Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Published: 31 January 2023

Global water resources and the role of groundwater in a resilient water future

  • Bridget R. Scanlon   ORCID: orcid.org/0000-0002-1234-4199 1 ,
  • Sarah Fakhreddine 1 , 2 ,
  • Ashraf Rateb 1 ,
  • Inge de Graaf   ORCID: orcid.org/0000-0001-7748-868X 3 ,
  • Jay Famiglietti 4 ,
  • Tom Gleeson 5 ,
  • R. Quentin Grafton 6 ,
  • Esteban Jobbagy 7 ,
  • Seifu Kebede 8 ,
  • Seshagiri Rao Kolusu 9 ,
  • Leonard F. Konikow 10 ,
  • Di Long   ORCID: orcid.org/0000-0001-9033-5039 11 ,
  • Mesfin Mekonnen   ORCID: orcid.org/0000-0002-3573-9759 12 ,
  • Hannes Müller Schmied 13 , 14 ,
  • Abhijit Mukherjee 15 ,
  • Alan MacDonald   ORCID: orcid.org/0000-0001-6636-1499 16 ,
  • Robert C. Reedy 1 ,
  • Mohammad Shamsudduha 17 ,
  • Craig T. Simmons 18 ,
  • Alex Sun 1 ,
  • Richard G. Taylor 19 ,
  • Karen G. Villholth 20 ,
  • Charles J. Vörösmarty 21 &
  • Chunmiao Zheng   ORCID: orcid.org/0000-0001-5839-1305 22  

Nature Reviews Earth & Environment volume  4 ,  pages 87–101 ( 2023 ) Cite this article

17k Accesses

221 Citations

286 Altmetric

Metrics details

  • Hydrogeology
  • Water resources

An Author Correction to this article was published on 29 March 2023

This article has been updated

Water is a critical resource, but ensuring its availability faces challenges from climate extremes and human intervention. In this Review, we evaluate the current and historical evolution of water resources, considering surface water and groundwater as a single, interconnected resource. Total water storage trends have varied across regions over the past century. Satellite data from the Gravity Recovery and Climate Experiment (GRACE) show declining, stable and rising trends in total water storage over the past two decades in various regions globally. Groundwater monitoring provides longer-term context over the past century, showing rising water storage in northwest India, central Pakistan and the northwest United States, and declining water storage in the US High Plains and Central Valley. Climate variability causes some changes in water storage, but human intervention, particularly irrigation, is a major driver. Water-resource resilience can be increased by diversifying management strategies. These approaches include green solutions, such as forest and wetland preservation, and grey solutions, such as increasing supplies (desalination, wastewater reuse), enhancing storage in surface reservoirs and depleted aquifers, and transporting water. A diverse portfolio of these solutions, in tandem with managing groundwater and surface water as a single resource, can address human and ecosystem needs while building a resilient water system.

Net trends in total water storage data from the GRACE satellite mission range from −310 km 3 to 260 km 3 total over a 19-year record in different regions globally, caused by climate and human intervention.

Groundwater and surface water are strongly linked, with 85% of groundwater withdrawals sourced from surface water capture and reduced evapotranspiration, and the remaining 15% derived from aquifer depletion.

Climate and human interventions caused loss of ~90,000 km 2 of surface water area between 1984 and 2015, while 184,000 km 2 of new surface water area developed elsewhere, primarily through filling reservoirs.

Human intervention affects water resources directly through water use, particularly irrigation, and indirectly through land-use change, such as agricultural expansion and urbanization.

Strategies for increasing water-resource resilience include preserving and restoring forests and wetlands, and conjunctive surface water and groundwater management.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

111,21 € per year

only 9,27 € per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

research paper about water resources

Similar content being viewed by others

research paper about water resources

Environmental flow limits to global groundwater pumping

research paper about water resources

Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers

research paper about water resources

Global peak water limit of future groundwater withdrawals

Change history, 29 march 2023.

A Correction to this paper has been published: https://doi.org/10.1038/s43017-023-00418-9

Vorosmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467 , 555–561 (2010).

Article   Google Scholar  

Doell, P., Mueller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50 , 5698–5720 (2014).

Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37 , L20402 (2010).

Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (IPCC, Cambridge Univ. Press, 2021).

Olivier, D. W. & Xu, Y. X. Making effective use of groundwater to avoid another water supply crisis in Cape Town, South Africa. Hydrogeol. J. 27 , 823–826 (2019).

Ozment, S. et al. Natural infrastructure in Sao Paulo’s water system. World Resources Institute Report 2013–2014: Interim Findings (2018).

Pascale, S., Kapnick, S. B., Delworth, T. L. & Cooke, W. F. Increasing risk of another Cape Town ‘Day Zero’ drought in the 21st century. Proc. Natl Acad. Sci. USA 117 , 29495 (2020).

Alley, W. M., Reilly, T. E. & Franke, O. L. Sustainability of ground-water resources. US Geological Survey Circular 1186 (1999).

Breslin, S. COP26 has 4 goals. Water is central to all of them. SIWI News https://siwi.org/latest/cop26-has-4-goals-water-is-central-to-all-of-them/ (2021).

Global Risks 2021 16th edition (World Economic Forum, 2021); https://www.weforum.org/reports/the-global-risks-report-2021/

The Water Challenge: The Roundtable on Water Financing (OECD, 2022); https://www.oecd.org/water/roundtable-on-financing-water.htm

The United Nations World Water Development Report 2018: Nature-Based Solutions for Water (United Nations World Water Assessment Program/UNESCO, 2018).

Browder, G., Ozment, S., Rehberger-Bescos, I., Gartner, T. & Lange, G. M. Integrating Green and Gray: Creating Next Generation Infrastructure (World Bank and World Resources Institute, 2019); https://openknowledge.worldbank.org/handle/10986/31430

Making Every Drop Count: Agenda for Water Action (High Level Panel on Water, United Nations and World Bank, 2018).

Lederer, E. M. Next UN assembly president warns world in dangerous crisis. Washington Post https://www.washingtonpost.com/world/next-un-assembly-president-warns-world-in-dangerous-crisis/2022/06/07/55075dce-e6b6-11ec-a422-11bbb91db30b_story.html (7 June 2022).

Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9 , 358–369 (2019).

Wada, Y. & Bierkens, M. F. P. Sustainability of global water use: past reconstruction and future projections. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/10/104003 (2014).

Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint linked to national consumption and international trade is unsustainable. Nat. Food 1 , 792–800 (2020).

Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557 , 651–659 (2018).

Save, H., Bettadpur, S. & Tapley, B. D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 121 , 7547–7569 (2016).

Tapley, B. D., Bettadpur, S., Watkins, M. & Reigber, C. The Gravity Recovery And Climate Experiment: mission overview and early results. Geophys. Res. Lett. https://doi.org/10.1029/2004gl019920 (2004).

Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51 , 5217–5238 (2015).

Shamsudduha, M. & Taylor, R. G. Groundwater storage dynamics in the world’s large aquifer systems from GRACE: uncertainty and role of extreme precipitation. Earth Syst. Dyn. 11 , 755–774 (2020).

Vishwakarma, B. D., Bates, P., Sneeuw, N., Westaway, R. M. & Bamber, J. L. Re-assessing global water storage trends from GRACE time series. Environ. Res. Lett. 16 , 034005 (2021).

Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540 , 418–436 (2016).

Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9 , 494–502 (2011).

Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115 , E1080–E1089 (2018).

Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground Water and Surface Water: A Single Resource . Circular 1139 (United States Geological Survey, 1998).

Konikow, L. F. Overestimated water storage. Nat. Geosci. 6 , 3 (2013).

Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. https://doi.org/10.1029/2011gl048604 (2011).

Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5 , 389–392 (2012).

de Graaf, I. E. M. et al. A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Adv. Water Resour. 102 , 53–67 (2017).

Rateb, A. et al. Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major U.S. aquifers. Water Resour. Res. https://doi.org/10.1029/2020WR027556 (2020).

de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574 , 90–94 (2019).

Sophocleous, M. From safe yield to sustainable development of water resources — the Kansas experience. J. Hydrol. 235 , 27–43 (2000).

Konikow, L. F. & Bredehoeft, J. D. Groundwater Resource Development: Effects and Sustainability (The Groundwater Project, 2020).

MacAllister, D. J., Krishan, G., Basharat, M., Cuba, D. & MacDonald, A. M. A century of groundwater accumulation in Pakistan and northwest India. Nat. Geosci. https://doi.org/10.1038/s41561-022-00926-1 (2022).

Scanlon, B. R. et al. Effects of climate and irrigation on GRACE-based estimates of water storage changes in major US aquifers. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac16ff (2021).

McGuire, V. L. Water-Level and Recoverable Water In Storage Changes, High Plains Aquifer, Predevelopment to 2015 and 2013–15 . US Geological Survey Scientific Investigations Report 2017–5040 (2017); https://doi.org/10.3133/sir20175040

Faunt, C. C. Groundwater availability of the Central Valley Aquifer, California. US Geol. Surv. Prof. Pap . 1766 (2009).

Vorosmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289 , 284–288 (2000).

Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. https://doi.org/10.1126/sciadv.1500323 (2016).

Vorosmarty, C. J. & Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50 , 753–765 (2000).

Gronwall, J. & Danert, K. Regarding groundwater and drinking water access through a human rights lens: self-supply as a norm. Water https://doi.org/10.3390/w12020419 (2020).

van Vliet, M. T. H. et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abbfc3 (2021).

Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368 , 845–850 (2020).

Yapiyev, V., Sagintayev, Z., Inglezakis, V. J., Samarkhanov, K. & Verhoef, A. Essentials of endorheic basins and lakes: a review in the context of current and future water resource management and mitigation activities in Central Asia. Water https://doi.org/10.3390/w9100798 (2017).

Pauloo, R. A., Fogg, G. E., Guo, Z. L. & Harter, T. Anthropogenic basin closure and groundwater salinization (ABCSAL). J. Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125787 (2021).

Cao, T. Z., Han, D. M. & Song, X. F. Past, present, and future of global seawater intrusion research: a bibliometric analysis. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2021.126844 (2021).

Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51 , 3–26 (2013).

Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19 , 5686–5699 (2006).

Fan, X., Duan, Q. Y., Shen, C. P., Wu, Y. & Xing, C. Global surface air temperatures in CMIP6: historical performance and future changes. Environ. Res. Lett. 15 , 104056 (2020).

Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. https://doi.org/10.1038/s41598-020-70816-2 (2020).

Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368 , 314 (2020).

Arias, P. A. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 33−144 (IPCC, Cambridge Univ. Press, 2021).

van Dijk, A. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49 , 1040–1057 (2013).

Scanlon, B. R. et al. Hydrologic implications of GRACE satellite data in the Colorado River Basin. Water Resour. Res. 51 , 9891–9903 (2015).

Rateb, A., Scanlon, B. R. & Kuo, C. Y. Multi-decadal assessment of water budget and hydrological extremes in the Tigris-Euphrates Basin using satellites, modeling, and in-situ data. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144337 (2021).

Anyamba, A., Glennie, E. & Small, J. Teleconnections and interannual transitions as observed in African vegetation: 2015–2017. Remote Sens. https://doi.org/10.3390/rs10071038 (2018).

Scanlon, B. R. et al. Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac3bfc (2022).

Ul Hassan, W. & Nayak, M. A. Global teleconnections in droughts caused by oceanic and atmospheric circulation patterns. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abc9e2 (2021).

Shen, Z. X. et al. Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia. Nat. Commun. 13 , 1849 (2022).

Dettinger, M. D. Atmospheric rivers as drought busters on the US West Coast. J. Hydrometeorol. 14 , 1721–1732 (2013).

Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3 , 322–329 (2013).

Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572 , 230 (2019).

Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592 , 726 (2021).

Zhao, F., Long, D., Li, X., Huang, Q. & Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote. Sens. Environ. 270 , 112853 (2022).

Li, X. Y. et al. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01443-0 (2022).

Yao, T. D. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00299-4 (2022).

Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328 , 1382–1385 (2010).

Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577 , 364 (2020).

Dery, S. J. et al. Detection of runoff timing changes in pluvial, nival, and glacial rivers of western Canada. Water Resour. Res. https://doi.org/10.1029/2008wr006975 (2009).

Siebert, S. et al. Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. 7 , 3977–4021 (2010).

Google Scholar  

Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109 , 9320–9325 (2012).

Dahlke, H. E. et al. in Advanced Tools for Integrated Water Resources Management Vol. 3 (eds Friesen, J. & Rodriguez-Sinobas, L.) 215–275 (Elsevier, 2018).

Reddy, V. R., Pavelic, P. & Hanjra, M. A. Underground taming of floods for irrigation (UTFI) in the river basins of South Asia: institutionalising approaches and policies for sustainable water management and livelihood enhancement. Water Policy 20 , 369–387 (2018).

McDonald, R. I., Weber, K. F., Padowski, J., Boucher, T. & Shemie, D. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities. Proc. Natl Acad. Sci. USA 113 , 9117–9122 (2016).

The State of the World’s Forests 2020. Forests, Biodiversity, and Peopl e (FAO/UNEP, 2020).

Convention on Wetlands. Global Wetland Outlook: Special Edition 2021 (Secretariat of the Convention on Wetlands, 2021).

Scanlon, B. R., Jolly, I., Sophocleous, M. & Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour. Res. https://doi.org/10.1029/2006WR005486 (2007).

Nosetto, M. D., Paez, R. A., Ballesteros, S. I. & Jobbagy, E. G. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agric. Ecosyst. Environ. 206 , 60–70 (2015).

Favreau, G. et al. Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour. Res. https://doi.org/10.1029/2007wr006785 (2009).

Walker, C. D., Zhang, l, Ellis, T. W., Hatton, T. J. & Petheram, C. Estimating impacts of changed land use on recharge: review of modelling and other approaches appropriate for management of dryland salinity. Hydrogeol. J. 10 , 68–90 (2002).

Nosetto, M. D., Jobbagy, E. G., Jackson, R. B. & Sznaider, G. A. Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Res. 113 , 138–148 (2009).

Gimenez, R., Mercau, J., Nosetto, M., Paez, R. & Jobbagy, E. The ecohydrological imprint of deforestation in the semiarid Chaco: insights from the last forest remnants of a highly cultivated landscape. Hydrol. Process. 30 , 2603–2616 (2016).

Eilers, R. G., Eilers, W. D. & Fitzgerald, M. M. A salinity risk index for soils of the Canadian prairies. Hydrogeol. J. 5 , 68–79 (1997).

Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into the SDGs (WHO/UNICEF, 2021).

Cobbing, J. & Hiller, B. Waking a sleeping giant: realizing the potential of groundwater in sub-Saharan Africa. World Dev. 122 , 597–613 (2019).

Rockström, J. & Falkenmark, M. Agriculture: increase water harvesting in Africa. Nature 519 , 283–285 (2015).

MacAllister, D. J., MacDonald, A. M., Kebede, S., Godfrey, S. & Calow, R. Comparative performance of rural water supplies during drought. Nat. Commun. 11 , 1099 (2020).

Aboah, M. & Miyittah, M. K. Estimating global water, sanitation, and hygiene levels and related risks on human health, using global indicators data from 1990 to 2020. J. Water Health 20 , 1091–1101 (2022).

Abell, R. et al. Beyond the Source: The Environmental, Economic and Community Benefits of Source Water Protection (The Nature Conservancy, 2017).

Herrera-Garcia, G. et al. Mapping the global threat of land subsidence. Science 371 , 34–36 (2021).

Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D. & Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 11 , 035013 (2016).

Qadir, M. et al. Global and regional potential of wastewater as a water, nutrient and energy source. Nat. Resour. Forum 44 , 40–51 (2020).

Water Reuse within a Circular Economy Context . Global Water Security Issues Series 2 (UNESCO, 2020).

Jones, E. R., van Vliet, M. T. H., Qadir, M. & Bierkens, M. F. P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 13 , 237–254 (2021).

Jeuland, M. Challenges to wastewater reuse in the Middle East and North Africa. Middle East. Dev. J. 7 , 1–25 (2015).

Zhang, Y. & Shen, Y. Wastewater irrigation: past, present, and future. WIREs Water 6 , e1234 (2019).

Fito, J. & Van Hulle, S. W. H. Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability. Environ. Dev. Sust. 23 , 2949–2972 (2021).

Gao, L., Yoshikawa, S., Iseri, Y., Fujimori, S. & Kanae, S. An economic assessment of the global potential for seawater desalination to 2050. Water https://doi.org/10.3390/w9100763 (2017).

