- History & Society
- Science & Tech
- Biographies
- Animals & Nature
- Geography & Travel
- Arts & Culture
- Games & Quizzes
- On This Day
- One Good Fact
- New Articles
- Lifestyles & Social Issues
- Philosophy & Religion
- Politics, Law & Government
- World History
- Health & Medicine
- Browse Biographies
- Birds, Reptiles & Other Vertebrates
- Bugs, Mollusks & Other Invertebrates
- Environment
- Fossils & Geologic Time
- Entertainment & Pop Culture
- Sports & Recreation
- Visual Arts
- Demystified
- Image Galleries
- Infographics
- Top Questions
- Britannica Kids
- Saving Earth
- Space Next 50
- Student Center
Who was Democritus?
What is democritus known for.
- How is the atomic number of an atom defined?
- What is ethics?
- How is ethics different from morality?
Our editors will review what you’ve submitted and determine whether to revise the article.
- Encyclopedia Romana - Democritus
- World History Encyclopedia - Democritus
- Chemistry LibreTexts - Democritus' Idea of the Atom
- Western Kentucky University - Jan Edward Garret - The Atomism of Democritus
- The Basics of Philosophy - Biography of Democritus
- Linda Hall Library - Democritus of Abdera
- Harvard University - Democrites
- Academia - Democritus – scientific wizard of the 5th century bc
- Humanist Heritage - Democritus (c. 460-370 BCE)
- University of Notre Dame - Notre Dame Philosophical Reviews - Democritus: Science, the Arts, and the Care of the Soul
- Stanford Encyclopedia of Philosophy - Democritus
- Democritus - Student Encyclopedia (Ages 11 and up)
Democritus was an ancient Greek philosopher. He and his mentor , Leucippus , are widely regarded as the first atomists in the Grecian tradition. Although Democritus reportedly wrote over 70 treatises, only a few hundred fragments have survived. Most of what we know about Democritus comes from the works of Aristotle , his rival in philosophy.
Democritus was a central figure in the development of the atomic theory of the universe. He theorized that all material bodies are made up of indivisibly small “ atoms .” Aristotle famously rejected atomism in On Generation and Corruption . Aristotle refused to believe that the whole of reality is reducible to a system of atoms, as Democritus said. As it turned out, though, Democritus was right.
When was Democritus born, and when did he die?
Relatively little is known about the life and death of Democritus. According to most reports, Democritus was born circa 460 BCE and died some 90 years later, about 370 BCE.
Is “democracy” named for Democritus?
No. Despite its phonetic similarity to Democritus , democracy is not named for Democritus. The word democracy is actually derived from the Greek dēmokratiā , which in turn derives from the Greek dēmos (meaning “people”) and kratos (meaning “rule”).
Democritus (born c. 460 bce —died c. 370) was an ancient Greek philosopher, a central figure in the development of philosophical atomism and of the atomic theory of the universe .
Knowledge of Democritus’s life is largely limited to untrustworthy tradition. It seems that he was a wealthy citizen of Abdera, in Thrace ; that he traveled widely in the East; and that he lived to an advanced age. According to Diogenes Laërtius (flourished 3rd century ce ), his works numbered 73; only a few hundred fragments have survived, mostly from his treatises on ethics .
Democritus’s physical and cosmological doctrines were an elaborated and systematized version of those of his teacher, Leucippus . To account for the world’s changing physical phenomena, Democritus asserted that space, or the Void , had an equal right with reality, or Being, to be considered existent. He conceived of the Void as a vacuum , an infinite space in which moved an infinite number of atoms that made up Being (i.e., the physical world). These atoms are eternal and indivisible; absolutely small, so small that their size cannot be diminished (hence the name atomon , or “indivisible”); absolutely full and incompressible, as they are without pores and entirely fill the space they occupy; and homogeneous , differing only in shape, arrangement, position, and magnitude. But, while atoms thus differ in quantity, differences of quality are only apparent, owing to the impressions caused on the senses by different configurations and combinations of atoms. A thing is hot or cold, sweet or bitter, or hard or soft only by convention; the only things that exist in reality are atoms and the Void. Thus, the atoms of water and iron are the same, but those of water, being smooth and round and therefore unable to hook onto one another, roll over and over like small globes, whereas those of iron, being rough, jagged, and uneven, cling together and form a solid body. Because all phenomena are composed of the same eternal atoms, it may be said that nothing comes into being or perishes in the absolute sense of the words, although the compounds made out of the atoms are liable to increase and decrease, explaining a thing’s appearance and disappearance, or “birth” and “death.”
Just as the atoms are uncaused and eternal, so too, according to Democritus, is motion . Democritus posited the fixed and “necessary” laws of a purely mechanical system , in which there was no room for an intelligent cause working toward an end. He explained the origin of the universe as follows. The original motion of the atoms was in all directions—it was a sort of “vibration”; hence there resulted collisions and, in particular, a whirling movement, whereby similar atoms were brought together and united to form larger bodies and worlds. This happened not as the result of any purpose or design but rather merely as the result of “necessity”; i.e., it is the normal manifestation of the nature of the atoms themselves. Atoms and void being infinite in number and extent, and motion having always existed, there must always have been an infinite number of worlds, all consisting of similar atoms in various stages of growth and decay.
Democritus devoted considerable attention to perception and knowledge. He asserted, for example, that sensations are changes produced in the soul by atoms emitted from other objects that impinge on it; the atoms of the soul can be affected only by the contact of other atoms. But sensations such as sweet and bitter are not as such inherent in the emitted atoms, for they result from effects caused merely by the size and shape of the atoms; e.g., sweet taste is due to round and not excessively small atoms. Democritus also was the first to attempt to explain colour , which he thought was due to the “position” (which he differentiated from shape) of the constituent atoms of compounds. The sensation of white, for instance, is caused by atoms that are smooth and flat so as to cast no shadow; the sensation of black is caused by rough, uneven atoms.
Democritus attributed popular belief in the gods to a desire to explain extraordinary phenomena ( thunder , lightning , earthquakes ) by reference to superhuman agency. His ethical system, founded on a practical basis, posited an ultimate good (“cheerfulness”) that was “a state in which the soul lives peacefully and tranquilly, undisturbed by fear or superstition or any other feeling.”
- Table of Contents
- Random Entry
- Chronological
- Editorial Information
- About the SEP
- Editorial Board
- How to Cite the SEP
- Special Characters
- Advanced Tools
- Support the SEP
- PDFs for SEP Friends
- Make a Donation
- SEPIA for Libraries
- Entry Contents
Bibliography
Academic tools.
- Friends PDF Preview
- Author and Citation Info
- Back to Top
Democritus, known in antiquity as the ‘laughing philosopher’ because of his emphasis on the value of ‘cheerfulness,’ was one of the two founders of ancient atomist theory. He elaborated a system originated by his teacher Leucippus into a materialist account of the natural world. The atomists held that there are smallest indivisible bodies from which everything else is composed, and that these move about in an infinite void. Of the ancient materialist accounts of the natural world which did not rely on some kind of teleology or purpose to account for the apparent order and regularity found in the world, atomism was the most influential. Even its chief critic, Aristotle, praised Democritus for arguing from sound considerations appropriate to natural philosophy.
1. Life and Works
2. atomist doctrine, 3. theory of perception, 4. the soul and the nature of living things, 5. theory of knowledge, 6. indivisibility and mathematics, 8. anthropology, other internet resources, related entries.
According to ancient reports, Democritus was born about 460 BCE (thus, he was a younger contemporary of Socrates) and was a citizen of Abdera, although some reports mention Miletus. As well as his associate or teacher Leucippus, Democritus is said to have known Anaxagoras, and to have been forty years younger than the latter (DK 68A1). A number of anecdotes concern his life, but their authenticity is uncertain.
The work of Democritus has survived only in secondhand reports, sometimes unreliable or conflicting: the reasoning behind the positions taken often needs to be reconstructed. Much of the best evidence is that reported by Aristotle, who regarded him as an important rival in natural philosophy. Aristotle wrote a monograph on Democritus, of which only a few passages quoted in other sources have survived. Democritus seems to have taken over and systematized the views of Leucippus, of whom little is known. Although it is possible to distinguish some contributions as those of Leucippus, the overwhelming majority of reports refer either to both figures, or to Democritus alone; the developed atomist system is often regarded as essentially Democritus’.
