helpful professor logo

10 Case Study Advantages and Disadvantages

10 Case Study Advantages and Disadvantages

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

case study advantages and disadvantages, explained below

A case study in academic research is a detailed and in-depth examination of a specific instance or event, generally conducted through a qualitative approach to data.

The most common case study definition that I come across is is Robert K. Yin’s (2003, p. 13) quote provided below:

“An empirical inquiry that investigates a contemporary phenomenon within its real-life context, especially when the boundaries between phenomenon and context are not clearly evident.”

Researchers conduct case studies for a number of reasons, such as to explore complex phenomena within their real-life context, to look at a particularly interesting instance of a situation, or to dig deeper into something of interest identified in a wider-scale project.

While case studies render extremely interesting data, they have many limitations and are not suitable for all studies. One key limitation is that a case study’s findings are not usually generalizable to broader populations because one instance cannot be used to infer trends across populations.

Case Study Advantages and Disadvantages

1. in-depth analysis of complex phenomena.

Case study design allows researchers to delve deeply into intricate issues and situations.

By focusing on a specific instance or event, researchers can uncover nuanced details and layers of understanding that might be missed with other research methods, especially large-scale survey studies.

As Lee and Saunders (2017) argue,

“It allows that particular event to be studies in detail so that its unique qualities may be identified.”

This depth of analysis can provide rich insights into the underlying factors and dynamics of the studied phenomenon.

2. Holistic Understanding

Building on the above point, case studies can help us to understand a topic holistically and from multiple angles.

This means the researcher isn’t restricted to just examining a topic by using a pre-determined set of questions, as with questionnaires. Instead, researchers can use qualitative methods to delve into the many different angles, perspectives, and contextual factors related to the case study.

We can turn to Lee and Saunders (2017) again, who notes that case study researchers “develop a deep, holistic understanding of a particular phenomenon” with the intent of deeply understanding the phenomenon.

3. Examination of rare and Unusual Phenomena

We need to use case study methods when we stumble upon “rare and unusual” (Lee & Saunders, 2017) phenomena that would tend to be seen as mere outliers in population studies.

Take, for example, a child genius. A population study of all children of that child’s age would merely see this child as an outlier in the dataset, and this child may even be removed in order to predict overall trends.

So, to truly come to an understanding of this child and get insights into the environmental conditions that led to this child’s remarkable cognitive development, we need to do an in-depth study of this child specifically – so, we’d use a case study.

4. Helps Reveal the Experiences of Marginalzied Groups

Just as rare and unsual cases can be overlooked in population studies, so too can the experiences, beliefs, and perspectives of marginalized groups.

As Lee and Saunders (2017) argue, “case studies are also extremely useful in helping the expression of the voices of people whose interests are often ignored.”

Take, for example, the experiences of minority populations as they navigate healthcare systems. This was for many years a “hidden” phenomenon, not examined by researchers. It took case study designs to truly reveal this phenomenon, which helped to raise practitioners’ awareness of the importance of cultural sensitivity in medicine.

5. Ideal in Situations where Researchers cannot Control the Variables

Experimental designs – where a study takes place in a lab or controlled environment – are excellent for determining cause and effect . But not all studies can take place in controlled environments (Tetnowski, 2015).

When we’re out in the field doing observational studies or similar fieldwork, we don’t have the freedom to isolate dependent and independent variables. We need to use alternate methods.

Case studies are ideal in such situations.

A case study design will allow researchers to deeply immerse themselves in a setting (potentially combining it with methods such as ethnography or researcher observation) in order to see how phenomena take place in real-life settings.

6. Supports the generation of new theories or hypotheses

While large-scale quantitative studies such as cross-sectional designs and population surveys are excellent at testing theories and hypotheses on a large scale, they need a hypothesis to start off with!

This is where case studies – in the form of grounded research – come in. Often, a case study doesn’t start with a hypothesis. Instead, it ends with a hypothesis based upon the findings within a singular setting.

The deep analysis allows for hypotheses to emerge, which can then be taken to larger-scale studies in order to conduct further, more generalizable, testing of the hypothesis or theory.

7. Reveals the Unexpected

When a largescale quantitative research project has a clear hypothesis that it will test, it often becomes very rigid and has tunnel-vision on just exploring the hypothesis.

Of course, a structured scientific examination of the effects of specific interventions targeted at specific variables is extermely valuable.

But narrowly-focused studies often fail to shine a spotlight on unexpected and emergent data. Here, case studies come in very useful. Oftentimes, researchers set their eyes on a phenomenon and, when examining it closely with case studies, identify data and come to conclusions that are unprecedented, unforeseen, and outright surprising.