Ahdab, Y. D., Thiel, G. P., Bohlke, J. K., Stanton, J. & Lienhard, J. H. Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets. Water Res. 141 , 387–404 (2018).

Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S. M. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657 , 1343–1356 (2019).

Lin, S. S. et al. Seawater desalination technology and engineering in China: a review. Desalination https://doi.org/10.1016/j.desal.2020.114728 (2021).

Martinez-Alvarez, V., Martin-Gorriz, B. & Soto-Garcia, M. Seawater desalination for crop irrigation — a review of current experiences and revealed key issues. Desalination 381 , 58–70 (2016).

Smith, K., Liu, S. M., Hu, H. Y., Dong, X. & Wen, X. H. Water and energy recovery: the future of wastewater in China. Sci. Total Environ. 637 , 1466–1470 (2018).

Pulido-Bosch, A. et al. Impacts of agricultural irrigation on groundwater salinity. Environ/ Earth Sci. https://doi.org/10.1007/s12665-018-7386-6 (2018).

Kurnik, J. The Next California: Phase 1: Investigating Potential in the Mid-Mississippi Delta River Region (The Markets Institute at WWF, 2020); https://www.worldwildlife.org/publications/the-next-california-phase-1-investigating-potential-in-the-mid-mississippi-delta-river-region

Senay, G. B., Schauer, M., Friedrichs, M., Velpuri, N. M. & Singh, R. K. Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States. Remote Sens. Environ. 202 , 98–112 (2017).

Gebremichael, M., Krishnamurthy, P. K., Ghebremichael, L. T. & Alam, S. What drives crop land use change during multi-year droughts in California’s Central Valley? Prices or concern for water? Remote Sens. https://doi.org/10.3390/rs13040650 (2021).

Brauman, K. A., Siebert, S. & Foley, J. A. Improvements in crop water productivity increase water sustainability and food security — a global analysis. Environ. Res. Lett. 8 , 024030 (2013).

Mekonnen, M. M., Hoekstra, A. Y., Neale, C. M. U., Ray, C. & Yang, H. S. Water productivity benchmarks: the case of maize and soybean in Nebraska. Agric. Water Manag. https://doi.org/10.1016/j.agwat.2020.106122 (2020).

Colaizzi, P. D., Gowda, P. H., Marek, T. H. & Porter, D. O. Irrigation in the Texas High Plains: a brief history and potential reductions in demand. Irrig. Drain. 58 , 257–274 (2008).

Scanlon, B. R., Gates, J. B., Reedy, R. C., Jackson, A. & Bordovsky, J. Effects of irrigated agroecosystems: (2). Quality of soil water and groundwater in the southern High Plains, Texas. Water Resour. Res. 46 , W09538 (2010).

Ward, F. A. & Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl Acad. Sci. USA 105 , 18215–18220 (2008).

Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361 , 748–750 (2018).

Alcott, B. in The Jevons Paradox and the Myth of Resource Efficiency Improvements (eds Polimeni, J. M., Mayumi, K., & Giampetro, M.) 7–78 (Earthscan, 2008).

Aarnoudse, E. & Bluemling, B. Controlling Groundwater Through Smart Card Machines: The Case of Water Quotas and Pricing Mechanisms in Gansu Province, China . Groundwater Solutions Initiative for Policy and Practice (GRIPP) Case Profile Series 02 (International Water Management Institute, 2017); https://doi.org/10.5337/2016.224

Kinzelbach, W., Wang, H., Li, Y., Wang, L. & Li, N. Groundwater Overexploitation in the North China Plain: A Path to Sustainability (Springer, 2021).

McDougall, R., Kristiansen, P. & Rader, R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc. Natl Acad. Sci. USA 116 , 129–134 (2019).

Langemeyer, J., Madrid-Lopez, C., Mendoza Beltran, A. & Villalba Mendez, G. Urban agriculture — a necessary pathway towards urban resilience and global sustainability? Landsc. Urban Plan. 210 , 104055 (2021).

Palmer, L. Urban agriculture growth in US cities. Nat. Sust. 1 , 5–7 (2018).

Grafius, D. R. et al. Estimating food production in an urban landscape. Sci. Rep. 10 , 5141 (2020).

The State of Food Insecurity in the World 2015 (FAO/IFAD/WFP, 2015).

Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438 , 477–489 (2012).

Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302 , 1524–1528 (2003).

Miralles-Wilhelm, F. Nature-Based Solutions in Agriculture — Sustainable Management and Conservation of Land, Water, and Biodiversity (FAO/The Nature Conservancy, 2021).

McDonald, R. I. & Shemie, D. Urban Water Blueprint: Mapping Conservation Solutions to the Global Water Challenge (The Nature Conservancy, 2014); http://water.nature.org/waterblueprint

Kane, M. & Erickson, J. D. Urban metabolism and payment for ecosystem services: history and policy analysis of the New York city water supply. Adv. Econ. Environ. Resour. 7 , 307–328 (2007).

Greater Cape Town Water Fund: Business Case: Assessing the Return on Investment for Ecological Infrastructure Restoration (The Nature Conservancy, 2019).

Hu, J., Lu, Y. H., Fu, B. J., Comber, A. J. & Harris, P. Quantifying the effect of ecological restoration on runoff and sediment yields: a meta-analysis for the Loess Plateau of China. Prog. Phys. Geogr. Earth Environ. 41 , 753–774 (2017).

Liu, W. W. et al. Improving wetland ecosystem health in China. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2020.106184 (2020).

Cities100: Chennai Is Restoring Waterbodies to Protect Against Flooding and Drought . C40 Knowledge Hub: Nordic Sustainability, South and West Asia, Chennai, Case Studies and Best Practice Examples https://www.c40knowledgehub.org/s/article/Cities100-Chennai-is-restoring-waterbodies-to-protect-against-flooding-and-drought?language=en_US (2019).

Chung, M. G., Frank, K. A., Pokhrel, Y., Dietz, T. & Liu, J. G. Natural infrastructure in sustaining global urban freshwater ecosystem services. Nat. Sust. 4 , 1068 (2021).

Qi, Y. F. et al. Addressing challenges of urban water management in Chinese sponge cities via nature-based solutions. Water https://doi.org/10.3390/w12102788 (2020).

Acreman, M. et al. Evidence for the effectiveness of nature-based solutions to water issues in Africa. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac0210 (2021).

Livneh, B. & Badger, A. M. Drought less predictable under declining future snowpack. Nat. Clim. Change 10 , 452–458 (2020).

Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7 , 31 (2020).

International Commission on Large Dams https://www.icold-cigb.org/ (2022).

Yang, G., Guo, S., Liu, P. & Block, P. Integration and evaluation of forecast-informed multiobjective reservoir operations. J. Water Resour. Plan. Manag. 146 , 04020038 (2020).

Delaney, C. J. et al. Forecast informed reservoir operations using ensemble streamflow predictions for a multipurpose reservoir in northern California. Water Resour. Res . https://doi.org/10.1029/2019wr026604 (2020).

Amarasinghe, U. A., Muthuwatta, L., Surinaidu, L., Anand, S. & Jain, S. K. Reviving the Ganges water machine: potential. Hydrol. Earth Syst. Sci. 20 , 1085–1101 (2016).

Shamsudduha, M. et al. The Bengal water machine: quantified freshwater capture in Bangladesh. Science 377 , 1315–1319 (2022).

Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320 , 212–214 (2008).

Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77 , 161–170 (2015).

Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. https://doi.org/10.1038/s41598-019-54980-8 (2019).

Wheeler, K. G., Jeuland, M., Hall, J. W., Zagona, E. & Whittington, D. Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nat. Commun. https://doi.org/10.1038/s41467-020-19089-x (2020).

Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sust. 1 , 617–622 (2018).

Dahlke, H. E., Brown, A. G., Orloff, S., Putnam, D. & O’Geen, T. Managed winter flooding of alfalfa recharges groundwater with minimal crop damage. Calif. Agric. 72 , 65–75 (2018).

Yang, Q. & Scanlon, B. R. How much water can be captured from flood flows to store in depleted aquifers for mitigating floods and droughts? A case study from Texas, US. Environ. Res. Lett. 14 , 054011 (2019).

Dillon, P. et al. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. https://doi.org/10.1007/s10040-018-1841-z. (2018).

Groundwater Replenishment System Technical Brochure, https://www.ocwd.com/media/10443/gwrs-technical-brochure-2021.pdf (2021).

Konikow, L. F. Groundwater Depletion in the United States (1900–2008) . US Geological Survey Scientific Investigation Report 2013–5079, http://pubs.usgs.gov/sir/2013/5079 (2013).

Hartog, N. & Stuyfzand, P. J. Water quality donsiderations on the rise as the use of managed aquifer recharge systems widens. Water 9 , 808 (2017).

Shumilova, O., Tockner, K., Thieme, M., Koska, A. & Zarfl, C. Global water transfer megaprojects: a potential solution for the water–food–energy nexus? Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00150 (2018).

Long, D. et al. South-to-north water diversion stabilizing Beijing’s groundwater levels. Nat. Commun. https://doi.org/10.1038/s41467-020-17428-6 (2020).

Zhuang, W. Eco-environmental impact of inter-basin water transfer projects: a review. Environ. Sci. Pollut. Res. 23 , 12867–12879 (2016).

Hoekstra, A. Y. Virtual Water Trade : Proceedings of the International Expert Meeting on Virtual Water Trade (UNESCO-IHE, 2003).

Oki, T. & Kanae, S. Virtual water trade and world water resources. Water Sci. Technol. 49 , 203–209 (2004).

Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. https://doi.org/10.1038/s41467-021-22194-0 (2021).

Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109 , 3232–3237 (2012).

Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543 , 700–704 (2017).

Hanasaki, N., Inuzuka, T., Kanae, S. & Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384 , 232–244 (2010).

Mekonnen, M. M. & Gerbens-Leenes, W. The water footprint of global food production. Water https://doi.org/10.3390/w12102696 (2020).

Australian Water Markets Report: 2019-20 Review and 2020-21 Outlook (Aither, 2020); https://aither.com.au/wp-content/uploads/2020/08/2020-Water-Markets-Report.pdf

Grafton, R. Q. & Wheeler, S. A. Economics of water recovery in the Murray–Darling Basin, Australia. Annu. Rev. Resour. Econ. 10 , 487–510 (2018).

Moench, M. Water and the potential for social instability: livelihoods, migration and the building of society. Nat. Resour. Forum 26 , 195–204 (2002).

Water Markets in Australia: A Short History (National Water Commission, 2011).

Kundzewicz, Z. W. & Döll, P. Will groundwater ease freshwater stress under climate change? Hydrol. Sci. J. 54 , 665–675 (2009).

A Snapshot of the World’s Water Quality: Towards a Global Assessment (UNEP, 2016).

Summary Progress Update 2021: SDG 6 — Water and Sanitation for All (UN-Water, 2021).

GEMStat: Global Environmental Monitoring System, https://gemstat.org/ (UNEP, 2022).

Akhmouch, A. & Correia, F. N. The 12 OECD principles on water governance — when science meets policy. Util. Policy 43 , 14–20 (2016).

Lankford, B., Bakker, K., Zeitoun, M. & Conway, B. D. Water Security: Principles, Perspectives, and Practices (Routledge, 2013).

Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3 , 19 (2022).

Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339 , 940–943 (2013).

Download references

Author information

Authors and affiliations.

Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA

Bridget R. Scanlon, Sarah Fakhreddine, Ashraf Rateb, Robert C. Reedy & Alex Sun

Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Sarah Fakhreddine

Water Systems and Global Change, Wageningen University, Wageningen, The Netherlands

Inge de Graaf

Global Institute for Water Security, National Hydrology Research Center, University of Saskatchewan, Saskatoon, Canada

Jay Famiglietti

Department of Civil Engineering, University of Victoria, Victoria, British Columbia, Canada

Tom Gleeson

Crawford School of Public Policy, Australian National University, Canberra, ACT, Australia

R. Quentin Grafton

Grupo de Estudios Ambientales, IMASL, CONICET, Universidad Nacional de San Luis, San Luis, Argentina

Esteban Jobbagy

Center for Water Resources Research, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu Natal, Durban, South Africa

Seifu Kebede

UK Meteorological Office, Exeter, UK

Seshagiri Rao Kolusu

Leonard Konikow Hydrogeologist, Reston, VA, USA

Leonard F. Konikow

Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA

Mesfin Mekonnen

Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Frankfurt, Germany

Hannes Müller Schmied

Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Frankfurt, Germany

School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India

Abhijit Mukherjee

British Geological Survey, Lyell Centre, Edinburgh, UK

Alan MacDonald

Institute for Risk and Disaster Reduction, University College London, London, UK

Mohammad Shamsudduha

National Centre for Groundwater Research and Training (NCGRT), College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia

Craig T. Simmons

Department of Geography, University College London, London, UK

Richard G. Taylor

Water Cycle Innovation Ltd, Johannesburg, Gauten, South Africa

Karen G. Villholth

Environmental Sciences Initiative, Advanced Science Research Center at the CUNY Graduate Center, New York, NY, USA

Charles J. Vörösmarty

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China

Chunmiao Zheng

You can also search for this author in PubMed   Google Scholar

Contributions

B.R.S. conceptualized the review and coordinated input. S.F. reviewed many of the topics and developed some of the figures. A.R. analysed GRACE satellite data and M.S. reviewed this output. Q.G. provided input on water economics. E.J. reviewed impacts of land-use change. S.R.K. provided data on future precipitation changes. L.F.K. provided detailed information on surface water/groundwater interactions. M.M. provided data on water trade. C.J.V. provided input on green and grey solutions. All authors reviewed the paper and provided edits.

Corresponding author

Correspondence to Bridget R. Scanlon .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Reviews Earth & Environment thanks Helen Dahlke, Diana Allen, who co-reviewed with Aspen Anderson, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, supplementary tables , rights and permissions.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Scanlon, B.R., Fakhreddine, S., Rateb, A. et al. Global water resources and the role of groundwater in a resilient water future. Nat Rev Earth Environ 4 , 87–101 (2023). https://doi.org/10.1038/s43017-022-00378-6

Download citation

Accepted : 17 November 2022

Published : 31 January 2023

Issue Date : February 2023

DOI : https://doi.org/10.1038/s43017-022-00378-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Severe magnitude of dental and skeletal fluorosis and its impact on society and environment in a part of manbhum-singhbhum plateau, india.

  • Arijit Ghosh
  • Soumyajit Patra
  • Biswajit Bera

BMC Public Health (2024)

Rapid groundwater decline and some cases of recovery in aquifers globally

  • Scott Jasechko
  • Hansjörg Seybold
  • James W. Kirchner

Nature (2024)

Majority of global river flow sustained by groundwater

  • Xiaomang Liu
  • Sujan Koirala

Nature Geoscience (2024)

Winter snow deficit was a harbinger of summer 2022 socio-hydrologic drought in the Po Basin, Italy

  • Francesco Avanzi
  • Francesca Munerol
  • Luca Ferraris

Communications Earth & Environment (2024)

Moving from fit to fitness for governing water in the Anthropocene

  • Michele-Lee Moore
  • Lan Wang-Erlandsson
  • Shuchi Vora

Nature Water (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

research paper about water resources

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Water resource management: IWRM strategies for improved water management. A systematic review of case studies of East, West and Southern Africa

Roles Conceptualization, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliations Soil, Crop, and Climate Sciences, University of the Free State, Bloemfontein, South Africa, School of Engineering, University of KwaZulu-Natal, Pietermaritzburg, South Africa, Varmac Consulting Engineers, Scottsville, Pietermaritzburg, South Africa

ORCID logo

Roles Conceptualization, Formal analysis, Methodology, Writing – original draft, Writing – review & editing

Affiliation Department of Civil & Structural Engineering, Masinde Muliro University of Science and Technology, Kakamega, Kenya

Roles Conceptualization, Methodology, Supervision, Writing – review & editing

Affiliation Soil, Crop, and Climate Sciences, University of the Free State, Bloemfontein, South Africa

Roles Writing – review & editing

Affiliation Department of Agriculture and Engineering Services, Irrigation Engineering Section, Ministry of Agriculture and Natural Resources, Ilorin, Kwara State, Nigeria

  • Tinashe Lindel Dirwai, 
  • Edwin Kimutai Kanda, 
  • Aidan Senzanje, 
  • Toyin Isiaka Busari

PLOS

  • Published: May 25, 2021
  • https://doi.org/10.1371/journal.pone.0236903
  • Reader Comments

17 May 2024: Dirwai TL, Kanda EK, Senzanje A, Busari TI (2024) Correction: Water resource management: IWRM strategies for improved water management. A systematic review of case studies of East, West and Southern Africa. PLOS ONE 19(5): e0304228. https://doi.org/10.1371/journal.pone.0304228 View correction

Table 1

The analytical study systematically reviewed the evidence about the IWRM strategy model. The study analysed the IWRM strategy, policy advances and practical implications it had, since inception on effective water management in East, West and Southern Africa.