Diogenes Laertius lists a large number of works by Democritus on many fields, including ethics, physics, mathematics, music and cosmology. Two works, the Great World System and the Little World System (see the entry on doxography of ancient philosophy ), are sometimes ascribed to Democritus, although Theophrastus reports that the former is by Leucippus (DK 68A33). There is more uncertainty concerning the authenticity of the reports of Democritus’ ethical sayings. Two collections of sayings are recorded in the fifth-century anthology of Stobaeus, one ascribed to Democritus and another ascribed to an otherwise unknown philosopher ‘Democrates’. DK accepts both as relating to Democritus, but the authenticity of sayings in both collections is a matter of scholarly discussion, as is the relationship between Democritus’ atomism and his ethics.
Ancient sources describe atomism as one of a number of attempts by early Greek natural philosophers to respond to the challenge offered by Parmenides. Despite occasional challenges (Osborne 2004), this is how its motivation is generally interpreted by scholars today. Although the exact interpretation of Parmenides is disputed, he was taken to have argued that change is merely illusory because of some absurdities inherent in the idea of ‘what is not’. In response, Leucippus and Democritus, along with other Presocratic pluralists such as Empedocles and Anaxagoras, developed systems that clarified how change does not require that something should come to be from nothing. These responses to Parmenides suppose that there are multiple unchanging material principles, which persist and merely rearrange themselves to form the changing world of appearances. In the atomist version, these unchanging material principles are indivisible particles, the atoms. The idea that there is a lower limit to divisibility is sometimes taken as an answer to Zeno’s paradoxes about the impossibility of traversing infinitely divisible magnitudes (Hasper 2006). Reconstructions offered by Wardy (1988) and Sedley (2008) argue, instead, that atomism was developed as a response to Parmenidean arguments.
The atomists held that there are two fundamentally different kinds of realities composing the natural world, atoms and void. Atoms, from the Greek adjective atomos or atomon , ‘indivisible,’ are infinite in number and various in size and shape, and perfectly solid, with no internal gaps. They move about in an infinite void, repelling one another when they collide or combining into clusters by means of tiny hooks and barbs on their surfaces, which become entangled. Other than changing place, they are unchangeable, ungenerated and indestructible. All changes in the visible objects of the world of appearance are brought about by relocations of these atoms: in Aristotelian terms, the atomists reduce all change to change of place. Macroscopic objects in the world that we experience are really clusters of these atoms; changes in the objects we see—qualitative changes or growth, say—are caused by rearrangements or additions to the atoms composing them. While the atoms are eternal, the objects compounded out of them are not. Clusters of atoms moving in the infinite void come to form kosmoi or worlds as a result of a circular motion that gathers atoms up into a whirl, creating clusters within it (DK 68B167); these kosmoi are impermanent. Our world and the species within it have arisen from the collision of atoms moving about in such a whirl, and will likewise disintegrate in time.
In supposing that void exists, the atomists deliberately embraced an apparent contradiction, claiming that ‘what is not’ exists. Apparently addressing an argument by Melissus, a follower of Parmenides, the atomists paired the term for ‘nothing’ with what it negates, ‘thing,’ and claimed that—in a phrase typical of the atomists—the one ‘no more’ exists than the other (DK 67A6). Schofield (2002) argues that this particular phrase originated with Democritus and not his teacher Leucippus. By putting the full (or solid) and the void ontologically on a par, the atomists were apparently denying the impossibility of void. Void they considered to be a necessary condition for local motion: if there were no unoccupied places, where could bodies move into? Melissus had argued from the impossibility of void to the impossibility of motion; the atomists apparently reasoned in reverse, arguing from the fact that motion exists to the necessity for void space to exist (DK 67A7). It has been suggested that Democritus’ conception of void is that of the (temporarily) unfilled regions between atoms rather than a concept of absolute space (Sedley 1982). Void does not impede the motion of atoms because its essential quality is that of ‘yielding,’ in contrast to the mutual resistance of atoms. Later atomist accounts attest that this ‘yielding’ explains the tendency of bodies to drift into emptier spaces, driven out by collision from more densely packed regions (Lucretius DRN 6.906–1089).
Some controversy surrounds the properties of the atoms. They vary in size: one report—which some scholars question—suggests that atoms could, in principle, be as large as a cosmos, although at least in this cosmos they all seem to be too small to perceive (DK 68A47). They can take on an infinite variety of shapes: there are reports of an argument that there is ‘no more’ reason for the atoms to be one shape than another. Many kinds of atoms can interlock with one another because of their irregular shapes and hooks at their surface, accounting for the cohesiveness of some compounds. It is not clear whether the early atomists regarded atoms as conceptually indivisible or merely physically indivisible (Furley 1967). The idea that there is a smallest possible magnitude seems to suggest that this is the lower limit of size for atoms, although notions like being in contact or having shape seem to entail that even the smallest atoms have parts in some sense, if only mathematically or conceptually.
There are conflicting reports on whether atoms move in a particular direction as a result of their weight: a number of scholars have tried to reconcile these by supposing that weight is not intrinsic to the atoms, but is a result of the centripetal tendencies set up in the cosmic whirl (cf. O’Brien 1981; Furley 1989, pp. 91–102). Atoms may have an inherent tendency to a kind of vibratory motion, although the evidence for this is uncertain (McDiarmid 1958). However, their primary movement seems to result from collision with other atoms, wherein their mutual resistance or antitupia causes them to move away from one another when struck. Democritus is criticized by Aristotle for supposing that the sequence of colliding atoms has no beginning, and thus for not offering an explanation of the existence of atomic motion per se , even though the prior collision with another atom can account for the direction of each individual atomic motion (see O’Keefe 1996). Although the ancient atomists are often compared to modern ‘mechanistic’ theories, Balme warned of the danger of assuming that the atomists share modern ideas about the nature of atomic motion, particularly the idea that motion is inertial (Balme 1941).
According to different reports, Democritus ascribed the causes of things to necessity, and also to chance. Probably the latter term should be understood as ‘absence of purpose’ rather than a denial of necessity (Barnes 1982, pp. 423–6). Democritus apparently recognized a need to account for the fact that the disorderly motion of individual distinct atoms could produce an orderly cosmos in which atoms are not just randomly scattered, but cluster to form masses of distinct types. He is reported to have relied on a tendency of ‘like to like’ which exists in nature: just as animals of a kind cluster together, so atoms of similar kinds cluster by size and shape. He compares this to the winnowing of grains in a sieve, or the sorting of pebbles riffled by the tide: it is as if there were a kind of attraction of like to like (DK 68B164). Although this claim has been interpreted differently (e.g. Taylor 1999b p. 188), it seems to be an attempt to show how an apparently ordered arrangement can arise automatically, as a byproduct of the random collisions of bodies in motion (Furley 1989, p. 79). No attractive forces or purposes need be introduced to explain the sorting by the tide or in the sieve: it is probable that this is an attempt to show how apparently orderly effects can be produced without goal-directioned forces or purpose.
Democritus regards the properties of atoms in combination as sufficient to account for the multitude of differences among the objects in the world that appears to us. Aristotle cites an analogy to the letters of the alphabet, which can produce a multitude of different words from a few elements in combinations; the differences all stem from the shape ( schêma ) of the letters, as A differs from N; by their arrangement ( taxis ), as AN differs from NA; and by their positional orientation ( thesis ), as N differs from Z (DK 67A6). These terms are Aristotle’s interpretation of Democritus’ own terminology, which has a more dynamic sense (Mourelatos 2004). This passage omits differences of size, perhaps because it is focused on the analogy to letters of the alphabet: it is quite clear from other texts that Democritus thinks that atoms also differ in size.
He famously denies that perceptible qualities other than shape and size (and, perhaps, weight) really exist in the atoms themselves: one direct quotation surviving from Democritus claims that ‘by convention sweet and by convention bitter, by convention hot, by convention cold, by convention color; but in reality atoms and void’ (DK 68B9, trans. Taylor 1999a). There are different accounts of this distinction. Furley argues that the translation ‘convention’ should not be taken to suggest that there is anything arbitrary about the perception of certain colors, say: the same configuration of atoms may be regularly associated with a given color (Furley 1993; cf. Barnes 1982, pp. 370–7). What Democritus rejects with the label ‘merely conventional’ is, perhaps, the imputation of the qualities in question to the atoms, or perhaps even to macroscopic bodies. Mourelatos (2005) draws the contrast as that between intrinsic and relational properties.