As Lars Meier (2009, p. 975) marvels, “where else can we become a part of foreign social worlds and have the chance to become aware of the unexpected?”

Disadvantages

1. not usually generalizable.

Case studies are not generalizable because they tend not to look at a broad enough corpus of data to be able to infer that there is a trend across a population.

As Yang (2022) argues, “by definition, case studies can make no claims to be typical.”

Case studies focus on one specific instance of a phenomenon. They explore the context, nuances, and situational factors that have come to bear on the case study. This is really useful for bringing to light important, new, and surprising information, as I’ve already covered.

But , it’s not often useful for generating data that has validity beyond the specific case study being examined.

2. Subjectivity in interpretation

Case studies usually (but not always) use qualitative data which helps to get deep into a topic and explain it in human terms, finding insights unattainable by quantitative data.

But qualitative data in case studies relies heavily on researcher interpretation. While researchers can be trained and work hard to focus on minimizing subjectivity (through methods like triangulation), it often emerges – some might argue it’s innevitable in qualitative studies.

So, a criticism of case studies could be that they’re more prone to subjectivity – and researchers need to take strides to address this in their studies.

3. Difficulty in replicating results

Case study research is often non-replicable because the study takes place in complex real-world settings where variables are not controlled.

So, when returning to a setting to re-do or attempt to replicate a study, we often find that the variables have changed to such an extent that replication is difficult. Furthermore, new researchers (with new subjective eyes) may catch things that the other readers overlooked.

Replication is even harder when researchers attempt to replicate a case study design in a new setting or with different participants.

Comprehension Quiz for Students

Question 1: What benefit do case studies offer when exploring the experiences of marginalized groups?

a) They provide generalizable data. b) They help express the voices of often-ignored individuals. c) They control all variables for the study. d) They always start with a clear hypothesis.

Question 2: Why might case studies be considered ideal for situations where researchers cannot control all variables?

a) They provide a structured scientific examination. b) They allow for generalizability across populations. c) They focus on one specific instance of a phenomenon. d) They allow for deep immersion in real-life settings.

Question 3: What is a primary disadvantage of case studies in terms of data applicability?

a) They always focus on the unexpected. b) They are not usually generalizable. c) They support the generation of new theories. d) They provide a holistic understanding.

Question 4: Why might case studies be considered more prone to subjectivity?

a) They always use quantitative data. b) They heavily rely on researcher interpretation, especially with qualitative data. c) They are always replicable. d) They look at a broad corpus of data.

Question 5: In what situations are experimental designs, such as those conducted in labs, most valuable?

a) When there’s a need to study rare and unusual phenomena. b) When a holistic understanding is required. c) When determining cause-and-effect relationships. d) When the study focuses on marginalized groups.

Question 6: Why is replication challenging in case study research?

a) Because they always use qualitative data. b) Because they tend to focus on a broad corpus of data. c) Due to the changing variables in complex real-world settings. d) Because they always start with a hypothesis.

Lee, B., & Saunders, M. N. K. (2017). Conducting Case Study Research for Business and Management Students. SAGE Publications.

Meir, L. (2009). Feasting on the Benefits of Case Study Research. In Mills, A. J., Wiebe, E., & Durepos, G. (Eds.). Encyclopedia of Case Study Research (Vol. 2). London: SAGE Publications.

Tetnowski, J. (2015). Qualitative case study research design.  Perspectives on fluency and fluency disorders ,  25 (1), 39-45. ( Source )

Yang, S. L. (2022). The War on Corruption in China: Local Reform and Innovation . Taylor & Francis.

Yin, R. (2003). Case Study research. Thousand Oaks, CA: Sage.

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 10 Reasons you’re Perpetually Single
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 20 Montessori Toddler Bedrooms (Design Inspiration)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 21 Montessori Homeschool Setups
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 101 Hidden Talents Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Social Theory Applied

  • About This Site
  • What is social theory?
  • Habermas/Parsons
  • Frankfurt School
  • Inequalities
  • Research Students
  • Dirty Looks
  • Latest Posts
  • Pedagogy & Curriculum
  • Contributors
  • Publications

Select Page

What are the benefits and drawbacks of case study research?

Posted by Mark Murphy | May 24, 2014 | Method , Research Students | 0

What are the benefits and drawbacks of case study research?