The study adopted the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) and the scoping literature review approach. The study searched selected databases for peer-reviewed articles, books, and grey literature. DistillerSR software was used for article screening. A constructionist thematic analysis was employed to extract recurring themes amongst the regions.

The systematic literature review detailed the adoption, policy revisions and emerging policy trends and issues (or considerations) on IWRM in East, West and Southern Africa. Thematic analysis derived four cross-cutting themes that contributed to IWRM strategy implementation and adoption. The identified four themes were donor effect, water scarcity, transboundary water resources, and policy approach. The output further posited questions on the prospects, including whether IWRM has been a success or failure within the African water resource management fraternity.

Citation: Dirwai TL, Kanda EK, Senzanje A, Busari TI (2021) Water resource management: IWRM strategies for improved water management. A systematic review of case studies of East, West and Southern Africa. PLoS ONE 16(5): e0236903. https://doi.org/10.1371/journal.pone.0236903

Editor: Sergio Villamayor-Tomas, Universitat Autonoma de Barcelona, SPAIN

Received: July 12, 2020; Accepted: May 2, 2021; Published: May 25, 2021

Copyright: © 2021 Dirwai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the paper.

Funding: This study was supported by the National Research Foundation (NRF) in the form of a grant awarded to TLD (131377) and VarMac Consulting Engineers in the form of a salary for TLD. The specific roles of the authors are articulated in the ‘author contributions’ section. The funders had no additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have read the journal’s policy and have the following potential competing interests: TLD is a paid employee of VarMac Consulting Engineers. This does not alter our adherence to PLOS ONE policies on sharing data and materials. There are no patents, products in development or marketed products associated with this research to declare.

1 Introduction

Integrated Water Resources Management (IWRM) is a concept that is meant to foster effective water resource management. GWP [ 1 ] defined it as “the process which promotes the coordinated development and management of water, land and related resources, to maximise the resultant economic and social welfare equitably without compromising the sustainability of vital systems”. A holistic approach, in the form of the Dublin statement on Water and Sustainable Development (DSWSD), emerged and it became the backbone of IWRM principles.

According to Solanes and Gonzalez-Villarreal [ 2 ] the Dublin priciples are: “ (1) Freshwater is a finite and vulnerable resource , essential to sustain life , development and the environment; (2) Water development and management should be based on a participatory approach , involving users , planners and policy-makers at all levels , (3) Women play a central part in the provision , management , and safeguarding of water , and (4) Water has an economic value in all its competing uses , and should be recognised as an economic good .” The seamless conflation of the DSWSD and the Agenda 21 at the United Nations Conference on Environment and Development (UNCED) in 1992 further strengthened the IWRM discourse and facilitated the policy approach of IWRM [ 3 , 4 ]. Since its inception the IWRM policy has been the holy grail of water resource management in Africa, Asia, and Europe to mention a few. For policy diffusion, countries were required to develop an IWRM policy blueprints for effective water use [ 5 ].

This review sought to unveil the innovative IWRM strategy approach by critically examining its genesis, implementation, adoption and the main drivers in in East, Southern and West Africa. Secondary to this, the study endeavoured to determine whether the IWRM implementation has been a success or failure. The choice of East, West and Southern Africa was influenced by the regional dynamics of Sub-Saharan Africa which have unique problems in water resources management and the hydropolitical diversity in this region. The isolated cases provide a holistic representation t the implementation dynamics of IWRM. In addition, sub-Sahara Africa was the laboratory for IWRM with Zimbabwe and South Africa being the early implementers [ 6 ]. Apart from the IWRM strategy being a social experiment in sub-Sahara, there exists a gap on an overarching review on the performance and aggregated outcomes of the IWRM adopters in the continent. The selection of the countries of interest was based on the authors geo-locations and their expert experiences with the IWRM strategy in their respective localities. The study sought to draw trends, similarities, and potential differences in the drivers involved in achieving the desired IWRM outcome.

IWRM strategy approach and implementation are ideally linked to individual country’s developmental policies [ 7 ]. Southern Africa (Zimbabwe and South Africa) is the biggest adopter of the water resource management strategy and produced differed uptake patterns [ 8 ]. In East Africa, Tanzania,Uganda and Kenya also adopted the IWRM strategy, whilst in West Africa, Burkina Faso latently adopted the IWRM strategy in 1992 [ 4 ] and in Ghana, customary and traditional water laws transformed into latent IWRM practices [ 9 ].

Various initiatives were put in place to aid the adoption of IWRM in sub-Sahara Africa. For example, Tanzania benefited from donor funds and World Bank programmes that sought to alleviate poverty and promote environmental flows. The World Bank radically upscaled and remodelled IWRM in Tanzania through the River Basin Management—Smallholder Irrigation Improvement Programme (RBM-SIIP) [ 10 ]. The government of Uganda’s efforts of liberalising the markets, opening democratic space and decentralising the country attracted donor funds that drove the IWRM strategy agenda. The long-standing engagement between Uganda and the Nordic Fresh Water initiative helped in the diffusion of IWRM strategy in the country. Finally, in West Africa, Burkina Faso and Ghana made significant strides in operationalising the IWRM strategy by adopting the West Africa Water Resources Policy (WAWRP). A massive sense of agency coupled with deliberate government efforts drove the adoption status of Burkina Faso.

Total policy diffusion can be achieved when the practice or idea has supporting enablers. Innovation is key in developing plocies that altersocietal orthodox policy paths that fuel hindrance and consequently in-effective water governance [ 11 ]. Acknowledging the political nature of water (water governance and transboundary catchments issues) is the motivation to legislate water-driven and people-driven innovative policy [ 12 ]. Water policy reform should acknowledge the differing interests’ groups of the water users and its multi-utility nature; thus, diffusion channels should be tailored accordingly, avoiding the ‘one size fits all’ fallacy. IWRM as an innovative strategy approach diffused from the global stage to Africa and each regional block adopted the approach at different times under different circumstances.

The rest of this paper is outlined as follows; section 2 presents the conceptual framework adopted and the subsequent methodology. Section 3 presents the results and discussion. The discussion is structured around innovation driver in each respective region. Thereafter, sub-section 3.4 presents the prospect of IWRM in the East, West and Southern Africa regions. Lastly, the paper presents the conclusion.

2 Methodology

2.1 conceptual framework and methodology.

The analytical framework applied in the study is based on the water innovation frames by the United Nations Department of Economic and Social Affairs (UNDESA) [ 13 ]. The UNDESA [ 13 ], classified water frames into three distinct categories namely water management strategies (e.g., IWRM), water infrastructure and water services. The former partly involves IWRM strategies and the latter encompasses economic water usage such as agriculture, energy production and industrial applications [ 12 ].

The literature review identified research gaps that informed the employed search strategy. The literature that qualified for inclusion was thoroughly analysed and discussed. The aggregated outcomes were used for excerpt extraction in the thematic analysis.

2.2 Literature handling

The study performed a systematic review as guided by the Arksey and O’Malley [ 14 ] approach. The approach details methods on how to scope, gather, screen and report literature. The study further employed a constructionist thematic analysis to extract common recurring themes amongst the regions.

2.2.1 Eligibility criteria.

Eligibility criteria followed an adapted SPICE (Setting, Perspective, Intervention, Comparison and Evaluation) structure ( Table 1 ). The SPICE structure informed the study’s search strategy ( Table 2 ) and the subsequent formulation of the inclusion-exclusion criteria ( Table 3 ). The evidence search was conducted from the following databases: Scopus, Web of Science, Google Scholar, UKZN-EFWE, CABI, JSTOR, African Journals Online (AJOL), Directory of Open Access Journals (DOAJ), J-Gate, SciELO and WorldCat for peer-reviewed articles, books, and grey literature. The study did not emphasize publication date as recommended by Moffa, Cronk [ 15 ]. Databases selection was based on their comprehensive and over-arching nature in terms of information archiving. It is worth mentioning that the search strategy was continuously revised by trial and error until the databases yielded the maximum number of articles for screening.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0236903.t001

thumbnail

https://doi.org/10.1371/journal.pone.0236903.t002

thumbnail

https://doi.org/10.1371/journal.pone.0236903.t003

2.2.2 Search strategy.

The search strategy or query execution [ 16 ] utilised Boolean operators ( OR & AND ). The dynamic nature of the search strategy required the authors to change the search terms and strategy, for example, if digital databases did not yield the expected search items the study would manually search for information sources. The search queries included a string of search terms summarised in Table 2 .

2.2.3 Selection process.

DistillerSR © software was used for article screening. Online data capturing forms were created in the DistillerSR © software and two authors performed the article scoring process that eventully led to article screening. The screening was based on the article title, abstract and locality. The study employed a two-phase screening process [ 17 ], the first phase screened according to title and the second phase screened according to abstract and keywords. During the screening process, studies that the matched information in the left column of Table 3 we included in the literature review syntheses, whilst those that matched the exclusion list were discarded.

2.3 Thematic analysis

The review also adopted the thematic analysis approach by Braun and Clarke [ 18 ] to extract, code, and select candidate converging themes for the systematic review. The selected lieterature was subjected to qualitative analysis to capture recurring themes amongst the selected regions (East, West and Southern Africa). Data extracts from the respective regional analysis were formulated into theoretical themes. Thereafter, the extracted data was coded according to the extracted patterns from the information source to constitute a theme. It is worth mentioning that the authors used their discretion to extract and code for themes.

3 Results and discussion

Data charting comprised of the PRISMA flow-chart ( Fig 1 ). The study utilised 80 out of 183 records (n = 37, 46%) for East Africa, (n = 37, 46%) for Southern Africa, and (n = 6, 8%) for West Africa.

thumbnail

https://doi.org/10.1371/journal.pone.0236903.g001

3.1 Case studies

The introduction of IWRM in the East African region was initiated in 1998 by the water ministers in the Nile basin states due to the need for addressing the concerns raised by the riparian states. These water sector reforms revolved around the Dublin principles initiated by the UN in 1992 [ 20 ]. In 1999, Kenya developed the national water policy and the enabling legislation, the Water Act 2002 was enacted [ 21 ]. The Act was replaced by the Water Act 2016 which established the Water Resources Authority (WRA) as the body mandated to manage water resources in line with the IWRM principles and Water Resource Users Association (WRUA) as the lowest (local) level of water management [ 22 ].

Similarly, Uganda developed the national water policy in 1999 to manage, and develop the available water resources in an integrated and sustainable manner [ 23 ]. The National Water Policy further provides for the promotion of water supply for modernized agriculture [ 24 ]. Tanzania’s water policy of 2002 espouses IWRM principles, and its implementation is based on a raft of legal, economic, administrative, technical, regulatory and participatory instruments [ 25 ]. The National Irrigation Policy (NIP), 2010 and the National Irrigation Act, 2013 provides the legal basis for the involvement of different actors on a private-public partnership basis [ 26 ].

West Africa possesses an unregistered IWRM strategy that is espoused in the West Africa Water Resources Policy (WAWRP) of 2008. The WAWRP is founded on the following legal principles; (a) “promote, coordinate and ensure the implementation of a regional water resource policy in West Africa, in accordance with the mission and policies of Economic Community of West African States (ECOWAS)and (b) “harmonization and coordination of national policies and the promotion of programmes, projects and activities, especially in the field of agriculture and natural resources”. The founding legal basis resonates with the Dublin principles.

The WAWRP design actors were ECOWAS, Union Economique et Monétaire Ouest Africaine (UEMOA), and Comité Permanent Inter-État de Llutte Contre la Sécheresse au Sahel (CILSS). CILSS is the technical arm of ECOWAS and UEMOA. The institutional collaboration was driven by the fact that West Africa needed a sound water policy for improved regional integration and maximised economic gains. ECOWAS established the Water Resources Coordination Centre (WRCC) to (a) oversee and monitor the region’s water resources and management activities and (b) to act as an executive organ of the Permanent Framework for Coordination and Monitoring (PFCM) of IRWM [ 27 ].

The inception and triggers of IWRM in West Africa can be traced back to the General Act of Berlin in 1885 which, among other things, dictated water resources use of the Congo and Niger rivers [ 28 ]. A multiplicity of agreements around shared watercourses in West Africa led to the realisation of the IWRM policy approach. For example, the Senegal River Basin (SRB) Development Mission facilitated collaboration between Senegal and Mauritania in managing the SRB. Another noteworthy agreement was Ruling C/REG.9/7/97, a regional plan to fight floating plants in the ECOWAS countries [ 28 ]. GWP (2003) categorised the West African countries according to the level of adoption into three distinct groups namely; (a) Group A comprised of countries with the capacity to develop and adopt the IWRM approach (Burkina Faso and Ghana), (b) Group B comprised of countries needing “light support” to unroll the IWRM plan (Benin, Mali, Nigeria, and Togo), and (3) Group C comprised of laggards which needed significant support to establish an IWRM plan (Cape Verde, Ivory Coast, Gambia, Guinea, Guinea Bissau, Liberia, Mauritania, Niger, Senegal and Sierra Leone).

Southern African Development Community (SADC) regional bloc has over 15 shared transboundary river basins (For detailed basin and catchment arrangement in SADC see [ 29 ]). SADC member states established the Protocol on Shared Water Systems (PSWS) which meant to encourage sustainable water resources utilisation and management. The PSWS was perceived to strengthen regional integration [ 30 ]. The regional bloc formulated the Regional Strategic Action Plans (RSAPs) that sought to promote an integrated water resources development plan. The action initiative mimicked IWRM principles and the shared water resources initiatives acted as a catalyst for the genesis of IWRM in Southern Africa [ 31 ]. SADC houses the Waternet and the GWP-SA research and innovation hubs upon which SADC’s IWRM adoption was anchored on. Besides the availability of trained water experts in the region who were willing to experiment with the IWRM policy approach, water scarcity fuelled by climate change prompted the region’s adoption of the IWRM policy approach at the local level.

3.2 Diffusion drivers of IWRM in East, West and Southern Africa

3.2.1 water scarcity..

The adoption of IWRM in East Africa was necessitated by water scarcity which is experienced by the countries in the region, which formed the need for adoption of prudent water resources management strategies as envisaged under the Dublin principles which was championed indirectly, according to Allouche [ 5 ], by the World Bank. Specifically, the need to give incentives and disincentives in water use sectors to encourage water conservation.

Kenya is a water-scarce country with per capita water availability of 586 m 3 in 2010 and projected to 393 m 3 in 2030 [ 32 ]. Uganda is endowed with water resources, however, it is projected that the country will be water-stressed by 2020 which could be compounded by climate variability and change, rapid urbanization, economic and population growth [ 33 ].

Using water scarcity was in essence coercing countries to adopt the IWRM principles with the irrigation sector, the contributor of the largest proportion of water withdrawals, becoming the major culprit [ 5 ]. The researchers opine that the effects of water scarcity in the region can be countered by adopting IWRM strategy, but adaptively to suit the local context and thus, persuasive rather than coercive, is the appropriate term. Indeed, as put forward by Van der Zaag [ 34 ], IWRM is not an option but it is a necessity and therefore, countries need to align their water policies and practices in line with it.

West African climatic conditions pose a threat on the utilisation of the limited water resource. Water resource utilisation is marred by erratic rainfalls and primarily a lack of water resources management know-how [ 27 ]. Countries in the Sahelian regions are characterised by semi-arid climatic conditions. Thus, dry climatic conditions account as an IWRM strategy driver to ensure maximised water use efficiency. Although the region acknowledges the need for adopting the IWRM strategy, they have varied adoption statuses (GWP, 2003).

Southern African countries also face serious water scarcity problems. Rainfall in South Africa is low and unevenly distributed with about 9% translating to useful runoff making the country one of the most water scarce countries in the world [ 35 ]. Generally, SADC countries experience water scarcity resulting in conflicts due to increasing pressure on the fresh water resources [ 36 ]. Thus, the researched opine that water scarcity pushed the region to adopt the IWRM strategy inorder to mitigate the looming effects of climate change on surface water availainility.