While several reports of Democritus’ view, apparently direct quotations, mention exclusively sensible qualities as being unreal, a report of Plutarch includes in the list of things that exist only by convention the notion of ‘combination’ or sunkrisis . If this report is genuinely Democritean, it would broaden the scope of the claim considerably: the idea that any combination—by which he presumably means any cluster of atoms—is ‘unreal’ or merely ‘conventional’ suggests that Democritus is drawing a more radical distinction than that between sensible and nonsensible qualities. The implication would be that anything perceived, because it is a perception of combinations of atoms and not atoms themselves, would be suspect, not merely the qualia experienced by means of individual sense organs. One report indeed attributes to Democritus a denial that two things could become one, or vice versa (DK 68A42), thus suggesting that combinations are regarded as conventional.
Commentators differ as to the authenticity of Plutarch’s report. As the word sunkrisis does not occur in other reports, Furley (following Sandbach) suggests that it is most likely an error for pikron , ‘bitter’ which occurs instead in another report. However, Furley concedes that Plutarch at least understands the earliest atomists to be committed to the view that all combinations of atoms, as much as sensible qualities, should be understood as conventional rather than real (Furley 1993 pp. 76–7n7). This would suggest that everything at the macroscopic level—or, strictly, everything available to perception—is regarded as unreal. The ontological status of arrangement or combination of atoms for Democritus is a vexed question, that affects our understanding of his metaphysics, his historical relationship to Melissus, and the similarity of his views to the modern primary-secondary quality distinction (Wardy 1988; Curd 1998; Lee 2005; Mourelatos 2005; Pasnau 2007). If we take the ‘conventionality’ thesis to be restricted to sensible qualities, there is still an open question about Democritus’ reason for denying their ‘reality’ (Wardy 1988; O’Keefe 1997; Ganson 1999).
Democritus’ theory of perception depends on the claim that eidôla or images, thin layers of atoms, are constantly sloughed off from the surfaces of macroscopic bodies and carried through the air. Later atomists cite as evidence for this the gradual erosion of bodies over time. These films of atoms shrink and expand; only those that shrink sufficiently can enter the eye. It is the impact of these on our sense organs that enables us to perceive. Visible properties of macroscopic objects, like their size and shape, are conveyed to us by these films, which tend to be distorted as they pass through greater distances in the air, since they are subject to more collisions with air atoms. A different or complementary account claims that the object seen impresses the air by the eidôla , and the compacted air thus conveys the image to the eye (DK 68A135; Baldes 1975). The properties perceived by other senses are also conveyed by contact of some kind. Democritus’ theory of taste, for example, shows how different taste sensations are regularly produced by contact with different shapes of atoms.
Theophrastus, who gives us the most thorough report of Democritus’ theory, criticizes it for raising the expectation that the same kinds of atoms would always cause similar appearances. However, it may be that most explanations are directed towards the normal case of a typical observer, and that a different account is given as to the perceptions of a nontypical observer, such as someone who is ill. Democritus’ account why honey sometimes tastes bitter to people who are ill depends on two factors, neither of which undercut the notion that certain atomic shapes regularly affect us in a given way. One is that a given substance like honey is not quite homogeneous, but contains atoms of different shapes. While it takes its normal character from the predominant type of atom present, there are other atom-types present within. The other is that our sense-organs need to be suitably harmonized to admit a given atom-type, and the disposition of our passageways can be affected by illness or other conditions. Thus someone who is ill may become unusually receptive to an atom-type that is only a small part of honey’s overall constitution.
Other observed effects, however, require a theory whereby the same atoms can produce different effects without supposing that the observer has changed. The change must then occur in the object seen. The explanation of color seems to be of this variety: Aristotle reports that things acquire their color by ‘turning,’ tropê ( GC 1.2, 315b34). This is the Democritean term that Aristotle had translated as ‘position,’ thesis , i.e. one of the three fundamental ways in which atoms can alter and thus appear differently to us. Aristotle gives this as the reason why color is not ascribed to the atoms themselves. Lucretius’ account of why color cannot belong to atoms may help clarify the point here. We are told that if the sea’s atoms were really blue, they could not undergo some change and look white ( DRN 2.774–5), as when we observe the sea’s surface changing from blue to white. This seems to assume that, while an appearance of a property P can be produced by something that is neither P nor not-P, nonetheless something P cannot appear not-P. Since atoms do not change their intrinsic properties, it seems that change in a relational property, such as the relative position of atoms, is most likely to be the cause of differing perceptions. In the shifting surface of the sea or the flutter of the pigeon with its irridescent neck, it is evident that the parts of the object are moving and shifting in their positional relations.
By ascribing the causes of sensible qualities to relational properties of atoms, Democritus forfeits the prima facie plausibility of claiming that things seem P because they are P. Much of Theophrastus’ report seems to focus on the need to make it plausible that a composite can produce an appearance of properties it does not intrinsically possess. Democritus is flying in the face of at least one strand of commonsense when he claims that textures produce the appearance of hot or cold, impacts cause colour sensations. The lists of examples offered, drawing on commonsense associations or anecdotal experience, are attempts to make such claims persuasive. Heat is said to be caused by spherical atoms, because these move freely: the commonsense association of quick movement with heating may be employed here. Betegh (2020) suggests that larger void spaces are directly associated with heating, rather than that rarefaction indirectly causes heat by allowing freer and more frequent atomic motion.
Aristotle sometimes criticizes Democritus for claiming that visible, audible, olfactory and gustatory sensations are all caused by touch (DK 68A119). Quite how this affects the account of perception is not clear, as the sources tells us little about how touch is thought to work. Democritus does not, however, seem to distinguish between touch and contact, and may take it to be unproblematic that bodies communicate their size, shape and surface texture by physical impact.
In common with other early ancient theories of living things, Democritus seems to have used the term psychê to refer to that distinctive feature of living things that accounts for their ability to perform their life-functions. According to Aristotle, Democritus regarded the soul as composed of one kind of atom, in particular fire atoms. This seems to have been because of the association of life with heat, and because spherical fire atoms are readily mobile, and the soul is regarded as causing motion. Democritus seems to have considered thought to be caused by physical movements of atoms also. This is sometimes taken as evidence that Democritus denied the survival of a personal soul after death, although the reports are not univocal on this.
One difficulty faced by materialist theories of living things is to account for the existence and regular reproduction of functionally adapted forms in the natural world. Although the atomists have considerable success in making it plausible that a simple ontology of atoms and void, with the minimal properties of the former, can account for a wide variety of differences in the objects in the perceptible world, and also that a number of apparently orderly effects can be produced as a byproduct of disorderly atomic collisions, the kind of functional organization found in organisms is much harder to explain.
Democritus seems to have developed a view of reproduction according to which all parts of the body contribute to the seed from which the new animal grows, and that both parents contribute seed (DK 68A141; 143). The theory seems to presuppose that the presence of some material from each organ in the seed accounts for the development of that organ in the new organism. Parental characteristics are inherited when the contribution of one or other parent predominates in supplying the appropriate part. The offspring is male or female according to which of the two seeds predominates in contributing material from the genitals. In an atomist cosmos, the existence of particular species is not considered to be eternal. Like some other early materialist accounts, Democritus held that human beings arose from the earth (DK 68A139), although the reports give little detail.
One report credits Democritus and Leucippus with the view that thought as well as sensation are caused by images impinging on the body from outside, and that thought as much as perception depends on images (DK 67A30). Thought as well as perception are described as changes in the body. Democritus apparently recognized that his view gives rise to an epistemological problem: it takes our knowledge of the world to be derived from our sense experience, but the senses themselves not to be in direct contact with the nature of things, thus leaving room for omission or error. A famous fragment may be responding to such a skeptical line of thought by accusing the mind of overthrowing the senses, though those are its only access to the truth (DK68B125). Other passages talk of a gap between what we can perceive and what really exists (DK 68B6–10; 117). But the fact that atoms are not perceptible means that our knowledge of their properties is always based on analogy from the things of the visible world. Moreover, the senses report properties that the atoms don’t really possess, like colors and tastes. Thus the potential for doubt about our knowledge of the external world looms large.