There should be no doubt that with case studies what you gain in depth you lose in breadth – this is the unavoidable compromise that needs to be understood from the beginning of the research process. So this is neither an advantage nor a disadvantage as one aspect cancels out the benefits/drawbacks of the other – there are other benefits and drawbacks that need attention however …

  • Their flexibility: case studies are popular for a number of reasons, one being that they can be conducted at various points in the research process. Researchers are known to favour them as a way to develop ideas for more extensive research in the future – pilot studies often take the form of case studies. They are also effective conduits for a broad range of research methods; in that sense they are non-prejudicial against any particular type of research – focus groups are just as welcome in case study research as are questionnaires or participant observation.
  • Capturing reality: One of their key benefits is their ability to capture what Hodkinson and Hodkinson call ‘lived reality’ (2001: 3). As they put it, case studies have the potential, when applied successfully, to ‘retain more of the “noise” of real life than many other types of research’ (Hodkinson and Hodkinson, 2001: 3). The importance of ‘noise’ and its place in research is especially important in contexts such as education, for example in schools where background noise is unavoidable. Educational contexts are always complex, and as a result it is difficult to exclude other unwanted variables, ‘some of which may only have real significance for one of their students’ (Hodkinson and Hodkinson, 2001, 4).
  • The challenge of generality: At the same time, given their specificity, care needs to be taken when attempting to generalise from the findings. While there’s no inherent flaw in case study design that precludes its broader application, it is preferable that researchers choose their case study sites carefully, while also basing their analysis within existing research findings that have been generated via other research designs. No design is infallible but so often has the claim against case studies been made, that some of the criticism (unwarranted and unfair in many cases) has stuck.
  • Suspicion of amateurism: Less partisan researchers might wonder whether the case study offers the time and finance-strapped researcher a convenient and pragmatic source of data, providing findings and recommendations that, given the nature of case studies, can neither be confirmed nor denied, in terms of utility or veracity. Who is to say that case studies offer anything more than a story to tell, and nothing more than that?
  • But alongside this suspicion is another more insiduous one – a notion that ‘stories’ are not what social science research is about. This can be a concern for those who favour  case study research, as the political consequences can be hard to ignore. That said, so much research is based either on peoples’ lives or the impact of other issues (poverty, institutional policy) on their lives, so the stories of what actually occurs in their lives or in professional environments tend to be an invaluable source of evidence. The fact is that stories (individual, collective, institutional) have a vital role to play in the world of research. And to play the specific v. general card against case study design suggests a tendency towards forms of research fundamentalism as opposed to any kind of rational and objective take on case study’s strengths and limitations.
  • Preciousness: Having said that, researchers should not fall into the trap (surprising how often this happens) of assuming that case study data speaks for itself – rarely is this ever the case, an assumption that is as patronising to research subjects as it is false. The role of the researcher is both to describe social phenomena and also to explain – i.e., interpret. Without interpretation the research findings lack meaningful presentation – they present themselves as fact when of course the reality of ‘facts’ is one of the reasons why such research is carried out.
  • Conflation of political/research objectives: Another trap that case study researchers sometimes fall into is presenting research findings as if they were self-evidently true, as if the stories were beyond criticism. This is often accompanied by a vague attachment to the notion that research is a political process – one that is performed as a form of liberation against for example policies that seek to ignore the stories of those who ‘suffer’ at the hands of overbearing political or economic imperatives. Case study design should not be viewed as a mechanism for providing a ‘local’ bulwark against the ‘global’ – bur rather as a mechanism for checking the veracity of universalist claims (at least one of its objectives). The valorisation of particularism can only get you so far in social research.

[This post is adapted from material in ‘Research and Education’ (Curtis, Murphy and Shields , Routledge 2014), pp. 80-82].

Reference: Hodkinson, P. and H. Hodkinson (2001). The strengths and limitations of case study research. Paper presented to the Learning and Skills Development Agency conference, Making an impact on policy and practice , Cambridge, 5-7 December 2001, downloaded from h ttp://education.exeter.ac.uk/tlc/docs/publications/LE_PH_PUB_05.12.01.rtf.26.01.2013

About The Author

Mark Murphy

Mark Murphy

Mark Murphy is a Reader in Education and Public Policy at the University of Glasgow. He previously worked as an academic at King’s College, London, University of Chester, University of Stirling, National University of Ireland, Maynooth, University College Dublin and Northern Illinois University. Mark is an active researcher in the fields of education and public policy. His research interests include educational sociology, critical theory, accountability in higher education, and public sector reform.

Related Posts

Should mobile phones be banned from Scottish Schools?