3.2.2 Trans-boundary water resources.

Water resources flow downstream indiscriminately across villages, locations, regions and nations/states and therefore necessitates co-operation. The upstream and downstream relationships among communities, people and countries created by the water is asymmetrical in that the actions upstream tend to affect the downstream riparian and not the other way round [ 34 ]. In East Africa, the Nile Basin Initiative (NBI) and the Lake Victoria Basin Commission (LVBC) plays a critical component in promoting the IWRM at regional level [ 20 ].

The Nile River system is the single largest factor driving the IWRM in the region. Lake Victoria, the source of the Nile River is shared by the three East African states of Kenya, Uganda and Tanzania. Irrigation schemes in Sudan and Egypt rely exclusively on the waters of River Nile and are therefore apprehensive of the actions of upstream states notably Ethiopia, Kenya, Uganda, Tanzania, Rwanda and Burundi. The source of contention is the asymmetrical water needs and allocation which was enshrined in the Sudan–Egypt treaty of 1959 [ 37 ]. All the riparian countries in the Nile basin have agricultural-based economies and thus irrigation is the cornerstone of food security [ 38 ]. Therefore, there was the need for the establishment of basin-wide co-operation which led to the formation of NBI in 1999 with a vision to achieve sustainable socio-economic development through the equitable utilisation of the Nile water resources [ 39 ].

The Mara River is another trans-boundary river which is shared between Tanzania and Kenya and the basin forms the habitat for the Maasai Mara National Reserve and Serengeti National Park in Kenya and Tanzania, respectively, which is prominent for the annual wildlife migration. Kenya has 65% of the upper part of the basin, any development on the upstream, such as hydropower or water diversion, will reduce the water quantities and therefore affect the Serengeti ecosystem and the livelihoods of people in Tanzania [ 40 ]. The LVBC, under the East African Community, developed the Mara River Basin-wide—Water Allocation Plan (MRB-WAP) to help in water demand management and protection of the Mara ecosystem [ 41 ]. The mandate of the LVBC is to implement IWRM in Lake Victoria Basin riparian countries [ 20 ].

Other shared water basins include the Malakisi-Malaba-Sio River basin shared between Uganda and Kenya and the Kagera River basin traversing Burundi, Rwanda, Tanzania and Uganda. The two river basins form part of the Upper Nile system and are governed through the LVBC and the NBI.

The universal transboundary nature of water creates dynamics that warrant cooperation for improved water use. West Africa has 25 transboundary watercourses and only 6 are under agreed management and regulation. The situation is compounded by the fact that 20 watercourses lack strategic river-basin management instruments [ 28 ]. Unregistered rules and the asymmetrical variations associated with watercourses warranted the introduction of the IWRM principle to set equitable water sharing protocols and promote environmental flows (e-flows). The various acts signed represent an evolutionary treaty development that combines th efforts of riparian states to better manage the shared water resources (for detailed basin configuration in West Africa see [ 42 ]). Hence, adoption of the IWRM strategy driven WAWRP of 2008 ensured the coordinanted and harmonised regional water usage mechanisms.

The SADC region has 13 major transboundary river basins which calls for development of agreements on how to handle the shared water resources with the contraints of varying levels of economic development and priorities among the member states. The multi-lateral and bi-lateral agreeements on shared water resources in the SADC is hampered by the hydropolitics where economic power dynamics favour South Africa as in the case of the Orange-Senqu basin [ 43 ].

3.2.3 Donor influence.

The World Bank has been pushing for IWRM principles in the East Africa through the NBI and by pressurising Egypt to agree to co-operate with the upstream riparian countries in the Nile basin [ 38 ]. In the early 1990s, the World Bank had aligned its funding policies to include sustainable water resources management [ 44 ].

In Tanzania, Norway, through NORAD, played a key role in implementing IWRM by promoting water projects including hydropower schemes [ 45 ]. Indeed the transformation of the agricultural sector in Tanzania through Kilimo Kwanza policy of 2009 which emphasised on the commercialization of agriculture including irrigation was driven by foreign donors such as the USAID and UK’s DFID [ 26 ].

In Uganda, however, the reforms in the water sector were initiated devoid of external influence [ 46 ]. However, this assertion is countered by Allouche [ 5 ] who pointed that Uganda had become a ‘darling’ of the donor countries in the early 1990s and that DANIDA helped to develop the Master Water Plan and the country was keen to show a willingness to develop policy instruments favourable to the donor. East African countries are developing economies and therefore most of their development plans are supported by external agencies, which to some extent come with subtle ‘conditions’ such as free-market economies. In fact imposition of tariffs and other economic instruments used to implement IWRM in water supply and irrigation is a market-based approach which was favoured by the World Bank and other development agencies.

Donor aid cannot be downplayed in pushing for IWRM diffusion in low-income aid-dependent countries of West Africa. GoBF [ 47 ] reported that from the period 1996–2001, more than 80% of water-related projects were donor funded. Cherlet and Venot [ 48 ] also found that almost 90% of the water investments in Mali were funded outside the government apparatus. It can, therefore, be argued that donor-aid plays a pivotal and central role in diffusing policy and innovation in aid-depended countries because of the incentive nature it provides for the low-income countries in the sub-Sahara region.

Southern Africa’s experience with western donors including the World Bank in terms of IWRM adoption favoured the urban areas and neglected rural areas (see [ 8 ]). The National Water Act drafting process in South africa was a multi-stakeholder and intersectoral activity that brought in international consultancies. Notable IWRM drivers were Department of International Development—UK (DFID), Danish Danida, and Deustsche Gesellschaft fur Zusammernarbeit (GIZ). The DFID was instrumental in water reform allocation law whilst the GIZ and Danida were active in experimental work in the catchments [ 3 ]. On the contrary, in Zimbabwe, a lack of access to international funding and fleeting donor aid exacerbated the policy uptake as such the anticipated implementation, operationalisation and continuous feedback mechanism for policy revision and administering process was never realised.

3.2.4 Government intervention and pro-active citizenry.

This was predomint in West Africa. For example the Burkinabe government exhibited political goodwill such that in 1995 the government brought together two separate ministries into one ministry of Environment and Water thus enabling coherent policy formulation and giving the ministry one voice to speak on water matters. The dynamic innovation arena (where policy players interact) allows continuous policy revision and redesign thus water policy reform diffusion, and policy frameworks are in a perpetual state of shifting. For example, in the 1990s the Burkinabe government was engaged in several water-related projects and was continuously experimenting with local governance and privatization (from donors) [ 1 ]. This policy shift according to Gupta [ 49 ] qualifies as an innovation driver.

Burkina Faso and Mali’s adoption story is accentuated by heightened agency, the individual enthusiasm on influencing the outcome facilitated policy diffusion and can be argued to be a potential innovation diffusion driver for the IWRM policy approach in the region. The individual policy diffusion fuelled by an enthusiastic citizenry was a sure method that effectively diffused awareness around the IWRM innovation and acted as a driver of the IWRM practices in the region. Individual strategies were honed in smallholder farming institutions to diffuse the IWRM practice and drawing from the Sabatier and Jenkins-Smith [ 50 ] advocacy coalition theory, having individuals with common agendas promoted the transfer and diffusion of water reforms in parts of West Africa.

3.2.5 Legal, political and institutional incoherence.

This was a major factor which dictated the pace of IWRM implementation in Southern Africa. For example, the Fast Track Land Reform (FTLR) programme in Zimbabwe disaggregated the large-scale commercial farms and created smallholder farming [ 51 ], consequently influencing and dictating IWRM policy path. The FTLR programme had a negative impact on the spread and uptake of IWRM. A series of poor economic performance and poor policy design compounded the limited diffusion and the adoption of IWRM practices at local levels in Zimbabwe. The FTLR programme compounded the innovation diffusion process as the Zimbabwe National Water Authority (ZINWA) lost account of who harvested how much at the newly created smallholder farms. Thus, water access imbalance ensured, and ecological sustainability was compromised.

Policy incoherence was a major factor in poor IWRM diffusion and adoption, for example, the government did not synchronise the land and water reforms thus it meant at any given point in time there was a budget for one reform agenda [ 8 ] and the land reform agenda would take precedence because of political rent-seeking. IWRM in its nature couples growth to the coordinated consumption of finite resources, hence the circular approach cannot be easily realised because finte resources are at the core of the strategy’s existence.

South Africa’s transition from Integrated Catchment Management (ICM) strategies to the IWRM strategy, hindered the operationalisation and diffusion of the IWRM strategy [ 52 ]. Despite acknowledging the “integration”, researchers argued that the word lacked a clear-cut definition thus failing to establish a common ground for water’s multi-purpose use [ 53 ]. For maximised adoption of a practice, incremental innovation is required, which was Danida’s agenda in the quest to drive IWRM in South Africa. According to Wehn and Montalvo [ 54 ] incremental innovation “is characterised by marginal changes and occurs in mature circumstances”,

Land reform in South Africa is characterised by (a) redistribution which seeks to transfer land from the white minority on a willing buyer willing seller basis, (b) restitution which rights the discriminatory 1913 land laws that saw natives evicted from their ancestral land, and (c) land tenure that provides tenure to the occupants of the homelands. This new pattern created a new breed of smallholder farmers that are, more often than not, excluded from diffusion and water governance channels [ 55 ]. In addition, researchers argue that a farm once owned by one white farmer is owned by multiple landowners with different cultural backgrounds and, more often than not, IWRM strategy is met with resistance [ 56 ]. Another challenge posed by multi-cultural water users is the interpretation and translation of innovations.

To foster water as an economic good aspect of IWRM the licensing system was enacted in South Africa. The phenomenon was described by van Koppen (2012) as paper water precedes water, thus the disadvantaged black smallholder farmers could not afford paper water which consequently limits access to water. The licensing system can be interpreted as stifling the smallholder sector and hence negative attitudes develop and hinder effective policy diffusion. Another issue that negatively impacted adoption was that issuing a license was subject to farmers possessing storage facilities. The smallholder farmers lack resources hence the requirement for obtaining a license excluded the small players in favour of the large-scale commercial farmers. This consequently maintains the historically skewed status-quo, where “big players” keep winning. Van Koppen [ 57 ] and Denby, Movik [ 58 ] argue the shift from local water rights system to state-based water system have created bottlenecks making it hard for smallholder farmers to obtain “paper water” and subsequently “wet water”. The state-based system is characterised by bureaucracies and local norms are in perpetual change, hence denying the IWRM innovation policy approach stability efficiency.

A lack of political will and pragmatism amplified the poor adoption and operationalisation of IWRM, a poorly performing economy and fleeing donor agencies resulted in less funding for water-related project. Political shenanigans created an imbalance that resulted in two forms of water i.e., water as an economic good vs. water as a social good [ 59 ]. Manzungu [ 60 ] argued post-colonial Zimbabwe continuously failed to develop a peoples-oriented water reform policy. In a bid to correct historical wrongs by availing subsidised water to the vulnerable and support the new social order, the initiative goes against the neo-liberalism approach that defines the “water as an economic good” [ 61 ] which is a founding principle of IWRM.

Water redistribution in South Africa has been fraught with political and technical issues, for example, the Water Allocation Reform of 2003 failed to reconcile the apartheid disparity hence the equity component of IWRM was compromised. IWRM suffered another setback caused by the governing party when they introduced radical innovations that sought to shift from the socialist to neoliberal water resource use approach. The radical innovation through the government benefited the large-scale commercial farmers at the expense of the black smallholder farming community [ 53 ].

3.3 Systematic comparison of findings on East, West and Southern Africa

Data extracts from the respective regional analysis were formulated into theoretical candidate themes. The thematic analysis extracted recurring themes common to all the three regions. An independent reviwer performed the subjective thematic analysis and the authors performed the review on the blind thematic analysis outcome. The analysis performed a data extraction exercise and formulated codes ( Fig 2 ). Themes were then generated from the coded data extracts to create a thematic map. It is worth mentioning that the data extracts were phrases/statement from with in the literature review.

thumbnail

https://doi.org/10.1371/journal.pone.0236903.g002

3.3.1 Donor aid and policy approach.

Donor activity invariably influenced the policy path that individual countries took. The three regions had significant support from donors to drive the IWRM strategy. Zimbabwe experienced a different fate. The political climate caused an exodus of donor support from the nation, which consequently caused a laggard. The absence of donor support was at the backdrop of the two formulated water acts namely National Water Act [ 62 ] and the Zimbabwe National Water Authority Act of 1998 [ 63 ], which were meant to promote equitable water provision amongst the population. This highlights the latent adoption of IWRM strategy. The 2008/2009 cholera outbreak raised alarm and facilitated the return of donor activity in Zimbabwe’s water sector. The availability of donor support motivated the redrafting of a water clause in the 2013 constitution that espoused the IWRM strategy to water management [ 64 ].

Whilst Mehta, Alba [ 64 ] argue that South Africa enjoyed minimal donor support it cannot be downplayed how much donor influence impacted the IWRM strategy adoption. For instance, the Water Allocation Reform (WAR) was drafted with the aid of the UK Department of International Development. The WAR fundamentals are informed by IWRM principles. The economic structural programmes spearheaded by The World Bank and the IMF were active in facilitating the diffusion of the IWRM strategy in Kenya and Uganda. Uganda made strides because of a long-standing relationship with donor nations. The Uganda—donor relationship dates back to early 1990 where Uganda was elected to be the NBI secretariat, this in itself evidence of commitment to water policy reform [ 4 , 65 ]. Donor aid acts as an incentive and augments the low African goverments’ budgets, as such proper accountability and usage of the funds ensures that more funds come in for projected water related projects.

3.3.2 Transboundary water resources.

The Nile River system is the single largest factor driving the IWRM in the region since it is shared across several upstream and downetream nations. Irrigation schemes in Sudan and Egypt rely exclusively on the waters of River Nile and are therefore apprehensive of the actions of upstream states notably Ethiopia, Kenya, Uganda, Tanzania, Rwanda and Burundi. The source of contention is the asymmetrical water needs and allocation which was enshrined in the Sudan–Egypt treaty of 1959 [ 37 ]. Over time, the upstream countried demanded equitable share of the Nile waters and this led to the establishment of NBI. In Eastern Africa, the Nile Basin Initiative (NBI) and the Lake Victoria Basin Commission (LVBC) plays a critical component in promoting the IWRM at regional level [ 20 ]. The LVBC is deeply intertwined with the East African Community (EAC) and thus has more political clout to implement policies regarding utilization of the Lake Victoria waters [ 66 ]. This, therefore, implies that for NBI to succeed, it must have a mandate and political goodwill from the member countries.

The conflicts around the utilization of the Nile water resources persists due to the treaty of 1959 which led to the signing of Cooperative Framework Agreement (CFA) by a number of the Nile basin countries, with the notable exceptions of Egypt, Sudan and South Sudan [ 67 ]. The CFA was signed between 2010 and 2011 and establishes the principle that each Nile Basin state has the right to use, within its territory, the waters of the Nile River Basin, and lays down some factors for determining equitable and reasonable utilization such as the contribution of each state to the Nile waters and the proportion of the drainage area [ 68 ]. The construction of the Grand Ethiopian Renaissance Dam has been a source of concern and conflict among the three riparian countries of Ethiopia, Sudan and Egypt [ 67 ]. The asymmetrical power relations (Egypt is the biggest economy) in the Nile Basin is a big hindrance to the co-operation among the riparian countries [ 69 ] and thus a threat to IWRM implementation in the shared watercourse. While Ethiopia is using its geographical power to negotiate for an equitable share in the Nile water resources, Egypt is utilizing both materials, bargaining and idealistic power to dominate the hydro politics in the region and thus the former can only succeed if it reinforces its geographical power with material power [ 70 ].

Therefore, IWRM implementation at the multi-national stage is complex but necessary to forestall regional conflicts and war. The necessity of co-operation rather than conflict in the Nile Basin is paramount due to the water availability constraints which is experienced by most countries in the region. The transboundary IWRM revolves around water-food- energy consensus where the needs of the riparian countries are sometimes contrasting, for example, Egypt and Sudan require the Nile waters for irrigation to feed their increasing population while Ethiopia requires the Nile waters for power generation to stimulate her economy. The upstream riparian States could use their bargaining power to foster co-operation and possibly force the hegemonic downstream riparian States into the equitable and sustainable use of Nile waters [ 71 ].

The SADC region has 13 major transboundary river basins (excluding the Nile and Congo) of Orange, Limpopo, Incomati, Okavango, Cunene, Cuvelai, Maputo, Buzi, Pungue, Save-Runde, Umbeluzi, Rovuma and Zambezi [ 72 ]. The Revised Protocol on Shared Watercourses was instrumental for managing transboundary water resources in the SADC. The overall aim of the Protocol was to foster co-operation for judicious, sustainable and coordinated management, the protection and utilization of shared water resources [ 73 ].