Later philosophers adapted a Democritean phrase ou mallon or ‘no more’ in the argument that something that seems both P and not-P is ‘no more’ P than not-P. Arguments of this form were used for sceptical purposes, citing the conflicting evidence of the senses in order to raise concern about our knowledge of the world (de Lacy 1958). Democritus does not seem to be pursuing a consistently skeptical program, although he does express concern about the basis for our knowledge.
The idea that our knowledge is based on the reception of images from outside us is employed in Democritus’ discussion of the gods, wherein it is clear that our knowledge of the gods comes from eidôla or giant films of atoms with the characteristics we attribute to the gods, although Democritus denies that they are immortal. Some scholars take this to be a deflationary attack on traditional theology as based on mere images (Barnes 1982, pp. 456–61), but others suppose that the theory posits that these eidôla are really living beings (Taylor 1999a, pp. 211–6). Although atomism is often identified as an atheist doctrine in later times, it is not clear whether this is really Democritus’ view.
The reasons for supposing that there are indivisible magnitudes apparently stem from Zeno of Elea’s account of paradoxes that arise if extension is understood to be infinitely divisible, i.e. composed of an infinite number of parts. The atomists may have sought to avoid these paradoxes by supposing that there is a limit to divisibility.
It is not clear, however, in what sense the atoms are said to be indivisible, and how the need for smallest magnitudes is related to the claim that atoms are indivisible. Furley suggests that the atomists may not have distinguished between physical and theoretical indivisibility of the atoms (Furley 1967, p. 94). The physical indivisibility of the atoms seems to be independent of the argument for indivisible magnitudes, since the solidity of atoms—the fact that there is no void within them—is said to be the reason why they cannot be split. The existence of void space between atoms is cited as the reason why they can be separated: one late source, Philoponus, even suggests that atoms could never actually touch, lest they fuse (DK 67A7). Whether or not Democritus himself saw this consequence, it seems that atoms are taken to be indivisible whatever their size. Presumably, though, there is a smallest size of atom, and this is thought to be enough to avoid the paradoxes of infinite divisibility.
A reductio ad absurdum argument reported by Aristotle suggests that the atomists argued from the assumption that, if a magnitude is infinitely divisible, nothing prevents it actually having been divided at every point. The atomist then asks what would remain: if the answer is some extended particles, such as dust, then the hypothesized division has not yet been completed. If the answer is nothing or points, then the question is how an extended magnitude could be composed from what does not have extension (DK 68A48b, 123).
Democritus is also said to have contributed to mathematics, and to have posed a problem about the nature of the cone. He argues that if a cone is sliced anywhere parallel to its base, the two faces thus produced must either be the same in size or different. If they are the same, however, the cone would seem to be a cylinder; but if they are different, the cone would turn out to have step-like rather than continuous sides. Although it is not clear from Plutarch’s report how (or if) Democritus solved the problem, it does seem that he was conscious of questions about the relationship between atomism as a physical theory and the nature of mathematical objects.
The reports concerning Democritus’ ethical views pose a number of interpretative problems, including the difficulty of deciding which fragments are genuinely Democritean (see above, section 1). In contrast to the evidence for his physical theories, many of the ethical fragments are lists of sayings quoted without context, rather than critical philosophical discussions of atomist views. Many seem like commonsense platitudes that would be consistent with quite different philosophical positions. Thus, despite the large number of ethical sayings, it is difficult to construct a coherent account of his ethical views. Annas notes the Socratic character of a number of the sayings, and thinks there is a consistent theme about the role of one’s own intellect in happiness (Annas 2002). The sayings contain elements that can be seen as anticipating the more developed ethical views of Epicurus (Warren 2002).
It is also a matter of controversy whether any conceptual link can be found between atomist physics and the ethical commitments attributed to Democritus. Vlastos argued that a number of features of Democritus’ naturalistic ethics can be traced to his materialist account of the soul and his rejection of a supernatural grounding for ethics (Vlastos 1975). Taylor is more sceptical about the closeness of the connection between Democritus’ ethical views and his atomist physics (Taylor 1999a, pp. 232–4).
The reports indicate that Democritus was committed to a kind of enlightened hedonism, in which the good was held to be an internal state of mind rather than something external to it (see Hasper 2014). The good is given many names, amongst them euthymia or cheerfulness, as well as privative terms, e.g. for the absence of fear. Some fragments suggest that moderation and mindfulness in one’s pursuit of pleasures is beneficial; others focus on the need to free oneself from dependence on fortune by moderating desire. Several passages focus on the human ability to act on nature by means of teaching and art, and on a notion of balance and moderation that suggests that ethics is conceived as an art of caring for the soul analogous to medicine’s care for the body (Vlastos 1975, pp. 386–94). Others discuss political community, suggesting that there is a natural tendency to form communities.
Although the evidence is not certain, Democritus may be the originator of an ancient theory about the historical development of human communities. In contrast to the Hesiodic view that the human past included a golden age from which the present day is a decline, an alternative tradition that may derive from Democritus suggests that human life was originally like that of animals; it describes the gradual development of human communities for purposes of mutual aid, the origin of language, crafts and agriculture. Although the text in question does not mention Democritus by name, he is the most plausible source (Cole 1967; Cartledge 1997).
If Democritus is the source for this theory, it suggests that he took seriously the need to account for the origin of all aspects of the world of our experience. Human institutions could not be assumed to be permanent features or divine gifts. The explanations offered suggest that human culture developed as a response to necessity and the hardships of our environment. It has been suggested that the sheer infinite size of the atomist universe and thus the number of possible combinations and arrangements that would occur by chance alone are important in the development of an account that can show how human institutions arise without assuming teleological or theological origins (Cole 1967). Although here, as on other questions, the evidence is less than certain, it is plausible that Democritus developed a powerful and consistent explanation of much of the natural world from a very few fundamentals.
For the reception and subsequent history of Democritean atomism, see the related entry on ancient atomism.
- Diels, H and W. Kranz, Die Fragmente der Vorsokratiker , 6 th edition, Berlin: Weidmann, 1951 (cited as DK ).
- Graham, Daniel W., 2010, The Texts of Early Greek Philosophy: The Complete Fragments and Selected Testimonies of the Major Presocratics , Cambridge: Cambridge University Press.
- Laks, André and Most, Glenn W. (eds.), 2016. Early Greek Philosophy (Volumes 6 and 7), Loeb Classical Library, Cambridge, MA: Harvard University Press.
- Luria, Solomon, 1970, Demokrit , Leningrad.
- Taylor, C.C.W, 1999a, The Atomists: Leucippus and Democritus. Fragments, A Text and Translation with Commentary , Toronto: University of Toronto Press.
- Barnes, Jonathan, 1982, The Presocratic Philosophers , rev. ed., London and New York: Routledge.
- Cartledge, Paul, 1997, Democritus (The Great Philosophers), London: Routledge.
- Curd, Patricia, 1998, The Legacy of Parmenides: Eleatic Monism and Later Presocratic Thought , Princeton: Princeton University Press.
- Furley, David J., 1987, The Greek Cosmologists vol 1: The Formation of the Atomic Theory and its Earliest Critics , Cambridge: Cambridge University Press.
- Hasper, Pieter Sjoerd, 2014, ‘Leucippus and Democritus,’ in J. Warren and F. Sheffield (eds.), The Routledge Companion to Ancient Philosophy , London: Routledge, pp. 65–78.
- Kirk, G.S., J.E. Raven and Malcolm Schofield, 1957, The Presocratic Philosophers , second edition, Cambridge: Cambridge University Press.
- McKirahan, Jr., Richard D., 1994, Philosophy Before Socrates: An Introduction with Texts and Commentary , Indianapolis: Hackett.
- Taylor, C.C.W., 1999b, ‘The atomists,’ in A.A. Long (ed.), The Cambridge Companion to Early Greek Philosophy , Cambridge: Cambridge University Press, pp. 181–204.
Secondary Sources
- Annas, Julia, 2002, ‘Democritus and Eudaimonism,’ in V. Caston and D. Graham (eds.), Presocratic Philosophy: Essays in Honour of Alexander Mourelatos , London: Ashgate, pp. 169–82.
- Baldes, Richard W., 1975, ‘Democritus on Visual Perception: Two Theories or One?,’ Phronesis , 20: 93–105.