Should mobile phones be banned from Scottish Schools?

August 16, 2017

“I was cool in my own head”: Exploring the biographies of outstanding female maths students

“I was cool in my own head”: Exploring the biographies of outstanding female maths students

June 3, 2013

Me, My PhD and my grumbles about Actor Network Theory

Me, My PhD and my grumbles about Actor Network Theory

January 11, 2013

Bricoleur, confectioner and a love for what we do: Doctoral students tell their stories

Bricoleur, confectioner and a love for what we do: Doctoral students tell their stories

October 15, 2013

Recent Posts

Journal of Applied Social Theory Special Edition on Character Assassination

  • Privacy Policy

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Descriptive Research Design

Descriptive Research Design – Types, Methods and...

Triangulation

Triangulation in Research – Types, Methods and...

Basic Research

Basic Research – Types, Methods and Examples

Quantitative Research

Quantitative Research – Methods, Types and...

Mixed Research methods

Mixed Methods Research – Types & Analysis

Phenomenology

Phenomenology – Methods, Examples and Guide

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

what are the benefits of case study research

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Creating Brand Value
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

5 Benefits of Learning Through the Case Study Method

Harvard Business School MBA students learning through the case study method

  • 28 Nov 2023

While several factors make HBS Online unique —including a global Community and real-world outcomes —active learning through the case study method rises to the top.

In a 2023 City Square Associates survey, 74 percent of HBS Online learners who also took a course from another provider said HBS Online’s case method and real-world examples were better by comparison.

Here’s a primer on the case method, five benefits you could gain, and how to experience it for yourself.

Access your free e-book today.

What Is the Harvard Business School Case Study Method?

The case study method , or case method , is a learning technique in which you’re presented with a real-world business challenge and asked how you’d solve it. After working through it yourself and with peers, you’re told how the scenario played out.

HBS pioneered the case method in 1922. Shortly before, in 1921, the first case was written.

“How do you go into an ambiguous situation and get to the bottom of it?” says HBS Professor Jan Rivkin, former senior associate dean and chair of HBS's master of business administration (MBA) program, in a video about the case method . “That skill—the skill of figuring out a course of inquiry to choose a course of action—that skill is as relevant today as it was in 1921.”

Originally developed for the in-person MBA classroom, HBS Online adapted the case method into an engaging, interactive online learning experience in 2014.

In HBS Online courses , you learn about each case from the business professional who experienced it. After reviewing their videos, you’re prompted to take their perspective and explain how you’d handle their situation.

You then get to read peers’ responses, “star” them, and comment to further the discussion. Afterward, you learn how the professional handled it and their key takeaways.

Learn more about HBS Online's approach to the case method in the video below, and subscribe to our YouTube channel for more.

HBS Online’s adaptation of the case method incorporates the famed HBS “cold call,” in which you’re called on at random to make a decision without time to prepare.

“Learning came to life!” said Sheneka Balogun , chief administration officer and chief of staff at LeMoyne-Owen College, of her experience taking the Credential of Readiness (CORe) program . “The videos from the professors, the interactive cold calls where you were randomly selected to participate, and the case studies that enhanced and often captured the essence of objectives and learning goals were all embedded in each module. This made learning fun, engaging, and student-friendly.”

If you’re considering taking a course that leverages the case study method, here are five benefits you could experience.

5 Benefits of Learning Through Case Studies

1. take new perspectives.

The case method prompts you to consider a scenario from another person’s perspective. To work through the situation and come up with a solution, you must consider their circumstances, limitations, risk tolerance, stakeholders, resources, and potential consequences to assess how to respond.

Taking on new perspectives not only can help you navigate your own challenges but also others’. Putting yourself in someone else’s situation to understand their motivations and needs can go a long way when collaborating with stakeholders.

2. Hone Your Decision-Making Skills

Another skill you can build is the ability to make decisions effectively . The case study method forces you to use limited information to decide how to handle a problem—just like in the real world.

Throughout your career, you’ll need to make difficult decisions with incomplete or imperfect information—and sometimes, you won’t feel qualified to do so. Learning through the case method allows you to practice this skill in a low-stakes environment. When facing a real challenge, you’ll be better prepared to think quickly, collaborate with others, and present and defend your solution.

3. Become More Open-Minded

As you collaborate with peers on responses, it becomes clear that not everyone solves problems the same way. Exposing yourself to various approaches and perspectives can help you become a more open-minded professional.

When you’re part of a diverse group of learners from around the world, your experiences, cultures, and backgrounds contribute to a range of opinions on each case.