Ashton and Turton [ 74 ] argue that the transboundary water issues in Southern Africa revolved around the key roles played by pivotal States and impacted States and their corresponding pivotal basins and impacted basins. In this case, pivotal States are riparian states with a high level of economic development (Botswana, Namibia, South Africa, and Zimbabwe) and a high degree of reliance on shared river basins for strategic sources of water supply while impacted States are riparian states (Angola, Lesotho, Malawi, Mozambique, Swaziland, Tanzania, and Zambia) that have a critical need for access to water from an international river basin that they share with a pivotal state, but appear to be unable to negotiate what they consider to be an equitable allocation of water and therefore, their future development dreams are impeded by the asymmetrical power dynamics with the pivotal states. Pivotal Basins (Orange, Incomati, and Limpopo) are international river basins that face closure but are also strategically important to anyone (or all) of the pivotal states by virtue of the range and magnitude of economic activity that they support. Impacted basins (Cunene, Maputo, Okavango, Cuvelai, Pungué, Save-Runde, and Zambezi) are those international river basins that are not yet approaching a point of closure, and which are strategically important for at least one of the riparian states with at least one pivotal State.

The transboundary co-operation under IWRM in Southern Africa is driven mainly by water scarcity which is predominant in most of the SADC countries which may imply the use of inter-basin transfers schemes [ 74 ]. Further, most of the water used for agriculture, industry and domestic are found within the international river basins [ 75 ] which calls for collaborative water management strategies. The tricky feature hindering the IWRM is the fact that States are reluctant to transfer power to River Basin Commissions [ 76 ]. Indeed most of the River Basin Organizations (RBO) in Southern region such as the Zambezi Commission, the Okavango River Basin Commission, and the Orange-Sengu River Basin Commission have loose links with SADC and therefore lack the political clout to implement the policies governing the shared water resources [ 66 ]. Power asymmetry, like in Eastern Africa, is also a bottleneck in achieving equitable sharing of water resources as illustrated by the water transfer scheme involving Lesotho and South Africa [ 77 ]. The hydro-hegemonic South Africa is exercising control over any negotiations and agreements in the Orange-Senqu basin [ 43 ]. Limited data sharing among the riparian States is another challenge which affects water management in transboundary river basins e.g. in the Orange-Senqu basin [ 78 ].

West Africa has 25 transboundary watercourses and only 6 are under agreed management and regulation. The situation is compounded by the fact that 20 watercourses lack strategic river-basin management instruments [ 28 ]. Unregistered rules and the asymmetrical variations associated with watercourses warrant the introduction of the IWRM principle to set equitable water sharing protocols and promote environmental flows (e-flows). The various acts signed represent an evolutionary treaty development that combines the efforts of riparian states to better manage the shared water resources. It is important to note that evolutionary treaties are incremental innovation. Water Resources Coordination Centre (WRCC) was established in 2004 to implement an integrated water resource management in West Africa and to ensure regional coordination of water resource related policies and activities [ 79 ].

The Niger River basin covers 9 Countries of Benin, Burkina, Cameroon, Chad, Côte d’Ivoire, Guinea, Mali, Niger and Nigeria. The Niger River Basin Authority (NBA) was established to promote co-operation among the member countries and to ensure basin-wide integrated development in all fields through the development of its resources, notably in the fields of energy, water resources, agriculture, livestock, forestry exploitation, transport and communication and industry [ 80 ]. The Shared Vision and Sustainable Development Action Programme (SDAP) was developed to enhance co-operation and sharing benefits from the resources of River Niger [ 81 ]. The Niger Basin Water Charter together with the SDAP are key instruments which set out a general approach to basin development, an approach negotiated and accepted not only by all member states but also by other actors who utilize the basin resources [ 82 ].

The main agreement governing the transboundary water resource in River Senegal Basin is the Senegal River Development Organization, OMVS (Organisation pour la mise en valeur du fleuve Sénégal) with its core principle being the equitably shared benefits of the resources of the basin [ 82 ]. The IWRM in the Senegal River Basin is hampered by weak institutional structures and lack of protocol on how shared waters among the States as well as conflicting national and regional interests [ 83 , 84 ]. The Senegal River Basin, being situated in the Sudan-Sahelian region, is faced by the threat of climate change which affects water availability [ 84 ] The Senegal River Basin States have high risks of political instability.

3.4 Prospects of IWRM Africa

The countries in the three regions are at different stages of implementation ( Table 4 ). In East Africa, Uganda and Kenya are at medium-high level while Tanzania is medium-low. Majority of the countries in the Southern Africa region are at medium low. Comoros Islands is the only country at low level of implementation in the region. West African countries are evenly spread between low, medium-low and medium-high levels of implementation. Generally, East Africa is ranked as medium-high level with average score of 54% while Southern Africa and West Africa are ranked as medium low-level at 46% and 42% respectively. However if you include, medium low countries of Rwanda, Burundi, Ethiopia and South Sudan and the low-level Somalia, then East Africa’s score drops to 39% (medium-low).

thumbnail

https://doi.org/10.1371/journal.pone.0236903.t004

The implementation of IWRM in the continent, and more so the inter dependent and multi purpose water use sectors, will continue to evolve amid implementation challenges. The dynamics of water policies, increased competition for finite water resources from rapid urbanization, industrialization and population growth will continue to shape IWRM practices in the region. Trans-boundary water resources management will possibly take centre stage as East African countries move towards full integration and political federation as envisaged in the four pillars of the EAC treaty. Decision support tools such as the Water—Energy—Food (WEF) nexus appraoch will be very relevant in the trans-boundary water resources such as the Nile system, Mara and Kagera river basins. The approach can potentially ameliorate the after effects of the devolved governance system in Kenya that consequently created a multiplicity of transboundary sectors.

Adoption of the IWRM policy in West Africa is fraught with many challenges. For example, despite having significant water resources, the lack of a collective effort by the governments to train water experts at national level presents a challenge for adoption. Unavailability of trained water experts (who in any case are diffusion media) results in a lack of diffusion channels that facilitate policy interpretation, translation and its subsequent implementation. Helio and Van Ingen [ 27 ] pointed out how political instability possesses a threat to current and future implantation initiatives. The future collaboration projects and objective outlined by ECOWAS, CILSS, and UEMO highlight a major effort to bring the region to speed with the IWRM policy approach. The WAWRP objectives can potentially set up the region on an effective IWRM trajectory which can be mimicked and upscaled in other regions. Positives drawn from the region are the deliberate institutional collaborations. Burkina Faso and Mali have the potential to operationalise and facilitate policy diffusion to other neighbouring states. Donor driven reform is essential and national ownership is critical in ensuring the water reform policies and innovation diffusion processes are implemented at the national level.

The IWRM policy approach and practice in South Africa was government-driven whereas in Zimbabwe external donors were the main vehicles for diffusion. For both countries, the water and land reform agenda has a multiplicity of overlapping functionaries; however, they are managed by separate government departments. The silo system at national level prevents effective innovation diffusion and distorts policy interpretation and the subsequent dissemination at the local level.i.

Water affairs are politicised and often, the water reform policy fails to balance the Dublin’s principles which form the backbone of the IWRM innovation policy approach. Failure by national governments to address unequal water access created by former segregationist policies is perpetuated by the lack of balance between creating a new social order and recognising the “water as an economic good” principle.

4 Conclusion

Africa as a laboratory of IWRM produced varied aggregated outcomes. The outcomes were directly linked to various national socio-economic development agendas; thus, the IWRM policy took a multiplicity of paths. In East Africa, Kenya is still recovering from the devolved system of government to the County system which created new transboundary sectors with the country. Water scarcity, trans-boundary water resource and donor aid played a critical role in driving the IWRM policy approach in the three regions. Southern Africa’s IWRM experience has been fraught with policy clashes between the water and land reforms. Similar to Africa, the transboundary issue in Europe and Asia and the subsequent management is a major buy-in for formulating water resources strategies that are people centric and ecologically friendly. Global water scarcity created fertile grounds for IWRM adoption in Asia, specifically India. Thus, we postulate that some of the drivers that influenced the uptake and diffusion in Africa are not only unique to the continent.

For the future, IWRM policy approach can be implemented in Africa and the continent has the potential to implement and adopt the practice. Endowed with a significant number of water bodies, Africa must adopt a blend of IWRM strategy and the water energy food nexus (WEF) for maximising regional cooperation and subsequent economic gains. WEF nexus will help combat a singular or silo approach to natural resources management. WEF nexus and IWRM is a fertile area for future research as it brings a deeper understanding of the trade-offs and synergies exsisting in the water sector across and within regions. In addition, the WEF nexus approach can potentially facilitate a shift to a circular approach that decouples over dependence on one finte resource for development.

Supporting information

S1 checklist..

https://doi.org/10.1371/journal.pone.0236903.s001

S1 Table. Data extracts with the applied codes.

https://doi.org/10.1371/journal.pone.0236903.s002

  • 1. GWP, Capitalizing the development process of the Action Plan for IWRM and its implementation in Burkina Faso . 2009, Global Water Patnership: Ouagadougou, Burkina Faso.
  • 2. Solanes M. and Gonzalez-Villarreal F., The Dublin principles for water as reflected in a comparative assessment of institutional and legal arrangements for integrated water resources management, ed. G.W.P.T.A.C. (TAC). 1999, Stockholm, Sweden.: Global Water Partnership.
  • 3. Mehta L., et al., Flows and Practices : The Politics of Integrated Water Resources Management in Eastern and Southern Africa , Metha L., Derman B., and Manzungu E., Editors. 2017, Weaver Press: Harare, Zimbabwe.
  • View Article
  • Google Scholar
  • 13. UNDESA, International Standard Industrial Classification of All Economic Activities Revision 4 . 2008, United Nations Department of Economic and Social Affairs: New York, USA.
  • PubMed/NCBI
  • 20. GWP, Integrated water resources management in Eastern Africa : Coping with ’complex’ hydrology 2015, Global Water Partnership: Stockholm, Sweden.
  • 21. GOK, The Water Act , 2002 . 2002, Government Printer Nairobi, Kenya.
  • 22. GOK, The Water Act , 2016 . 2016, Government Printer: Nairobi, Kenya.
  • 23. MWLE, A National Water Policy 1999 , Ministry of Water, Lands and Environment Kampala, Uganda.
  • 25. MWLD, National Water Policy . 2002, Ministry of Water and Livestock Development: Dodoma, The United Republic of Tanzania.
  • 27. Helio J. and Van Ingen N., in West Africa Water Resources Policy (WAWRP) . 2008, Partnership for Environmental Governance in West Africa—PAGE.: Ouagadougou. Burkina Faso.
  • 29. Senzanje A., Agricultural Water Management Interventions (Awmi) for Sustainable Agricultural Intensification (SAI) in the Chinyanja Triangle Area of Malawi , Mozambique and Zambia . 2016, IWMI: Pretoria, South Africa.
  • 30. Granit J., Swedish experiences from transboundary water resources management in southern Africa . Stockholm: SIDA (Publications on Water Resources 17), 2000.
  • 32. Kibiiy J. and Kosgei J., Long-Term Water Planning : A Review of Kenya National Water Master Plan 2030 , in Water Resources Management . 2018, Springer: Berlin, Germany. p. 193–208.
  • 41. LVBC, Mara river basin-wide water allocation plan . 2013, Lake Victoria Basin Commission: Kisumu, Kenya.
  • 43. Mirumachi N., Transboundary Water Politics in the Developing World . 2015, New York Routledge.
  • 46. Kesti E., Domestic water supply policy evaluation : A comparative case study of Uganda and Madagascar between 1992 and 2016 . 2019, Lund University Lund, Sweden.
  • 47. GoBF, Le PAGIRE dans le contexte du secteur de l’eau du Burkina . Document debase : Table ronde des bailleurs de fonds du plan d’action pour la gestion intégrée des ressources en eau ., Faso G.d.B., Editor. 2003, GoBF Ouagadougou, Burkina Faso.
  • 49. Gupta J., Driving forces in global freshwater governance. In: Water Policy Entrepreneurs : A Research Companion to Water Transitions Around the Globe ., Huitema D. and Meijerink S., Editors. 2009, Edward Elgar: Cheltenham, UK. p. 37–57.
  • 50. Sabatier P.A. and Jenkins-Smith H.C., Policy change and learning : An advocacy coalition approach . 1993, Colorado, USA.: Westview Pr.
  • 51. Moyo S. and Chambati W., Land and Agrarian Reform in Zimbabwe . 2013, Dakar, Senegal.: African Books Collective.
  • 55. Denby K., et al., The’trickle down’of IWRM : A case study of local-level realities in the Inkomati Water Management Area , South Africa . 2016.
  • 56. Denby K., et al., The’trickle down’of IWRM : A case study of local-level realities in the Inkomati Water Management Area , South Africa . 2016, Harae, Zimbabwe.: Weaver Press.
  • 58. Denby K., et al., The ‘trickle down’of integrated water resources management : A case study of local-level realities in the Inkomati water management area , South Africa . 2017, Harare, Zimbabwe.: Weaver Press.
  • 59. Hellum A. and Derman B., Negotiating water rights in the context of a new political and legal landscape in Zimbabwe , in Mobile People , Mobile Law . 2017, Routledge: London, UK. p. 189–210.
  • 62. GoZ, Zimbabwe Water Act . 1998, GoZ: Harare, Zimbabwe.
  • 63. GoZ, Zimbabwe National Water Authority (Chapter 20 : 25) . 1998, Zimbabwe National Water Authority (ZINWA): Harare, Zimbabwe.
  • 65. Jønch-Clausen T.J.W., what and how, Integrated Water Resources Management (IWRM) and Water Efficiency Plans by 2005 : Why , What , and How . 2004: p. 5–4.
  • 69. Allan J.A. and Mirumachi N., Why Negotiate? Asymmetric Endowments, Asymmetric Power and the Invisible Nexus of Water, Trade and Power that Brings Apparent Water Security, in Transboundary water management Earle A., Jägerskog A., and Öjendal J., Editors. 2010, Stockholm International Water Institute: London. p. 13–26.
  • 70. Cascão A.E. and Zeitoun M., Power, Hegemony and Critical Hydropolitics, in Transboundary Water Management Earle A., Jägerskog A., and Öjendal J., Editors. 2010, Stockholm International Water Institute: London p. 27–42.
  • 71. Cascão A. and Zeitoon M., Changing nature of bargaining power in the hydropolitical relations in the Nile River Basin, in Transboundary water management , Earle A., Jägerskog A., and Öjendal J., Editors. 2010, Stockholm International Water Institute: London. p. 189–194.
  • 73. Heyns P. Strategic and Technical Considerations in the Assessment of Transboundary Water Management with Reference to Southern Africa. in Water , Development and Cooperation- Comparative Perspective : Euphrates-Tigris and Southern Africa . 2005. Bonn Bonn International Center for Conversion.
  • 74. Ashton P. and Turton A., Water and Security in Sub-Saharan Africa: Emerging Concepts and their Implications for Effective Water Resource Management in the Southern African Region, in Facing Global Environmental Change , Brauch H.G., et al., Editors. 2009, Springer: Berlin, Heidelberg. p. 661–674.
  • 75. Ashton P. and Turton A. Transboundary Water Resource Management in Southern Africa: Opportunities, Challenges and Lessons Learned. in Water , Development and Cooperation-Comparative Perspective : Euphrates-Tigris and Southern Africa . 2005. Bonn International Center for Conversion.
  • 76. Swatuk L.A. Political Challenges to Sustainably Managing Intra-Basin Water Resources in Southern Africa: Drawing Lessons from Cases. in Water , Development and Cooperation- Comparative Perspective : Euphrates-Tigris and Southern Africa . 2005. Bonn: Bonn International Center for Conversion.
  • 77. Daoudy M., Getting Beyond the Environment–Conflict Trap: Benefit Sharing in International River Basins, in Transboundary water management , Earle A., Jägerskog A., and Öjendal J., Editors. 2010, Stockholm International Water Institute: London p. 43–58.
  • 79. Bhattacharyya S., Bugatti N., and Bauer H., A bottom-up approach to the nexus of energy , food and water security in the Economic Community of West African States (ECOWAS) region . 2015, London: Economic and Social Research Council.
  • 80. Olomoda I.A. Integrated Water Resources Management: The Niger Basin Authority’s Experience. in From Conflict to Co-operation in International Water Resources Management : Challenges and Opportunities . 2002. Delft, The Netherlands.
  • 81. Andersen I., et al., The Niger River Basin : A Vision for Sustainable Management , ed. Golitzen K.G. 2005, Washington, DC: World Bank.
  • 85. UNEP, Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6 . 5 . 1 : degree of IWRM implementation . 2018, United Nations Environment Programme: Nairobi.