- Balme, David, 1941, ‘Greek Science and Mechanism II. The Atomists,’ Classical Quarterly , 35: 23–8.
- Benakis, Linos G. (ed.)., 1984, Proceedings of the Ist International Congress on Democritus , Xanthi.
- Berryman, Sylvia, 2002, ‘Democritus and the explanatory power of the void,’ in V. Caston and D. Graham (eds.), Presocratic Philosophy: Essays in Honour of Alexander Mourelatos , London: Ashgate.
- Betegh, Gábor, 2020, ‘Fire, Heat, and Motive Force in Early Greek Philosophy and Medicine,’ in H. Bartoš and C. King (eds.), Heat, Pneuma, and Soul in Ancient Greek Philosophy and Science , Cambridge: Cambridge University Press, pp. 35–60.
- Cherniss, Harold, 1935, Aristotle’s Criticism of Presocratic Philosophy , Baltimore: Johns Hopkins Press.
- Cole, Thomas, 1967, Democritus and the Sources of Greek Anthropology , Cleveland: Western Reserve University Press.
- de Lacy, Phillip, 1958, ‘ Ou mallon and the Antecedents of Ancient Scepticism,’ Phronesis , 3: 59–71.
- Edmunds, Lowell, 1972, ‘Necessity, Chance, and Freedom in the Early Atomists,’ Phoenix , 26: 342–57
- Furley, David J., 1967, Two Studies in the Greek Atomists , Princeton: Princeton University Press.
- –––, 1989, Cosmic Problems: Essays on Greek and Roman Philosophy of Nature , Cambridge: Cambridge University Press.
- –––, 1993, ‘Democritus and Epicurus on Sensible Qualities,’ in J. Brunschwig and M.C. Nussbaum (eds.), Passions and Perceptions , Cambridge: Cambridge University Press, pp. 72–94.
- Ganson, Todd, 1999, ‘Democritus against Reducing Sensible Qualities,’ Ancient Philosophy , 19: 201–15.
- Gregory, Andrew, 2013, ‘Leucippus and Democritus on Like to Like and ou mallon,’ Apeiron , 44(6): 446–68.
- Hankinson, R.J., 1998, Cause and Explanation in Ancient Greek Thought , Oxford: Oxford University Press.
- Hasper, Pieter Sjoerd, 2006, ‘Aristotle’s Diagnosis of Atomism,’ Apeiron , 39: 121–55.
- Hirsch, Ulrike, 1990, ‘War Demokrits Weltbild mechanistisch und antiteleologisch?’ Phronesis , 35: 225–44.
- Lee, Mi-Kyoung, 2005, Epistemology After Protagoras: Responses to Relativism in Plato, Aristotle. and Democritus , Oxford: Oxford University Press.
- McDiarmid, J.B., 1958, ‘Phantoms in Democritean Terminology: ΠΕΡΙΠΑΛΑΞΙΣ and ΠΕΡΙΠΑΛΑΣΣΕΣΘΑΙ ,’ Hermes , 86 (3): 291–8.
- Mourelatos, Alexander P.D., 2004, ‘Intrinsic and Relational Properties of Atoms in the Democritean Ontology,’ in Ricardo Salles (ed.), Metaphysics, Soul, and Ethics: Themes from the work of Richard Sorabji , Oxford: Clarendon Press, pp. 39–63.
- O’Brien, Denis, 1981, Democritus, weight and size: an exercise in the reconstruction of early Greek philosophy, Theories of Weight in the Ancient World (Volume 1), Leiden: Brill.
- O’Keefe, Timothy, 1996, ‘Does Epicurus Need the Swerve as an archê of Collisions?,’ Phronesis , 41: 305–17.
- –––, 1997, ‘The Ontological Status of Sensible Qualities for Democritus and Epicurus,’ Ancient Philosophy , 17: 119–34.
- Osborne, Catherine, 2004, Presocratic Philosophy: A Very Short Introduction , Oxford: Oxford University Press.
- Pasnau, Robert, 2007, ‘Democritus and Secondary Qualities,’ Archiv für Geschichte der Philosophie , 89: 99–121.
- Schofield, Malcolm, 2002, ‘Leucippus, Democritus and the ou mallon Principle: An Examination of Theophrastus Phys. Op. Fr. 8,’ Phronesis , 47(3): 253–63.
- Sedley, David, 1982, ‘Two Conceptions of Vacuum,’ Phronesis , 27: 175–93.
- Sedley, David, 2008, ‘Atomism’s Eleatic Roots,’ in Patricia Curd and Daniel W. Graham (eds.), The Oxford Handbook of Presocratic Philosophy , Oxford: Oxford University Press, 305–332.
- Sorabji, Richard, 1983, Time, Creation and the Continuum , London: Duckworth.
- Taylor, C.C.W., 2007, ‘Nomos and Phusis in Democritus and Plato,’ Social Philosophy and Policy , 24 (2): 1–20.
- Vlastos, G., 1975, ‘Ethics and physics in Democritus,’ in D.J. Furley and R.E. Allen (eds.), Studies in Presocratic Philosophy (Volume 2: Eleatics and Pluralists ), London: Routledge and Kegan Paul, pp. 381–408.
- Wardy, Robert, 1988, ‘Eleatic Pluralism,’ Archiv für Geschichte der Philosophie , 70: 125–46.
- Warren, James, 2002, Epicurus and Democritean Ethics: An Archaeology of Ataraxia , Cambridge: Cambridge University Press.
- Zilioli, Ugo (ed.), 2021, Atomism in Philosophy: A History from Antiquity to the Present , London: Bloomsbury.
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
- Translation of S. Luria’s Demokrit , by C.C.W. Taylor (must be registered at academia.edu).
atomism: ancient | doxography of ancient philosophy | Epicurus | Leucippus | Lucretius | -->Melissus --> | Parmenides | Zeno of Elea | Zeno of Elea: Zeno’s paradoxes
Acknowledgments
I wish to thank the ancient philosophy editor John Cooper, A.P.D. Mourelatos and Tim O’Keefe for helpful comments and suggestions.
Copyright © 2023 by Sylvia Berryman < sberrym @ interchange . ubc . ca >
- Accessibility
Support SEP
Mirror sites.
View this site from another server:
- Info about mirror sites
The Stanford Encyclopedia of Philosophy is copyright © 2023 by The Metaphysics Research Lab , Department of Philosophy, Stanford University
Library of Congress Catalog Data: ISSN 1095-5054
- TPC and eLearning
- What's NEW at TPC?
- Read Watch Interact
- Practice Review Test
- Teacher-Tools
- Request a Demo
- Get A Quote
- Subscription Selection
- Seat Calculator
- Ad Free Account
- Edit Profile Settings
- Metric Conversions Questions
- Metric System Questions
- Metric Estimation Questions
- Significant Digits Questions
- Proportional Reasoning
- Acceleration
- Distance-Displacement
- Dots and Graphs
- Graph That Motion
- Match That Graph
- Name That Motion
- Motion Diagrams
- Pos'n Time Graphs Numerical
- Pos'n Time Graphs Conceptual
- Up And Down - Questions
- Balanced vs. Unbalanced Forces
- Change of State
- Force and Motion
- Mass and Weight
- Match That Free-Body Diagram
- Net Force (and Acceleration) Ranking Tasks
- Newton's Second Law
- Normal Force Card Sort
- Recognizing Forces
- Air Resistance and Skydiving
- Solve It! with Newton's Second Law
- Which One Doesn't Belong?
- Component Addition Questions
- Head-to-Tail Vector Addition
- Projectile Mathematics
- Trajectory - Angle Launched Projectiles
- Trajectory - Horizontally Launched Projectiles
- Vector Addition
- Vector Direction
- Which One Doesn't Belong? Projectile Motion
- Forces in 2-Dimensions
- Being Impulsive About Momentum
- Explosions - Law Breakers
- Hit and Stick Collisions - Law Breakers
- Case Studies: Impulse and Force
- Impulse-Momentum Change Table
- Keeping Track of Momentum - Hit and Stick
- Keeping Track of Momentum - Hit and Bounce
- What's Up (and Down) with KE and PE?