On the HBS Online course platform, you’re prompted to view and comment on others’ responses, and discussion is encouraged. This practice of considering others’ perspectives can make you more receptive in your career.

“You’d be surprised at how much you can learn from your peers,” said Ratnaditya Jonnalagadda , a software engineer who took CORe.

In addition to interacting with peers in the course platform, Jonnalagadda was part of the HBS Online Community , where he networked with other professionals and continued discussions sparked by course content.

“You get to understand your peers better, and students share examples of businesses implementing a concept from a module you just learned,” Jonnalagadda said. “It’s a very good way to cement the concepts in one's mind.”

4. Enhance Your Curiosity

One byproduct of taking on different perspectives is that it enables you to picture yourself in various roles, industries, and business functions.

“Each case offers an opportunity for students to see what resonates with them, what excites them, what bores them, which role they could imagine inhabiting in their careers,” says former HBS Dean Nitin Nohria in the Harvard Business Review . “Cases stimulate curiosity about the range of opportunities in the world and the many ways that students can make a difference as leaders.”

Through the case method, you can “try on” roles you may not have considered and feel more prepared to change or advance your career .

5. Build Your Self-Confidence

Finally, learning through the case study method can build your confidence. Each time you assume a business leader’s perspective, aim to solve a new challenge, and express and defend your opinions and decisions to peers, you prepare to do the same in your career.

According to a 2022 City Square Associates survey , 84 percent of HBS Online learners report feeling more confident making business decisions after taking a course.

“Self-confidence is difficult to teach or coach, but the case study method seems to instill it in people,” Nohria says in the Harvard Business Review . “There may well be other ways of learning these meta-skills, such as the repeated experience gained through practice or guidance from a gifted coach. However, under the direction of a masterful teacher, the case method can engage students and help them develop powerful meta-skills like no other form of teaching.”

Your Guide to Online Learning Success | Download Your Free E-Book

How to Experience the Case Study Method

If the case method seems like a good fit for your learning style, experience it for yourself by taking an HBS Online course. Offerings span eight subject areas, including:

  • Business essentials
  • Leadership and management
  • Entrepreneurship and innovation
  • Digital transformation
  • Finance and accounting
  • Business in society

No matter which course or credential program you choose, you’ll examine case studies from real business professionals, work through their challenges alongside peers, and gain valuable insights to apply to your career.

Are you interested in discovering how HBS Online can help advance your career? Explore our course catalog and download our free guide —complete with interactive workbook sections—to determine if online learning is right for you and which course to take.

what are the benefits of case study research

About the Author

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case Study? | Definition, Examples & Methods

What Is a Case Study? | Definition, Examples & Methods

Published on May 8, 2019 by Shona McCombes . Revised on November 20, 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyze the case, other interesting articles.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Case study examples
Research question Case study
What are the ecological effects of wolf reintroduction? Case study of wolf reintroduction in Yellowstone National Park
How do populist politicians use narratives about history to gain support? Case studies of Hungarian prime minister Viktor Orbán and US president Donald Trump
How can teachers implement active learning strategies in mixed-level classrooms? Case study of a local school that promotes active learning
What are the main advantages and disadvantages of wind farms for rural communities? Case studies of three rural wind farm development projects in different parts of the country
How are viral marketing strategies changing the relationship between companies and consumers? Case study of the iPhone X marketing campaign
How do experiences of work in the gig economy differ by gender, race and age? Case studies of Deliveroo and Uber drivers in London

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

TipIf your research is more practical in nature and aims to simultaneously investigate an issue as you solve it, consider conducting action research instead.

Unlike quantitative or experimental research , a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

Example of an outlying case studyIn the 1960s the town of Roseto, Pennsylvania was discovered to have extremely low rates of heart disease compared to the US average. It became an important case study for understanding previously neglected causes of heart disease.

However, you can also choose a more common or representative case to exemplify a particular category, experience or phenomenon.

Example of a representative case studyIn the 1920s, two sociologists used Muncie, Indiana as a case study of a typical American city that supposedly exemplified the changing culture of the US at the time.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews , observations , and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

Example of a mixed methods case studyFor a case study of a wind farm development in a rural area, you could collect quantitative data on employment rates and business revenue, collect qualitative data on local people’s perceptions and experiences, and analyze local and national media coverage of the development.