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

water-logo

Journal Menu

  • Aims & Scope
  • Editorial Board
  • Reviewer Board
  • Topical Advisory Panel
  • Instructions for Authors
  • Special Issues
  • Sections & Collections
  • Article Processing Charge
  • Indexing & Archiving
  • Editor’s Choice Articles
  • Most Cited & Viewed
  • Journal Statistics
  • Journal History
  • Journal Awards
  • Society Collaborations
  • Conferences
  • Editorial Office

Journal Browser

  • arrow_forward_ios Forthcoming issue arrow_forward_ios Current issue
  • Vol. 16 (2024)
  • Vol. 15 (2023)
  • Vol. 14 (2022)
  • Vol. 13 (2021)
  • Vol. 12 (2020)
  • Vol. 11 (2019)
  • Vol. 10 (2018)
  • Vol. 9 (2017)
  • Vol. 8 (2016)
  • Vol. 7 (2015)
  • Vol. 6 (2014)
  • Vol. 5 (2013)
  • Vol. 4 (2012)
  • Vol. 3 (2011)
  • Vol. 2 (2010)
  • Vol. 1 (2009)

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

Advanced Research on Sustainable Water Resources Management and Planning under Climate Change

  • Print Special Issue Flyer

Special Issue Editors

Special issue information, benefits of publishing in a special issue.

  • Published Papers

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section " Water and Climate Change ".

Deadline for manuscript submissions: closed (31 December 2021) | Viewed by 83817

Share This Special Issue

research paper about water resources

Dear Colleagues,

Water resources are one of most critical factors for the sustainable development of human society and are also important for maintaining natural ecosystems. With the influence of climate change and human activities, water resources in many watersheds have changed greatly with a decrease in water availability, deterioration in water quality, and degradation in aquatic ecological systems, especially in important rivers in the world, such as the Yangtze River, the Yellow River, the Amazon River, etc. Therefore, it is a daunting challenge to maintain sustainability at the watershed scale through scientific and effective water resource management and planning. In recent years, many scholars have put forward many new theories, technologies, and methods in the research of watershed hydrological processes, as well as water resource management and planning, to deal with climate change and human disturbance.

This Special Issue on “ Advanced Research on Sustainable Water Resources M anagement and P lanning under Climate Change ” aims to explore new models, methods, and tools for water resource management and planning and their applications in various watersheds of the world. We hope this will facilitate the development of sustainable water resource management at the watershed level.

Topics of interest may include but are not limited to:

  • Water availability assessment;
  • Water security assessment;
  • Hydrologic modeling;
  • Water resource planning;
  • Climate changes on water resources;
  • Water resources management;
  • Surface water and groundwater;
  • Ecological water demanded or environmental flow.

Prof. Dr. Chunhui Li Dr. Zoe Li Dr. Yurui Fan Prof. Dr. Celso Augusto Guimarães Santos Prof. Dr. Junliang Jin Guest Editors

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website . Once you are registered, click here to go to the submission form . Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

  • water resource assessment
  • water resource planning
  • climate change
  • integrated management
  • drought and flood
  • hydrologic modeling
  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here .

Published Papers (20 papers)

research paper about water resources

Graphical abstract

research paper about water resources

Further Information

Mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

research paper about water resources

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

  •  We're Hiring!
  •  Help Center

Water resources

  • Most Cited Papers
  • Most Downloaded Papers
  • Newest Papers
  • Last »
  • Water Follow Following
  • Hydrology Follow Following
  • Environmental Engineering Follow Following
  • Sustainable Water Resources Management Follow Following
  • Water quality Follow Following
  • Water Engineering Follow Following
  • Environmental Sustainability Follow Following
  • Climate Change Follow Following
  • Geographic Information Systems (GIS) Follow Following
  • Hydrogeology Follow Following

Enter the email address you signed up with and we'll email you a reset link.

  • Academia.edu Journals
  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Advertisement

Advertisement

Integrated Water Resources Management in Cities in the World: Global Challenges

  • Open access
  • Published: 22 March 2023
  • Volume 37 , pages 2787–2803, ( 2023 )

Cite this article

You have full access to this open access article

research paper about water resources

  • Chloé Grison   ORCID: orcid.org/0000-0002-5842-1524 1 , 2 ,
  • Stef Koop   ORCID: orcid.org/0000-0001-9906-3746 1 , 2 ,
  • Steven Eisenreich   ORCID: orcid.org/0000-0002-5920-3764 3 ,
  • Jan Hofman   ORCID: orcid.org/0000-0002-5982-603X 4 ,
  • I-Shin Chang   ORCID: orcid.org/0000-0002-6307-5806 5 ,
  • Jing Wu   ORCID: orcid.org/0000-0001-6911-2041 6 ,
  • Dragan Savic   ORCID: orcid.org/0000-0001-9567-9041 1 , 7 , 8 &
  • Kees van Leeuwen   ORCID: orcid.org/0000-0003-1605-4268 2  

6061 Accesses

16 Citations

3 Altmetric

Explore all metrics

Water scarcity and accessibility remain persistently amongst the most prominent global challenges. Although there is a wide agreement among international organizations that Integrated Water Resources Management (IWRM) and water governance are key to overcome water-related challenges, global assessments of the progress made by cities is lacking. This paper for the first time analyses the challenges of water, wastewater, municipal solid waste and climate change in cities. We used empirical studies (125 cities) based on the City Blueprint Approach and developed a statistical estimation model to estimate IWRM performances of another 75 cities. These 200 cities in total represent more than 95% of the global urban population. This comprehensive global picture enables us to evaluate the existing gaps in achieving water-related Sustainable Development Goals (SDGs), in particular SDG 6 (clean water and sanitation) and SDG 11 (sustainable cities and communities). The best performing cities were Amsterdam and Singapore. Unfortunately, most cities do not yet manage their water resources wisely and are far from achieving the SDGs. For instance, targets regarding drinking water supply are still a challenge for many cities in Africa and Asia and challenges regarding sanitation are high in cities in Africa, Asia and Latin America. The same holds for solid waste management, climate adaptation, and people living in informal settlements. In another paper we will address the solution pathways to these global challenges.

Similar content being viewed by others

Clean water and sanitation for all: interactions with other sustainable development goals.

research paper about water resources

Proposal for a National Blueprint Framework to Monitor Progress on Water-Related Sustainable Development Goals in Europe

Overview of water policy developments: pre- and post-2015 development agenda.

Avoid common mistakes on your manuscript.

1 Introduction

International agreements on the need for Integrated Water Resources Management (IWRM) have led to major policy initiatives in many countries. IWRM is widely acclaimed by international organizations such as the International Water Management Institute, the Food and Agriculture Organization, the World Bank and various regional authorities. IWRM is defined as a process that promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems (UNEP 2022 ; United Nations 2022 ). The concept and its application is considered by many as pivotal for achieving the water-related UN Sustainable Development Goals (SDGs; Essex et al. 2020 ; Pahl-Wostl et al. 2021 ). As approximately 70% of the population will be living in urban areas by 2050, with the largest growth taking place in cities in Africa and Asia, the pressure for tackling water challenges has shifted to cities (Romano and Akhmouch 2019 ). Cities have the responsibility for local resources management, land use and urban infrastructures, and therefore can position themselves as arenas for tackling the largest changes (OECD 2015a ; Hachaichi and Egieya 2023 ).

The impact of IWRM in cities can be far-reaching. As urban populations grow, water demands increase, which can substantially exacerbate freshwater scarcity at a regional scale (Koop and Van Leeuwen 2017 ; OECD 2015a ). Cities are, therefore, as vulnerable to water challenges as they are influential in finding management solutions. Due to the pressing nature of climate change, cities are forced to rapidly adapt their IWRM and anticipate long-term climate impact, such as in the case of Cape Town (Madonsela et al. 2019 ), Sabadell (Šteflová et al. 2018 ) and Ahmedebad (Aartsen et al. 2018 ). IWRM has rather universal claims on how water management should be reshaped. This triggers discussions on the ambiguity of IWRM, because it has also been criticized for being too all-encompassing which results in difficulty in providing clear implementations steps (Casiano Flores et al. 2019 ; Gupta et al. 2013 ; Medema et al. 2008 ; Saravanan et al. 2009 ). Hence, as a next step, cities need to identify which elements of their water management and governance already perform well and which ones need to be improved (Koop et al. 2017 ; OECD 2015b ; Pahl-Wostl et al. 2021 ).

Despite ample research on IWRM theory and application in many world regions, there are limited indicator-based studies that provide coherent global perspectives that are specifically focussed on IWRM in cities (Engle et al. 2011 ; Koop and Van Leeuwen 2017 ). Key impediment of such a focus is the availability of a coherent, meaningful and reliable indicators that can lay out urban IWRM challenges and prospects. It is particularly challenging to ensure that data-poor world regions are not under-represented. The City Blueprint Approach (CBA) has been developed and applied to address this gap and the methodology has been published in this journal (Koop and Van Leeuwen 2015a , b ; Koop et al. 2017 ). The approach uses quantitative water management performance assessments. The outcome – a baseline assessment – can initiate a development and implementation cycle for improving IWRM in the cities.

Early 2021, we completed the assessment of 125 cities in 53 countries (See Supplementary Information ). The city’s locations are biased towards Europe and China (Chang et al. 2020 ; Feingold et al. 2018 ; Koop and Van Leeuwen 2015a ; Rahmasary et al. 2019 ). Because a significant amount of quantitative data are required to complete the CBA, urban populations in data-poor regions of sub-Saharan Africa, Latin America and Central Asia are underrepresented.

The aim of this paper is to provide a coherent outline addressing urban IWRM challenges and prospects across the globe. In order to fulfil this aim, an assessment of the current state of urban water management across the globe is provided. Water management performance is summarized by the Blue City Index (BCI), the geometric mean of the 24 City Blueprint indicators. This will be explained in more detail in the methodology section. To address the gap in city assessments of data-poor regions, a statistical BCI estimation model has been developed which is based on empirical data from 125 cities. Capitals in 75 data-poor countries were selected and their BCIs were estimated. Next, the current water challenges are examined using appropriate SDGs and other relevant indicators. The focus here is mainly on SDG 6 and SDG 11. In this way, a broad diagnosis of urban water challenges across the globe is provided. In another paper we will provide the solution pathways to these global challenges (Koop et al. 2022 ).

2 Methodology

2.1 the city blueprint approach.

The CBA assesses the main social, environmental, financial and governance pressures exerted on cities by the Trends and Pressures Framework (TPF; Koop and Van Leeuwen 2021a ). These pressures may identify less favourable conditions for a city’s water management performance. How cities are managing their IWRM is assessed with the City Blueprint Framework (CBF; Koop and Van Leeuwen 2021b ). Where cities can improve their water governance is assessed with the Governance Capacity Framework (GCF; Koop and Van Leeuwen 2021c ). An example of a complete analysis with the CBA has been published recently for the city of Windhoek (Olivieri et al. 2022 ). In this study we apply only the TPF and the CBF. Each city is assessed using 24 indicators for the TPF (Koop and Van Leeuwen 2021a ) and 24 indicators for the CBF (Koop and Van Leeuwen 2021b ). Each TPF and CBF indicator is standardised to a scale of zero to ten (see Supplementary Information ). The indicators, the sources of information, and sample calculations are provided in great detail (Koop and Van Leeuwen 2021a , b ).

The TPF is a quantitative approach and is composed of 24 descriptive indicators divided over 4 categories (social, environmental, financial, and governance). Indicators are scored on a scale from 0–10, where 0 means no concern and 10 is high concern.

The CBF deals with the adequacy of the city's water management assessing seven main categories: (i) basic water services, (ii) water quality, (iii) wastewater treatment, (iv) water infrastructure, (v) solid waste (vi) climate adaptation and (vii) plans and actions. The IWRM performance is summarized in the BCI, the geometric average of the 24 indicators of the CBF (Koop and Van Leeuwen 2021b ). A low BCI implies that there are many improvement options needed, in for example, the city’s wastewater treatment, solid waste treatment and climate adaptation activities. The 24 indicators are visualised in a spider web diagram (Fig.  1 ).

figure 1

The 24 City Blueprint performance indicators of Singapore. The indicators score from zero to ten

2.2 Update of the Methodology and Database of Cities

CBA data have been gathered for 125 municipalities and regions in 53 countries over a period of about 10 years. In order to consolidate the databases and to remove temporal inconsistencies and to further simplify and harmonize the methodology, a major review and update took place in 2021. Every effort has been undertaken to verify sources and to find the most recent information available. During this process the original CBA applied since 2015, has been modified as well. Details on the consolidation of the database are provided in the Supplementary Information . The update of the database of cities was the first step in the process which is summarized in Fig.  2 .

figure 2

Schematic illustration of the methods adopted in this study

2.3 Development of a Statistical Estimation Model for the BCI

For the development of the BCI estimation model, a forward stepwise regression analysis approach was adopted using Microsoft Excel to create an expression composed of a limited number of variables representing the indicators. Stepwise regression is a method of fitting regression models in which the choice of predictive variables is carried out to select important variables to obtain a simple and easily interpretable model. Stepwise regression is a process of building a model by successively adding or removing variables based solely on the p values associated with the t statistic of their estimated coefficients. It begins with a model that contains no variables and subsequently adds the most significant variables one after the other (Sokal and Rohlf 1981 ). This methodology was applied three times: using the 24 CBF indicators, using the 24 TPF indicators and using the combined 48 CBF and TPF indicators. The consolidated database of 125 cities was used (see Supplementary Information ). For the BCI estimation model, this process was concluded when three easily accessible variables were identified and the prediction intervals reflected a similar variation as observed in the empirical BCI scores observed in countries in which many cities were assessed, such as the Netherlands, Sweden, the USA and China.

Once the equations for each of these three datasets were determined, the equation that resulted in the smallest 95% prediction interval was selected as the estimation model. To be useful, data for each of the CBA indicators in this equation must be readily available for countries globally. As such, the ease of finding data for each indicator was assessed. It was decided for reasons of transparency and replicability to only include indicators that can be obtained from accessible public databases from international organizations.

2.4 Selection of Cities for Applying the Estimation Model

Before applying the estimation model, a list of cities to be evaluated was selected. As the aim of this paper is to provide BCI scores for cities globally to adequately provide global representation, a list was constructed by first selecting countries lacking CBA assessments. To avoid a bias towards urban populations in countries with a negligible portion of the global urban population, countries with greater than 0.5% of the world population were included, while countries with less than 0.02% of the world population were excluded. Then the capital cities of the remaining countries were selected for evaluation. The final sorting was dependent on data availability. The complete list of cities for which the BCIs were estimated (BCI*) using the estimation model can be found in the Results section and the Supplementary Information .

2.5 Challenges in Cities

The challenges in cities across the globe, were calculated on the basis of the empirical and estimated BCI scores and sorted at continental level, i.e., for Europe, Oceania, Asia, North America, Latin America and Africa.

2.6 Challenges in Countries

The CBA can also provide links to a broader set of IWRM goals and international strategies, such as the United Nations’ SDGs (Essex et al. 2020 ; Koop and Van Leeuwen 2017 ). This is particularly reflected by SDG 6—Ensure availability and sustainable management of water and sanitation for all , and by SDG 11—Make cities and human settlements inclusive safe, resilient and sustainable (UN General Assembly 2017 ). Every indicator in SDG 6 and most indicators in SDG 11 are represented by the CBA, ensuring that city assessments using this method will be representative of SDG targets as well. With a target date of 2030 for these SDG goals, it is vitally important to obtain a global assessment of where cities currently stand in terms of achieving these goals (Essex et al. 2020 ). Unfortunately, these data is not available. As of 2020, only 42% of the 92 SDG environment-related SDG indicators had sufficient data at national level to assess progress in achieving the targets (UNEP 2021a ). Thus, in order to broaden the assessment of the global urban challenges, we used a number of water-related and urban SDG indicators (United Nations 2022 ) for which data were available at national level:

Achieve universal and equitable access to safe and affordable drinking water for all (SDG 6.1).