- Energy Conservation Questions
- Energy Dissipation Questions
- Energy Ranking Tasks
- LOL Charts (a.k.a., Energy Bar Charts)
- Match That Bar Chart
- Words and Charts Questions
- Name That Energy
- Stepping Up with PE and KE Questions
- Case Studies - Circular Motion
- Circular Logic
- Forces and Free-Body Diagrams in Circular Motion
- Gravitational Field Strength
- Universal Gravitation
- Angular Position and Displacement
- Linear and Angular Velocity
- Angular Acceleration
- Rotational Inertia
- Balanced vs. Unbalanced Torques
- Getting a Handle on Torque
- Torque-ing About Rotation
- Properties of Matter
- Fluid Pressure
- Buoyant Force
- Sinking, Floating, and Hanging
- Pascal's Principle
- Flow Velocity
- Bernoulli's Principle
- Balloon Interactions
- Charge and Charging
- Charge Interactions
- Charging by Induction
- Conductors and Insulators
- Coulombs Law
- Electric Field
- Electric Field Intensity
- Polarization
- Case Studies: Electric Power
- Know Your Potential
- Light Bulb Anatomy
- I = ∆V/R Equations as a Guide to Thinking
- Parallel Circuits - ∆V = I•R Calculations
- Resistance Ranking Tasks
- Series Circuits - ∆V = I•R Calculations
- Series vs. Parallel Circuits
- Equivalent Resistance
- Period and Frequency of a Pendulum
- Pendulum Motion: Velocity and Force
- Energy of a Pendulum
- Period and Frequency of a Mass on a Spring
- Horizontal Springs: Velocity and Force
- Vertical Springs: Velocity and Force
- Energy of a Mass on a Spring
- Decibel Scale
- Frequency and Period
- Closed-End Air Columns
- Name That Harmonic: Strings
- Rocking the Boat
- Wave Basics
- Matching Pairs: Wave Characteristics
- Wave Interference
- Waves - Case Studies
- Color Addition and Subtraction
- Color Filters
- If This, Then That: Color Subtraction
- Light Intensity
- Color Pigments
- Converging Lenses
- Curved Mirror Images
- Law of Reflection
- Refraction and Lenses
- Total Internal Reflection
- Who Can See Who?
- Lab Equipment
- Lab Procedures
- Formulas and Atom Counting
- Atomic Models
- Bond Polarity
- Entropy Questions
- Cell Voltage Questions
- Heat of Formation Questions
- Reduction Potential Questions
- Oxidation States Questions
- Measuring the Quantity of Heat
- Hess's Law
- Oxidation-Reduction Questions
- Galvanic Cells Questions
- Thermal Stoichiometry
- Molecular Polarity
- Quantum Mechanics
- Balancing Chemical Equations
- Bronsted-Lowry Model of Acids and Bases
- Classification of Matter
- Collision Model of Reaction Rates
- Density Ranking Tasks
- Dissociation Reactions
- Complete Electron Configurations
- Elemental Measures
- Enthalpy Change Questions
- Equilibrium Concept
- Equilibrium Constant Expression
- Equilibrium Calculations - Questions
- Equilibrium ICE Table
- Intermolecular Forces Questions
- Ionic Bonding
- Lewis Electron Dot Structures
- Limiting Reactants
- Line Spectra Questions
- Mass Stoichiometry
- Measurement and Numbers
- Metals, Nonmetals, and Metalloids
- Metric Estimations
- Metric System
- Molarity Ranking Tasks
- Mole Conversions
- Name That Element
- Names to Formulas
- Names to Formulas 2
- Nuclear Decay
- Particles, Words, and Formulas
- Periodic Trends
- Precipitation Reactions and Net Ionic Equations
- Pressure Concepts
- Pressure-Temperature Gas Law
- Pressure-Volume Gas Law
- Chemical Reaction Types
- Significant Digits and Measurement
- States Of Matter Exercise
- Stoichiometry Law Breakers
- Stoichiometry - Math Relationships
- Subatomic Particles
- Spontaneity and Driving Forces
- Gibbs Free Energy
- Volume-Temperature Gas Law
- Acid-Base Properties
- Energy and Chemical Reactions
- Chemical and Physical Properties
- Valence Shell Electron Pair Repulsion Theory
- Writing Balanced Chemical Equations
- Mission CG1
- Mission CG10
- Mission CG2
- Mission CG3
- Mission CG4
- Mission CG5
- Mission CG6
- Mission CG7
- Mission CG8
- Mission CG9
- Mission EC1
- Mission EC10
- Mission EC11
- Mission EC12
- Mission EC2
- Mission EC3
- Mission EC4
- Mission EC5
- Mission EC6
- Mission EC7
- Mission EC8
- Mission EC9
- Mission RL1
- Mission RL2
- Mission RL3
- Mission RL4
- Mission RL5
- Mission RL6
- Mission KG7
- Mission RL8
- Mission KG9
- Mission RL10
- Mission RL11
- Mission RM1
- Mission RM2
- Mission RM3
- Mission RM4
- Mission RM5
- Mission RM6
- Mission RM8
- Mission RM10
- Mission LC1
- Mission RM11
- Mission LC2
- Mission LC3
- Mission LC4
- Mission LC5
- Mission LC6
- Mission LC8
- Mission SM1
- Mission SM2
- Mission SM3
- Mission SM4
- Mission SM5
- Mission SM6
- Mission SM8
- Mission SM10
- Mission KG10
- Mission SM11
- Mission KG2
- Mission KG3
- Mission KG4
- Mission KG5
- Mission KG6
- Mission KG8
- Mission KG11
- Mission F2D1
- Mission F2D2
- Mission F2D3
- Mission F2D4
- Mission F2D5
- Mission F2D6
- Mission KC1
- Mission KC2
- Mission KC3
- Mission KC4
- Mission KC5
- Mission KC6
- Mission KC7
- Mission KC8
- Mission AAA
- Mission SM9
- Mission LC7
- Mission LC9
- Mission NL1
- Mission NL2
- Mission NL3
- Mission NL4
- Mission NL5
- Mission NL6
- Mission NL7
- Mission NL8
- Mission NL9
- Mission NL10
- Mission NL11
- Mission NL12
- Mission MC1
- Mission MC10
- Mission MC2
- Mission MC3
- Mission MC4
- Mission MC5
- Mission MC6
- Mission MC7
- Mission MC8
- Mission MC9
- Mission RM7
- Mission RM9
- Mission RL7
- Mission RL9
- Mission SM7
- Mission SE1
- Mission SE10
- Mission SE11
- Mission SE12
- Mission SE2
- Mission SE3
- Mission SE4
- Mission SE5
- Mission SE6
- Mission SE7
- Mission SE8
- Mission SE9
- Mission VP1
- Mission VP10
- Mission VP2
- Mission VP3
- Mission VP4
- Mission VP5
- Mission VP6
- Mission VP7
- Mission VP8
- Mission VP9
- Mission WM1
- Mission WM2
- Mission WM3
- Mission WM4
- Mission WM5
- Mission WM6
- Mission WM7
- Mission WM8
- Mission WE1
- Mission WE10
- Mission WE2
- Mission WE3
- Mission WE4
- Mission WE5
- Mission WE6
- Mission WE7
- Mission WE8
- Mission WE9
- Vector Walk Interactive
- Name That Motion Interactive
- Kinematic Graphing 1 Concept Checker
- Kinematic Graphing 2 Concept Checker
- Graph That Motion Interactive
- Two Stage Rocket Interactive
- Rocket Sled Concept Checker
- Force Concept Checker
- Free-Body Diagrams Concept Checker
- Free-Body Diagrams The Sequel Concept Checker
- Skydiving Concept Checker
- Elevator Ride Concept Checker
- Vector Addition Concept Checker
- Vector Walk in Two Dimensions Interactive
- Name That Vector Interactive
- River Boat Simulator Concept Checker
- Projectile Simulator 2 Concept Checker
- Projectile Simulator 3 Concept Checker
- Hit the Target Interactive
- Turd the Target 1 Interactive
- Turd the Target 2 Interactive
- Balance It Interactive
- Go For The Gold Interactive
- Egg Drop Concept Checker
- Fish Catch Concept Checker
- Exploding Carts Concept Checker
- Collision Carts - Inelastic Collisions Concept Checker
- Its All Uphill Concept Checker
- Stopping Distance Concept Checker
- Chart That Motion Interactive
- Roller Coaster Model Concept Checker
- Uniform Circular Motion Concept Checker
- Horizontal Circle Simulation Concept Checker
- Vertical Circle Simulation Concept Checker
- Race Track Concept Checker
- Gravitational Fields Concept Checker
- Orbital Motion Concept Checker
- Angular Acceleration Concept Checker
- Balance Beam Concept Checker
- Torque Balancer Concept Checker
- Aluminum Can Polarization Concept Checker
- Charging Concept Checker
