers manipulate independent variables to test their effects on dependent variables. In a controlled experiment, all variables other than the independent …