Access to adequate and equitable sanitation and hygiene for all (SDG 6.2).

Urban population (not) living in slums, informal settlements or inadequate housing (SDG 11.1).

Urban solid waste regularly collected and with adequate final discharge out of total urban solid waste generated by cities (SDG 11.6.1).

Annual mean levels of fine particulate matter (SDG 11.6.2)

We also included one of the World Bank governance indicators, i.e., government effectiveness (Kaufmann et al. 2010 , 2022 ) and climate adaptation (ND-GAIN 2020 ) to provide a broader set of indicators. Data for these indicators had to be available for any country and ideally come from the same source. Data sources were selected based on quality, availability and reliability. As such, large data banks such as World Bank and the UN were prioritized. All data except for government effectiveness and climate adaptation was under a percentage of the population either meeting or not meeting the target. The percentage of the population meeting the target was calculated per country based on its total population.

3 Results and Discussion

3.1 the bci estimation model.

We developed a simple BCI estimation model for assessing urban water management performances (BCI*), particularly for cities in data-poor regions. The results of the full statistical analyses including all data used are provided in the Supplementary Information . The resulting equation for estimating BCI scores (denoted as BCI*) is shown in the equation below:

One of the most important results of the statistical analysis is the relevance of the Governance effectiveness parameter of the World Bank in predicting water management performance. Governance effectiveness is the most important variable (Multiple R = 0.71 and R Square = 0.50). It explains most of the variation observed in the empirical BCIs, and confirms the results published earlier based on an analysis of only 45 cities (Koop and Van Leeuwen 2015b ). Although correlations are not cause-effect relations, the results support the view expressed by Romano and Akhmouch ( 2019 ), that if you want to ‘fix the water pipes, start with the institutions’. The second most important variable is secondary wastewater treatment. Poor waste water treatment is observed in many cities and contributes to severe surface water pollution. Water infrastructure, and sewers and wastewater treatment plants in particular, are among the most expensive infrastructures in cities (Koop and Van Leeuwen 2017 ). The logic of this parameter in the estimation model is that only countries with a high gross national income per capita (Koop and Van Leeuwen 2021a ) can afford to invest in proper wastewater treatment. Proper collection and treatment of wastewater is also a prerequisite for energy recovery from wastewater, which is the third varable in the BCI estimation model.

The estimation model predicts the BCI* within a range of ± 1.3 (95% prediction interval) from the fully assessed value with a correlation coefficient (R 2 ) of 0.83. The estimated BCI scores using this model versus CBA-assessed BCI scores are shown in Fig.  3 .

figure 3

Three-variable BCI* estimation model based on CBF and TPF, as provided in Eq. ( 1 ):  BCI* =  4.25—0.396*TPF21 [Government effectiveness]  +  0.195*CBF4 [Secondary WWT]  +  0.111*CBF8 [Energy recovery]. The plot shows the estimated BCI*s against the fully assessed BCIs for the combined 48 CBF and TPF indicators. The solid red line represent a full correspondence of the estimated BCI* and the actual BCI (Y = X; slope = 1). The applicability domain of the estimation model covers the BCI range of 1 to 6.5 as for BCI values > 6.5 a departure from linearity can be observed

3.2 Limitations of the BCI Estimation Model and Its Implications

The 125 cities that were used for the statistical analysis have not been randomly selected. In fact, our work was originally focussed on cities in Europe, that volunteered to participate. Later on cities in other regions were added. Collaboration with scientists in China resulted in the inclusion of all provincial capitals of China to our database (Chang et al. 2020 ). Hence, the cities used for the statistical analysis for the development of the estimation model have a distribution bias towards Europe and China. Of the 125 cities that were assessed, 67 cities are non-European of which 32 cities are Chinese.

The implications of this bias in the selection of cities on the estimation model are not large. The width of the prediction interval is comparable to the variation of BCIs in countries where multiple cities have been assessed such as in China, the USA, the Netherlands and Sweden. For example the lowest BCI in the Netherlands was for the city of Eindhoven (5.8) and the highest BCI value (8.7) was for the city of Amsterdam.

Above BCI values of 6.5, there is a departure from linearity, resulting in lower BCI* values. This implies that the applicability domain of the BCI estimation model covers the range of 1 to 6.5. For our assessments of the BCI* scores for 75 capitals in this study this has no practical consequences as all BCI* values are in the range of 1 to 5.5 (Table 1 ). The full data sets of cities, the statistical analyses and the data are provided in the Supplementary Information .

3.3 Application of the BCI Estimation Model

Successful application of the model requires reliable input data for the three indicators selected in the equation: TPF 21 – Government effectiveness, CBF 4—Secondary wastewater treatment, and CBF 8 – Energy recovery from wastewater. Developing the model meant searching for high quality credible data, readily available for any country and ideally coming from the same source (see Supplementary Information ). The data input was then converted to a score out of 10, in order to reflect BCI scores which range from 0 (low performance) to 10 (high performance). The process for each indicator is described below.

3.3.1 TPF Indicator 21: Government Effectiveness

Government effectiveness is one of the governance indicators rigorously assessed by the World Bank (Kaufmann et al. 2010 ; 2022 ), as established in the guidelines for assessing the TPF indicators (Koop and Van Leeuwen 2021a ). The World Bank database provides government effectiveness data for 209 countries (and territories) with the most recent data from 2019. The indicator score of the World Bank varies from -2.5 to 2.5 and has been transformed by a min–max standardization method into scores of 0 to 10 (Koop and Van Leeuwen 2015a ). Finally, the scores are converted into “concern scores”, where a score of 0 means a low concern and a score of 10 indicating a high concern for government effectiveness (Koop and Van Leeuwen 2021a ):

3.3.2 CBF Indicator 4: Secondary Wastewater Treatment

This indicator measures the percentage of the urban population whose wastewater is treated by secondary treatment. The original suggested data source for this indicator in the guidelines for assessing CBF scores is from the OECD (Koop and Van Leeuwen 2021b ; OECD 2021 ). However, these data are limited to OECD countries, many of which have already been assessed by the CBA. As the goal of the model is to estimate BCI* scores for unassessed regions globally, new data sources are required.

An in-depth review revealed two reliable data sources. A joint UNICEF and WHO report ( 2019 ) provides data for the proportion of wastewater treated to at least secondary treatment for 65 non-CBA assessed countries. The IB-Net database (IBNET 2021 ) also provides data for the percentage of collected sewage that receives at least secondary treatment for 51 non-CBA assessed countries.

Because the data from these two sources are partly overlapping, together they provide data for 85 countries that have not yet been assessed by the CBA. As both sources provide data in percentages, the indicator score could then be transformed for use in the model by using the following equation:

3.3.3 CBF Indicator 8: Energy Recovery

The energy recovery from wastewater systems is expressed as CBF Indicator 8 (Koop and Van Leeuwen 2021b ). Data for the percentage of wastewater treatment plants where energy recovery systems are installed and operational have been found for eight cities (International Water Association 2018 ), of which only three have not yet been assessed by the CBA. For these data, the indicator score could be determined using the following equation:

Aside from this source, adequate data are generally lacking for energy recovery from wastewater systems. Our BCI assessments of cities have revealed that the value of CBF indicator 8 is zero for approximately half of the cities assessed. Published reports support these results, as energy recovery from wastewater treatment is only widely practised in regions with established energy recovery, i.e., Western Europe, North America and Australia (Alvarez and Buchauer 2015 ; Strazzabosco et al. 2021 ). Energy recovery is unlikely in countries that possess little or no secondary or tertiary wastewater treatment (Jones et al. 2021 ; Qadir et al. 2020 ). Furthermore, energy recovery is costly (as are secondary and tertiary treatment), and countries with low GDPs are unlikely to invest in these technologies (Jones et al. 2021 ; Van Puijenbroek et al. 2019 ). Countries with low GDPs and/or no secondary wastewater treatment are likely to have scores of zero for CBF indicator 8.

3.4 A Global Overview of Challenges in 200 Cities

The result of the above analysis is that in addition to the 125 cities already assessed, the BCI* scores for 75 cities were estimated, representing in total 95% of the world population (Table 1 , Fig.  4 and Supplementary Information ).

figure 4

Global map of estimated BCI* and fully assessed BCI scores for 200 cities. This shows that Latin America, Africa, and parts of Asia generally have BCI scores lower than 4, indicating a great disparity in IWRM. Only Northern Europe shows a distinct cluster of cities scoring higher than 6, whereas Singapore (BCI = 8.1) and Amsterdam (BCI = 8.7) are the only cities with BCI scores > 8

The global map illustrating BCI scores indicates that the majority of cities show ample room too improve IWRM. This is further evidenced when examining the BCI scores per continent (Table 2 ): 145 cities of the 200 assessed have BCI scores lower than 5 and the average score across all continents is 4.1. Even in Europe, with the largest concentration of higher scoring cities, 36% of those assessed scored lower than 5.

3.5 Challenges in Countries

Table 3 provides an overview of the current relative distances to several water-related and urban SDG targets, as well as to other relevant indicators such as government effectiveness and climate adaptation. SDG 6.1 and 6.2 correlate with CBF indicators 1 (access to drinking water) and 2 (access to sanitation), respectively. SDG 11.6.1 corresponds with CBF 15 (Municipal solid waste collected) and SDG 11.6.2 corresponds with TPF 14 (air quality). Finally, TPF 21 (government effectiveness) and CBF 19 (climate adaptation) were included as well to provide broader insights into the challenges.

The results of these assessments reflect the observations at city level as presented in Table 2 and Fig.  4 . Targets regarding drinking water supply have been met in many countries with the exception of some countries in Africa and Asia. Challenges regarding sanitation are still high in countries in Africa, Asia and Latin America. The same holds for management of solid waste, climate adaptation, the percentage of the urban population living in slums and needs for improving governance effectiveness. Air pollution is a global challenge. Relatively positive scores regarding air pollution are observed for Australia, Canada, Finland, Iceland, Ireland, New Zealand, Norway, Portugal, Spain, Sweden, USA and Uruguay. Globally much work remains to meet these targets, especially with regards to urban solid waste management, waste water treatment, air pollution and climate adaptation.

4 Concluding Remarks

This paper aims to provide a coherent outline of IWRM challenges and prospects in cities cross the globe. The 125 empirical assessments and the 75 estimates of the BCI have been used to measure progress on making cities and human settlements inclusive and safe. Additionally, the assessments have been used to determine the current status of the implementation of the greater international water and urban agendas (SDGs 6 and 11). We observe that 145 of the 200 cities assessed or estimated have BCIs below 5, which means that many cities still have to implement advanced wastewater treatment, energy and resource recovery, and climate adaptation measures. Only two cities have BCI scores > 8 (Amsterdam and Singapore). The current state of affairs urges for accelerated improvements: large portions of the global population are far from reaching the SDGs goals, notably related to water, waste and climate change. This further supports the global assessment performed using the CBA, revealing not only relatively low BCI scores in cities around the world, but also significant regional disparities between Europe and Latin America, Africa and parts of Asia. There is a need to focus on the practical implementation of the SDGs for which global availability and accessibility of data is essential (Essex et al. 2020 ).

As populations continue to grow and urbanisation rates increase, cities must accelerate their development beyond their growth rates to achieve IWRM. This requires long-term strategies, continuous monitoring of progress, adaptive capacity and stable and sustainable financing. As water can be linked, directly or indirectly, to nearly all of the SDGs, addressing water challenges could be the gateway to meeting the targets of the other SDGs as well (Essex et al. 2020 ; Makarigakis and Jimenez-Cisneros 2019 ; Van Leeuwen 2020 ).

Meeting the UN SDGs is a political choice. Data gaps are preventing adequate implementation of the SDGs. It is not possible to manage a process if progress cannot be monitored, and monitoring of progress is hindered if adequate data is not available (UNEP 2021a ). To date, funding for SDG 6 targets has been deemed insufficient and the global framework for IWRM shows a poor record of implementation. Unless significant progress is made, it is envisaged that SDG 6 targets will not be met by 2030, which in turn impacts other SDGs (UNEP 2021a ).

Finally, our data indicate that the World Bank indicator government effectiveness is the most important indicator in the developed estimation model (see also Supplementary Information ). It echoes the relevance of IWRM, and in particular the relevance of good water governance as stated by the OECD that if you want to ‘fix the water pipes, start with the institutions’ (Romano and Akhmouch 2019 ). The relevance of effective public–private collaboration for IWRM has been widely acknowledged and plays a major role in cities where most of the challenges of water, waste and climate change reside and solutions for these challenges need to be developed (Beisheim and Campe 2012 ; Koop and Van Leeuwen 2017 ; Rahmasary et al. 2020 ; UNEP 2021b ). The longer it takes to start the actions, the more difficult it will be to overcome challenges of water, wastewater, waste and climate change in cities. In another paper we will discuss the global solutions for IWRM in cities (Koop et al. 2022 ).

Data Availability

The authors declare that all the data supporting the findings of this study are included in its Supplementary Information .

Aartsen M, Koop SHA, Hegger DLT, Goswami B, Oost J, Van Leeuwen CJ (2018) Towards meaningful science-policy interaction: Lessons from a systematic water governance analysis in the city of Ahmedabad. India. Reg Environ Change 18(8):2445–2457. https://doi.org/10.1007/s10113-018-1363-1

Article   Google Scholar  

Alvarez VV, Buchauer K (2015) East Asia and Pacific - Wastewater to energy processes: a technical note for utility managers in EAP countries, Report No: ACS13221, World Bank.  https://documents1.worldbank.org/curated/pt/489941468188683153/pdf/ACS13221-v1-Revised-Box393171B-PUBLIC-Wastewater-to-Energy-Report-Main-Report.pdf . Accessed Feb 2022

Beisheim M, Campe S (2012) Transnational public–private partnerships’ performance in water governance: Institutional design matters. Environ Plan C Gov Policy 30(4):627–642. https://doi.org/10.1068/c1194

Casiano Flores C, Özerol G, Bressers H, Kuks S, Edelenbos J, Gleason A (2019) The state as a stimulator of wastewater treatment policy: a comparative assessment of three subnational cases in central Mexico. J Environ Policy Plan 21(2):134–152. https://doi.org/10.1080/1523908X.2019.1566060

Chang I-S, Zhao M, Chen Y, Guo X, Zhu Y, Wu J, Yuan T (2020) Evaluation of the integrated water resources management in China’s major cities – based on the City Blueprint Approach. J Clean Prod 262:121419. https://doi.org/10.1016/j.jclepro.2020.121410

Engle NL, Johns OR, Lemos MC, Nelson DR (2011) Integrated and adaptive management of water resources: Tensions, legacies, and the next best thing. Ecol Soc 16(19). https://doi.org/10.5751/ES-03934-160119

Essex B, Koop SHA, Van Leeuwen CJ (2020) Proposal for a national blueprint framework to monitor progress on water-related sustainable development goals in Europe. Environ Manag 65:1–18. https://doi.org/10.1007/s00267-019-01231-1

Feingold D, Koop S, Van Leeuwen K (2018) The city blueprint approach: urban water management and governance in cities in the U.S. Environ Manag 61:9–23. https://doi.org/10.1007/s00267-017-0952-y

Gupta J, Pahl-Wostl C, Zondervan R (2013) “Glocal” water governance: A multi-level challenge in the anthropocene. Curr Opin Environ Sustain 5(6):573–580. https://doi.org/10.1016/j.cosust.2013.09.003

Hachaichi M, Egieya J (2023) Water-food-energy nexus in global cities: solving urban challenging interdependencies together. Water Resour Manag. https://doi.org/10.21203/rs.3.rs-1956052/v1

IBNET (2021) 17.3 - Wastewater secondary treatment or better. https://database.ib-net.org/Reports/Indicators/HeatMap?itemId=18 . Accessed Feb 2022

International Water Association (2018) Wastewater Report 2018 - The Reuse Opportunity. https://www.iwa-network.org/wp-content/uploads/2018/02/OFID-Wastewater-report-2018.pdf . Accessed Feb 2022

Jones ER, van Vliet MTH, Qadir M, Bierkens MFP (2021) Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst Sci Data 13(2):237–254. https://doi.org/10.5194/essd-13-237-2021

Kaufmann D, Kraay A, Mastruzzi M (2010) The worldwide governance indicators: methodology and analytical issues (English). Policy Research working paper no. WPS 5430, World Bank. http://documents.worldbank.org/curated/en/630421468336563314/The-worldwide-governance-indicators-methodology-and-analytical-issues . Accessed Feb 2022