- Name That Charge Simulation
- Coulomb's Law Concept Checker
- Electric Field Lines Concept Checker
- Put the Charge in the Goal Concept Checker
- Circuit Builder Concept Checker (Series Circuits)
- Circuit Builder Concept Checker (Parallel Circuits)
- Circuit Builder Concept Checker (∆V-I-R)
- Circuit Builder Concept Checker (Voltage Drop)
- Equivalent Resistance Interactive
- Pendulum Motion Simulation Concept Checker
- Mass on a Spring Simulation Concept Checker
- Particle Wave Simulation Concept Checker
- Boundary Behavior Simulation Concept Checker
- Slinky Wave Simulator Concept Checker
- Simple Wave Simulator Concept Checker
- Wave Addition Simulation Concept Checker
- Standing Wave Maker Simulation Concept Checker
- Color Addition Concept Checker
- Painting With CMY Concept Checker
- Stage Lighting Concept Checker
- Filtering Away Concept Checker
- InterferencePatterns Concept Checker
- Young's Experiment Interactive
- Plane Mirror Images Interactive
- Who Can See Who Concept Checker
- Optics Bench (Mirrors) Concept Checker
- Name That Image (Mirrors) Interactive
- Refraction Concept Checker
- Total Internal Reflection Concept Checker
- Optics Bench (Lenses) Concept Checker
- Kinematics Preview
- Velocity Time Graphs Preview
- Moving Cart on an Inclined Plane Preview
- Stopping Distance Preview
- Cart, Bricks, and Bands Preview
- Fan Cart Study Preview
- Friction Preview
- Coffee Filter Lab Preview
- Friction, Speed, and Stopping Distance Preview
- Up and Down Preview
- Projectile Range Preview
- Ballistics Preview
- Juggling Preview
- Marshmallow Launcher Preview
- Air Bag Safety Preview
- Colliding Carts Preview
- Collisions Preview
- Engineering Safer Helmets Preview
- Push the Plow Preview
- Its All Uphill Preview
- Energy on an Incline Preview
- Modeling Roller Coasters Preview
- Hot Wheels Stopping Distance Preview
- Ball Bat Collision Preview
- Energy in Fields Preview
- Weightlessness Training Preview
- Roller Coaster Loops Preview
- Universal Gravitation Preview
- Keplers Laws Preview
- Kepler's Third Law Preview
- Charge Interactions Preview
- Sticky Tape Experiments Preview
- Wire Gauge Preview
- Voltage, Current, and Resistance Preview
- Light Bulb Resistance Preview
- Series and Parallel Circuits Preview
- Thermal Equilibrium Preview
- Linear Expansion Preview
- Heating Curves Preview
- Electricity and Magnetism - Part 1 Preview
- Electricity and Magnetism - Part 2 Preview
- Vibrating Mass on a Spring Preview
- Period of a Pendulum Preview
- Wave Speed Preview
- Slinky-Experiments Preview
- Standing Waves in a Rope Preview
- Sound as a Pressure Wave Preview
- DeciBel Scale Preview
- DeciBels, Phons, and Sones Preview
- Sound of Music Preview
- Shedding Light on Light Bulbs Preview
- Models of Light Preview
- Electromagnetic Radiation Preview
- Electromagnetic Spectrum Preview
- EM Wave Communication Preview
- Digitized Data Preview
- Light Intensity Preview
- Concave Mirrors Preview
- Object Image Relations Preview
- Snells Law Preview
- Reflection vs. Transmission Preview
- Magnification Lab Preview
- Reactivity Preview
- Ions and the Periodic Table Preview
- Periodic Trends Preview
- Chemical Reactions Preview
- Intermolecular Forces Preview
- Melting Points and Boiling Points Preview
- Bond Energy and Reactions Preview
- Reaction Rates Preview
- Ammonia Factory Preview
- Stoichiometry Preview
- Nuclear Chemistry Preview
- Gaining Teacher Access
- Task Tracker Directions
- Conceptual Physics Course
- On-Level Physics Course
- Honors Physics Course
- Chemistry Concept Builders
- All Chemistry Resources
- Users Voice
- Tasks and Classes
- Webinars and Trainings
- Subscription
- Subscription Locator
- 1-D Kinematics
- Newton's Laws
- Vectors - Motion and Forces in Two Dimensions
- Momentum and Its Conservation
- Work and Energy
- Circular Motion and Satellite Motion
- Thermal Physics
- Static Electricity
- Electric Circuits
- Vibrations and Waves
- Sound Waves and Music
- Light and Color
- Reflection and Mirrors
- Measurement and Calculations
- Elements, Atoms, and Ions
- Compounds,Names, and Formulas
- About the Physics Interactives
- Task Tracker
- Usage Policy
- Newtons Laws
- Vectors and Projectiles
- Forces in 2D
- Momentum and Collisions
- Circular and Satellite Motion
- Balance and Rotation
- Electromagnetism
- Waves and Sound
- Atomic Physics
- Forces in Two Dimensions
- Work, Energy, and Power
- Circular Motion and Gravitation
- Sound Waves
- 1-Dimensional Kinematics
- Circular, Satellite, and Rotational Motion
- Einstein's Theory of Special Relativity
- Waves, Sound and Light
- QuickTime Movies
- About the Concept Builders
- Pricing For Schools
- Directions for Version 2
- Measurement and Units
- Relationships and Graphs
- Rotation and Balance
- Vibrational Motion
- Reflection and Refraction
- Teacher Accounts
- Kinematic Concepts
- Kinematic Graphing
- Wave Motion
- Sound and Music
- About CalcPad
- 1D Kinematics
- Vectors and Forces in 2D
- Simple Harmonic Motion
- Rotational Kinematics
- Rotation and Torque
- Rotational Dynamics
- Electric Fields, Potential, and Capacitance
- Transient RC Circuits
- Light Waves
- Units and Measurement
- Stoichiometry
- Molarity and Solutions
- Thermal Chemistry
- Acids and Bases
- Kinetics and Equilibrium
- Solution Equilibria
- Oxidation-Reduction
- Nuclear Chemistry
- Newton's Laws of Motion
- Work and Energy Packet
- Static Electricity Review
- NGSS Alignments
- 1D-Kinematics
- Projectiles
- Circular Motion
- Magnetism and Electromagnetism
- Graphing Practice
- About the ACT
- ACT Preparation
- For Teachers
- Other Resources
- Solutions Guide
- Solutions Guide Digital Download
- Motion in One Dimension
- Work, Energy and Power
- Chemistry of Matter
- Measurement and the Metric System
- Names and Formulas
- Algebra Based On-Level Physics
- Honors Physics
- Conceptual Physics
- Other Tools
- Frequently Asked Questions
- Purchasing the Download
- Purchasing the Digital Download
- About the NGSS Corner
- NGSS Search
- Force and Motion DCIs - High School
- Energy DCIs - High School
- Wave Applications DCIs - High School
- Force and Motion PEs - High School
- Energy PEs - High School
- Wave Applications PEs - High School
- Crosscutting Concepts
- The Practices
- Physics Topics
- NGSS Corner: Activity List
- NGSS Corner: Infographics
- About the Toolkits
- Position-Velocity-Acceleration
- Position-Time Graphs
- Velocity-Time Graphs
- Newton's First Law
- Newton's Second Law
- Newton's Third Law
- Terminal Velocity
- Projectile Motion
- Forces in 2 Dimensions
- Impulse and Momentum Change
- Momentum Conservation
- Work-Energy Fundamentals
- Work-Energy Relationship
- Roller Coaster Physics
- Satellite Motion
- Electric Fields
- Circuit Concepts
- Series Circuits
- Parallel Circuits
- Describing-Waves
- Wave Behavior Toolkit
- Standing Wave Patterns
- Resonating Air Columns
- Wave Model of Light
- Plane Mirrors
- Curved Mirrors
- Teacher Guide
- Using Lab Notebooks
- Current Electricity
- Light Waves and Color
- Reflection and Ray Model of Light
- Refraction and Ray Model of Light
- Teacher Resources
- Subscriptions
- Newton's Laws
- Einstein's Theory of Special Relativity
- About Concept Checkers
- School Pricing
- Newton's Laws of Motion
- Newton's First Law
- Newton's Third Law
Lesson 1: In Search of the Atom
Part a: democritus to dalton.