Kaufmann D, Kraay A, Mastruzzi M (2022) Worldwide Governance Indicators. World Bank.  http://info.worldbank.org/governance/wgi/Home/Reports . Accessed Feb 2022

Koop SHA, Van Leeuwen CJ (2015a) Application of the improved city blueprint framework in 45 municipalities and regions. Water Resour Manag 29:4629–4647. https://doi.org/10.1007/s11269-015-1079-7

Koop SHA, Van Leeuwen CJ (2015b) Assessment of the sustainability of water resources management: critical review of the city blueprint approach. Water Resour Manag 29:5649–5670. https://doi.org/10.1007/s11269-015-1139-z

Koop SHA, Van Leeuwen CJ (2017) The challenges of water, waste and climate change in cities. Environ Dev Sustain 19:385–418. https://doi.org/10.1007/s10668-016-9760-4

Koop SHA, Koetsier L, Doornhof A, Reinstra O, Van Leeuwen CJ, Brouwer S, Dieperink C, Driessen PPJ (2017) Assessing the governance capacity of cities to address challenges of water, waste, and climate change. Water Resour Manag 31:3427–3443. https://doi.org/10.1007/s11269-017-1677-7

Koop SHA, Van Leeuwen CJ (2021a) Indicators of the Trends and Pressures Framework (TPF). KWR Water Research Institute https://library.kwrwater.nl/publication/61396712/ . Accessed Feb 2022

Koop SHA, Van Leeuwen CJ (2021b) Indicators of the City Blueprint performance Framework (CBF). KWR Water Research Institute https://library.kwrwater.nl/publication/61397318/ . Accessed Feb 2022

Koop SHA, Van Leeuwen CJ (2021c) Indicators of the Governance Capacity Framework (GCF). KWR Water Research Institute. https://library.kwrwater.nl/publication/61397218/ . Accessed Feb 2022

Koop SHA, Grison C, Eisenreich SJ, Hofman J, van Leeuwen K (2022) Integrated water resources management in cities in the world: Global solutions. Sustain Cities Soc 86:104137. https://doi.org/10.1016/j.scs.2022.104137

Madonsela BT, Koop SHA, Van Leeuwen CJ, Carden KJ (2019) Evaluation of water governance processes required to transition towards water sensitive urban design—an indicator assessment approach for the City of Cape Town. Water 11(2):292. https://doi.org/10.3390/w11020292

Makarigakis AK, Jimenez-Cisneros BE (2019) UNESCO’s contribution to face global water challenges. Water 11(2):388. https://doi.org/10.3390/w11020388

Medema, W, McIntosh, GBS, Jeffrey, PJ (2008) From premise to practice: a critical assessment of integrated water resources management and adaptive management approach in the water sector. Ecol Soc 13(2).  https://doi.org/10.5751/ES-02611-130229

ND-GAIN (2020) Notre Dame global adaptation index. University of Notre Dame. https://gain.nd.edu/our-work/country-index/ . Accessed Feb 2022

OECD (2015a) Water and cities: Ensuring sustainable futures. Organisation for Economic Cooperation and Development. https://www.oecd-ilibrary.org/environment/water-and-cities_9789264230149-en . Accessed Feb 2022

OECD (2015b) OECD Principles on water governance. Organisation for Economic Cooperation and Development. https://www.oecd.org/cfe/regionaldevelopment/OECD-Principles-on-Water-Governance.pdf . Accessed Feb 2022

OECD (2021) Wastewater treatment (% population connected). Organisation for Economic Co-operation and Development. https://stats.oecd.org/viewhtml.aspx?datasetcode=WATER_TREAT&lang=en . Accessed Feb 2022

Olivieri F, Koop SHA, Van Leeuwen K, Hofman J (2022) Enhancing the governance capacity to ensure long-term water supply: the case of Windhoek, Namibia. Sustainability 14:2387. https://doi.org/10.3390/su14042387

Pahl-Wostl, C, Dombrowsky, I, Mirumachi, N (2021) Water Governance and Policies . In Bogardi, JJ, Gupta, J, Nandalal, KDW, Salamé, L, van Nooijen, RRP, Kumar, N, Tingsanchali, T, Bhaduri, A, Kolechkina, AG (Eds.), Handbook of Water Resources Management: Discourses. Concepts and Examples (pp. 253–272). Springer International Publishing. https://doi.org/10.1007/978-3-030-60147-8

Qadir M, Drechsel P, Cisneros BJ, Kim Y, Pramanik A, Mehta P, Olaniyan O (2020) Global and regional potential of wastewater as a water. nutrient and energy source. Nat Resour Forum 44(1):40–51. https://doi.org/10.1111/1477-8947.12187

Rahmasary AN, Koop SHA, Van Leeuwen CJ (2020) Assessing Bandung’s governance challenges of water, waste, and climate change: lessons from urban Indonesia. Integr Environ Assess Manag 17(6):434–444. https://doi.org/10.1002/ieam.4334

Rahmasary AN, Robert S, Chang I-S, Jing W, Park J, Bluemling B, Koop S, Van Leeuwen K (2019) Overcoming the challenges of water, waste and climate change in Asian cities. Environ Manag 63:520–535. https://doi.org/10.1007/s00267-019-01137-y

Romano O, Akhmouch A (2019) Water governance in cities: current trends and future challenges. Water 11(3). https://doi.org/10.3390/w11030500

Saravanan VS, McDonald GT, Mollinga PP (2009) Critical review of Integrated Water Resources Management: Moving beyond polarised discourse. Nat.l Resour . Forum 33:76–86. https://doi.org/10.1111/j.1477-8947.2009.01210.x

Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research. (2nd ed.). W.H. Freeman and Company, New York

Šteflová M, Koop S, Elelman R, Vinyoles J, Van Leeuwen K (2018) Governing non-potable water-reuse to alleviate water stress: the case of Sabadell. Spain. Water 10(6):739. https://doi.org/10.3390/w10060739

Strazzabosco A, Kenway SJ, Conrad SA, Lant PA (2021) Renewable electricity generation in the Australian water industry: lessons learned and challenges for the future. Renew Sust Energ Rev 147:111236. https://doi.org/10.1016/j.rser.2021.111236

UN General Assembly (2017) Resolution adopted by the General Assembly on 6 July 2017 - Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development. Seventy-first session, A/RES/71/313, United Nations. https://ggim.un.org/documents/a_res_71_313.pdf . Accessed Feb 2022

UNEP (2021a) Measuring progress: Environment and the SDGs. United Nations Environment Programme. https://www.unep.org/resources/publication/measuring-progress-environment-and-sdgs . Accessed Feb 2022

UNEP (2021b) Progress on integrated water resour manage. Tracking SDG 6 series: global indicator 6.5.1 updates and acceleration needs. United Nations Environment Programme. https://www.unwater.org/publications/progress-on-integrated-water-resources-management-651/ . Accessed Feb 2022

UNEP (2022) What is integrated water resources management? United Nations Environment Programme. https://www.unep.org/explore-topics/disasters-conflicts/where-we-work/sudan/what-integrated-water-resources-management . Accessed Feb 2022

UNICEF and World Health Organization (2019) Progress on household drinking water. sanitation and hygiene I 2000–2017: Special focus on inequalities. United Nations Children’s Fund and World Health Organization.  https://www.unicef.org/reports/progress-on-drinking-water-sanitation-and-hygiene-2019#:~:text=The%20population%20using%20safely%20managed,soap%20and%20water%20at%20home . Accessed Feb 2022

United Nations (2022) SDG Indicators. Global indicator framework for the sustainable development goals and targets of the 2030 agenda for sustainable development. United Nations. https://unstats.un.org/sdgs/indicators/indicators-list/ . Accessed Feb 2022

Van Leeuwen CJ (2020) Time to implement SMART SDGs. Netherlands Water Partnership. https://www.netherlandswaterpartnership.com/news/time-implement-smart-sdgs . Accessed Feb 2022

Van Puijenbroek PJTM, Beusen AHW, Bouwman AF (2019) Global nitrogen and phosphorus in urban wastewater based on the shared socio-economic pathways. J Environ Manag 231:446–456. https://doi.org/10.1016/j.jenvman.2018.10.048

Download references

Acknowledgements

We would like to thank all master students from Utrecht University, the young professionals from UNESCO, and all volunteers in our urban network for their efforts to participate in the City Blueprint efforts to analyse IWRM in cities. We thank Sharon Clevers (KWR Water Research Institute) for her assistance in the preparation of Fig. 4 . Last but not least we want to thank the management board of KWR who has stimulated this research as part of the global Watershare activities.

Author information

Authors and affiliations.

KWR Water Research Institute, Groningenhaven 7, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands

Chloé Grison, Stef Koop & Dragan Savic

Copernicus Institute of Sustainable Development, Utrecht University, Vening Meineszgebouw A Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands

Chloé Grison, Stef Koop & Kees van Leeuwen

Department of Hydrology and Hydraulic Engineering, Vrije University Brussel (VUB), 2 Pleinlaan, 1050, Brussels, Belgium

Steven Eisenreich

Water Innovation and Research Centre, Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK

School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China

I-Shin Chang

College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China

Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter, EX4 4QF, UK

Dragan Savic

Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia

You can also search for this author in PubMed   Google Scholar

Contributions

K.v.L., S.K. and D.S. designed the study. C.G created the estimation model and calculated the distance to targets. C.G. drafted the manuscript. I.C and S.W. provided data for the CBF and TPF of cities in China. S.E. suggested improvements for the TPF. D.S., S.E., J.H., S.K. and K.v.L. reviewed the manuscript. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Kees van Leeuwen .

Ethics declarations

Ethical approval.

The authors subscribe to the ethical principles of this journal.

Consent to Participate

All authors approved to participate in the efforts to publish this paper.

Consent to Publish

All authors approve the publication in this journal.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 105 KB)

Supplementary file2 (xlsx 487 kb), supplementary file3 (xlsx 64.9 kb), supplementary file4 (xlsx 85.2 kb), rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Grison, C., Koop, S., Eisenreich, S. et al. Integrated Water Resources Management in Cities in the World: Global Challenges. Water Resour Manage 37 , 2787–2803 (2023). https://doi.org/10.1007/s11269-023-03475-3

Download citation

Received : 28 April 2022

Accepted : 16 February 2023

Published : 22 March 2023

Issue Date : May 2023

DOI : https://doi.org/10.1007/s11269-023-03475-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Integrated water management
  • Water governance
  • Sustainability indicators
  • Blue City Index
  • Estimation model
  • Find a journal
  • Publish with us
  • Track your research

COMMENTS

  1. Water Resources Research

    Water Resources Research. JOURNAL METRICS >. Online ISSN: 1944-7973. Print ISSN: 0043-1397. Water Resources Research is an open access journal that publishes original research articles and commentaries on hydrology, water resources, and the social sciences of water that provide a broad understanding of the role of water in Earth's system.

  2. Water management: Current and future challenges and research directions

    Water Resources Research is an AGU hydrology journal publishing original research articles and commentaries on hydrology, water resources, and the social sciences of water. ... Research results presented in WRR papers, for example, need to be "translated" into language that shows their relevance to policy makers, and indeed the public. It ...

  3. Hydrological cycle and water resources in a changing world: A review

    In this paper, we review the current status and existing issues of hydrological cycle and water resource research in the context of global climate change. We discuss the major challenges, key scientific issues and potential future research directions that need to be addressed in the future. 2. Current research status.

  4. Water Resources Management and Sustainability

    This book is of immense use to the policymakers, environmentalists, ecologists, academician, research scholars and people in general concerned with water resources management. View Show abstract

  5. Advances in Water Resources

    Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance …. View full aims & scope.

  6. Evaluating the economic impact of water scarcity in a changing world

    Abstract. Water scarcity is dynamic and complex, emerging from the combined influences of climate change, basin-level water resources, and managed systems' adaptive capacities. Beyond ...

  7. Water Research

    In association with the International Water Association Water Research has an open access companion journal Water Research X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Water Research publishes refereed, original research papers on all aspects of the science and technology of the anthropogenic water cycle, water quality, and its management ...

  8. Global water resources and the role of groundwater in a resilient water

    Center for Water Resources Research, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu Natal, Durban, South Africa ... All authors reviewed the paper and provided edits.

  9. Water resource management: IWRM strategies for improved water ...

    Objective The analytical study systematically reviewed the evidence about the IWRM strategy model. The study analysed the IWRM strategy, policy advances and practical implications it had, since inception on effective water management in East, West and Southern Africa. Methods The study adopted the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) and the ...

  10. JAWRA Journal of the American Water Resources Association

    The JAWRA Journal of the American Water Resources Association (JAWRA) publishes original research that examines the multidisciplinary and complex issues surrounding water resources. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.

  11. Home

    Water Resources Management is an international, multidisciplinary forum for the publication of original contributions and the exchange of knowledge and experience on the management of water resources. In particular, the journal publishes contributions on water resources assessment, development, conservation and control, emphasizing policies and ...

  12. Advanced Research on Sustainable Water Resources Management and ...

    In addition to the social economy and the rapid development of industry and agriculture, water demand is increasing and poses challenges in the over-exploitation of water resources. This research establishes a model to assess the sustainable exploitation of water resources based on system dynamics theory and STELLA software, which solves the ...

  13. Home

    Overview. Sustainable Water Resources Management publishes articles that deal with the interface of water resources science and the needs of human populations, highlighting work that addresses practical methods and basic research on water resources management. Covers a broad range of topics in water resources management.

  14. Home

    Overview. Water Resources is a peer-reviewed journal focused on the assessment and use of water resources, their quality, and protection. Covers a broad range of research areas, including physical, dynamic, chemical, and biological phenomena that occur within or involve water. Encompasses research related to the prediction of variations in ...

  15. Climate change impacts on water resources: An overview

    4.1. Introduction4.1.1. Background and significance. The repercussions of climate change on water resources are so prominent to be ignored and require significant reviews of recent developments in this domain (Borges et al., 2020).The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report forecasts that freshwater resources will be reduced by 10-30% in many arid central ...

  16. Water Resources Research Priorities for the Future

    An urgent priority for water resources research is the development of a process for regularly reviewing and revising the entire portfolio of research being conducted. Six criteria are recommended for assessing both the scope of the entire water resources research enterprise and also the nature, urgency, and purview of individual research areas. ...

  17. Water Resources in the Philippines : An Overview of its Uses

    Its total internal water resource is estimated at 130 km^3/year. However, despite the vastness of this potential supply, the country has a low freshwater availability per capita and experiences ...

  18. (PDF) Water: its importance to life

    We wash in it, fish in it, swim in it, drink it and cook with it, although probably. not all at the same time. We are about two-thirds water. and require water to live. Life as we know it could ...

  19. Water resources Research Papers

    A two day interactive course about the role, constraints, opportunities and limitiations of modelling in water resources management and planning. Includes a workshop case study, 'The Legend of Big Hydro'. Download. by Bruce P Hooper. 10. Political Science , Water resources , Decision Support Systems , Surface Water Modeling.

  20. Integrated Water Resources Management in Cities in the World: Global

    Water scarcity and accessibility remain persistently amongst the most prominent global challenges. Although there is a wide agreement among international organizations that Integrated Water Resources Management (IWRM) and water governance are key to overcome water-related challenges, global assessments of the progress made by cities is lacking. This paper for the first time analyses the ...

  21. PDF Water Resources in India: Its Demand, Degradation and Management

    The (NCIWRD) estimated the total basin wise average annual flow in Indian River systems as 1953 km3. The annual potential nature of ground water recharge from rainfall in India is about 342.43 km3 .The total utilizable water resources of India, according to the CWC are 1110 BCM.

  22. Water Accounting Plus: limitations and opportunities for supporting

    Materials and methods. The WA+ approach is reported to inform three stages of the IWRM planning process: issue assessment, strategy evaluation, and monitoring and evaluation (Mul et al., Citation 2023).To assess its potential to support IWRM, we conducted two systematic literature reviews to (i) capture how water resources assessments are conventionally implemented in the MENA region and (ii ...

  23. (PDF) Research articles published in water resources journals: A

    The analysis showed that researchers paid most attention to groundwater and water quality parameters. Modeling and adsorption were the most popular techniques in water resources research. In ...

  24. Water Resources Research Call for Papers

    Call for Papers. This page is dedicated to our current Calls for Papers - please see the full list below and link through to the full calls for details. ... Water Resources Research welcomes submissions within the scope of each individual call. Drones for sensing freshwater ecosystems. Deadline for Submissions: 30 June 2024. More information ...