Part 1a: Democritus to Dalton Part 1b: The Inside Story of the Atom Part 1c: Subatomic Particles
What is Matter Made Of?
A Philosopher’s View
Dalton’s atomic theory.
- All matter is composed of extremely small particles called atoms.
- Atoms cannot be subdivided, created, or destroyed.
- Atoms of a given element are identical in size, mass, and other properties. Atoms of different elements differ in size, mass, and other properties.
- Atoms of different elements can combine in simple whole number ratios to form chemical compounds.
- In chemical reactions, atoms are combined, separated, or rearranged.
Different Types of Atoms
The Law of Constant Composition
The Law of Multiple Proportions
The Law of Conservation of Mass
Moving Beyond Dalton
- The Big Think Interview
- Your Brain on Money
- Explore the Library
- The Universe. A History.
- The Progress Issue
- A Brief History Of Quantum Mechanics
- 6 Flaws In Our Understanding Of The Universe
- Michio Kaku
- Neil deGrasse Tyson
- Michelle Thaller
- Steven Pinker
- Ray Kurzweil
- Cornel West
- Helen Fisher
- Smart Skills
- High Culture
- The Present
- Hard Science
- Special Issues
- Starts With A Bang
- Everyday Philosophy
- The Learning Curve
- The Long Game
- Perception Box
- Strange Maps
- Free Newsletters
- Memberships
Ancient physics: How Democritus predicted the atom
Credit: vinap via Adobe Stock / Public Domain via Wikimedia
- The idea of the atom goes as far back as the ancient Greek philosopher Democritus in about 400 B.C.E.
- This led to his “theory of eidôla” to explain how our minds create the illusion of reality.
- Democritus was one of the first determinists, arguing that a world made only of atoms and controlled by the laws of physics left no room for free will.
Philosophers love “The Matrix”.
It’s the perfect introduction to the ideas of big names such as Plato and Descartes but with leather trench coats, bullet time, and a brooding Keanu Reeves. One of the most memorable moments in the movie comes near the end when the protagonist, Neo, finally understands the Matrix for the illusionary simulation that it is. Now, he can see the numbers underpinning everything. He can see the source code of the world.
With only the slightest of modifications, Neo’s epiphany is no science fiction at all. This is how the world is made. But, where Neo saw green, floating numbers, we now know the universe is actually made up of tiny, imperceptible objects. Rather than code, we have atoms—the building blocks of everything there is, ever was, and ever will be.
We know atoms exist thanks to scientists and electron microscopes, but the idea goes much further back than that. It goes back to the ancient Greeks. Their output was prodigious. Almost every discipline you can study, the Greeks turned their minds to first. Pythagoras laid the foundation for math and geometry, Aristotle contemplated biology and physics, Plato thought about governance, Herodotus was a historian, and Hippocrates gave doctors his eponymous oath. But one of the most ingenious “firsts” must come with the atomists, like Democritus or Epicurus.
It’s odd to think that millennia ago, a few bearded men in togas, strolling around a sun-bleached agora, used philosophy to establish the fundamental fabric of the universe.
Although the idea of “the atom” had been floating around the Peloponnese for a while, Democritus was the first to articulate it fully. He argued that atoms must exist because the alternative is sheer nonsense. If we could constantly divide or cut a thing into two then we would go on forever. We’d get smaller and smaller all the way to infinity, and there’d be no end point. But the universe can’t be built without foundations. Nothing can come from nothing. So, there must be a fundamental unit to the world from which everything else is made, and for this, Democritus coined the term “atom” (which literally means uncuttable, although 20th Century scientists learned how to split one, rather ruining the definition).
The question now facing Democritus was how these basic, imperceptible atoms came to make the objects we all see, touch, and love. He noted how, when we look at the world around us, we can see it constantly changing, shifting, dying, and growing. The world flows. So atoms, which make up everything there is, must themselves be moving. They can’t just be inert or still.
Democritus argued that atoms come together in various combinations, and then emit something called an “ eidôla. ” These composite blobs of atoms radiate eidôla outward, like ripples in water. The eidôla are then picked up by us as the subjective experiencer and we translate this atomic radiation into ideas or sensations.
For example, let’s imagine a group of atoms come together and, with a special wiggle, emit their eidôla . This flies through the space (or “void,” as Democritus called it) to our eyes. Our eyes then whizz this eidôla along to our understanding, where it’s converted into “blue” or “round” or “big.”
There were two big implications to Democritus’ theory.
First, the world as we know it doesn’t actually exist. Just like the code in the Matrix, the world is really just incomprehensible atoms. Our minds create “reality” out of these atoms, and everything is just an illusion we play on ourselves.
Second, the world is entirely made up of atoms. The tree outside, your pet turtle, your feeling of love, and even the mind that processes eidôla are all made up of atoms.
The upshot of this is that Democritus was one of the first “determinists” in that he thought there could be no free will or choice. We’re all just marbles, bouncing around to the laws of physics.
We might think this a pretty depressing place to finish, yet Democritus was actually known as “the laughing philosopher.” He simply refused to take anything seriously. If reality was ultimately the invented story of our minds, and the universe was just physical laws, what’s the point in getting wound up by things? Why stress about that email from your boss, or that mean thing a friend said when there’s nothing we can do anyway? If the world is an illusion, and a boringly scripted one at that, why not laugh?
The first “atomist,” Democritus, of course got a lot wrong, but it’s remarkable how much he got right. By reflecting on reality long enough, he came to conclusions that scientists proved millennia later. If nothing else, he offers a shining example of the power of contemplation.
Jonny Thomson teaches philosophy in Oxford. He runs a popular Instagram account called Mini Philosophy (@ philosophyminis ). His first book is Mini Philosophy: A Small Book of Big Ideas .
IMAGES
COMMENTS
The atomists of the time (Democritus being one of the leading atomists) believed there were two realities that made up the physical world: atoms and void. There were an infinite number of atoms, but different types of atoms had different sizes and shapes.
Democritus was a central figure in the development of the atomic theory of the universe. He theorized that all material bodies are made up of indivisibly small “atoms.” Aristotle famously rejected atomism in On Generation and Corruption. Aristotle refused to believe that the whole of reality is reducible to a system of atoms, as Democritus ...
Democritus, known in antiquity as the ‘laughing philosopher’ because of his emphasis on the value of ‘cheerfulness,’ was one of the two founders of ancient atomist theory. He elaborated a system originated by his teacher Leucippus into a materialist account of the natural world.
Learn about Democritus' atomic theory and model. Explore the work of Democritus, the scientist of ancient Greece who proposed the most accurate model of the atom.
One of the earliest theories of the atom dates back to the Greek philosopher Democritus in the 5 th century, BC. Democritus used the term “atomos” which means indivisible to describe the atom. For Democritus, the atom was an invisible and indivisible, hard, solid, and indestructible particle.
Democritus argued that atoms come together in various combinations, and then emit something called an “eidôla.” These composite blobs of atoms radiate eidôla outward, like ripples in water.
Democritus (/ dɪˈmɒkrɪtəs /, dim-OCK-rit-əs; Greek: Δημόκριτος, Dēmókritos, meaning "chosen of the people"; c. 460 – c. 370 BC) was an Ancient Greek pre-Socratic philosopher from Abdera, primarily remembered today for his formulation of an atomic theory of the universe. [2] . Democritus wrote extensively on a wide variety of topics. [3]
Atomic Theory Timeline. Elements are made of tiny particles called atoms. Atoms of one element are identical while atoms of different elements are different. Different atoms form compounds in constant ratios. The structure of atoms is somehow related to electricity.
Describe the contributions of Democritus and Dalton to atomic theory. Summarize Dalton's atomic theory and explain its historical development.
Learning Objectives. Give a short history of the concept of the atom. Describe the contributions of Democritus to atomic theory. You learned earlier that all matter in the universe is made out of tiny building blocks called atoms; all modern scientists accept the concept of the atom.