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis , with separate sections or chapters for the methods , results and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyze its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Case Study? | Definition, Examples & Methods. Scribbr. Retrieved August 30, 2024, from https://www.scribbr.com/methodology/case-study/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, primary vs. secondary sources | difference & examples, what is a theoretical framework | guide to organizing, what is action research | definition & examples, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

what are the benefits of case study research

The Ultimate Guide to Qualitative Research - Part 1: The Basics

what are the benefits of case study research

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews

Research question

  • Conceptual framework
  • Conceptual vs. theoretical framework

Data collection

  • Qualitative research methods
  • Focus groups
  • Observational research

What is a case study?

Applications for case study research, what is a good case study, process of case study design, benefits and limitations of case studies.

  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Case studies

Case studies are essential to qualitative research , offering a lens through which researchers can investigate complex phenomena within their real-life contexts. This chapter explores the concept, purpose, applications, examples, and types of case studies and provides guidance on how to conduct case study research effectively.

what are the benefits of case study research

Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue. Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process.

Definition of a case study

A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the opportunity to acquire an in-depth understanding of intricate details that might not be as apparent or accessible through other methods of research. The specific case or cases being studied can be a single person, group, or organization – demarcating what constitutes a relevant case worth studying depends on the researcher and their research question .

Among qualitative research methods , a case study relies on multiple sources of evidence, such as documents, artifacts, interviews , or observations , to present a complete and nuanced understanding of the phenomenon under investigation. The objective is to illuminate the readers' understanding of the phenomenon beyond its abstract statistical or theoretical explanations.

Characteristics of case studies

Case studies typically possess a number of distinct characteristics that set them apart from other research methods. These characteristics include a focus on holistic description and explanation, flexibility in the design and data collection methods, reliance on multiple sources of evidence, and emphasis on the context in which the phenomenon occurs.

Furthermore, case studies can often involve a longitudinal examination of the case, meaning they study the case over a period of time. These characteristics allow case studies to yield comprehensive, in-depth, and richly contextualized insights about the phenomenon of interest.

The role of case studies in research

Case studies hold a unique position in the broader landscape of research methods aimed at theory development. They are instrumental when the primary research interest is to gain an intensive, detailed understanding of a phenomenon in its real-life context.

In addition, case studies can serve different purposes within research - they can be used for exploratory, descriptive, or explanatory purposes, depending on the research question and objectives. This flexibility and depth make case studies a valuable tool in the toolkit of qualitative researchers.

Remember, a well-conducted case study can offer a rich, insightful contribution to both academic and practical knowledge through theory development or theory verification, thus enhancing our understanding of complex phenomena in their real-world contexts.

What is the purpose of a case study?

Case study research aims for a more comprehensive understanding of phenomena, requiring various research methods to gather information for qualitative analysis . Ultimately, a case study can allow the researcher to gain insight into a particular object of inquiry and develop a theoretical framework relevant to the research inquiry.

Why use case studies in qualitative research?

Using case studies as a research strategy depends mainly on the nature of the research question and the researcher's access to the data.

Conducting case study research provides a level of detail and contextual richness that other research methods might not offer. They are beneficial when there's a need to understand complex social phenomena within their natural contexts.

The explanatory, exploratory, and descriptive roles of case studies

Case studies can take on various roles depending on the research objectives. They can be exploratory when the research aims to discover new phenomena or define new research questions; they are descriptive when the objective is to depict a phenomenon within its context in a detailed manner; and they can be explanatory if the goal is to understand specific relationships within the studied context. Thus, the versatility of case studies allows researchers to approach their topic from different angles, offering multiple ways to uncover and interpret the data .

The impact of case studies on knowledge development

Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data.

what are the benefits of case study research

This can result in the production of rich, practical insights that can be instrumental in both theory-building and practice. Case studies allow researchers to delve into the intricacies and complexities of real-life situations, uncovering insights that might otherwise remain hidden.

Types of case studies

In qualitative research , a case study is not a one-size-fits-all approach. Depending on the nature of the research question and the specific objectives of the study, researchers might choose to use different types of case studies. These types differ in their focus, methodology, and the level of detail they provide about the phenomenon under investigation.

Understanding these types is crucial for selecting the most appropriate approach for your research project and effectively achieving your research goals. Let's briefly look at the main types of case studies.

Exploratory case studies

Exploratory case studies are typically conducted to develop a theory or framework around an understudied phenomenon. They can also serve as a precursor to a larger-scale research project. Exploratory case studies are useful when a researcher wants to identify the key issues or questions which can spur more extensive study or be used to develop propositions for further research. These case studies are characterized by flexibility, allowing researchers to explore various aspects of a phenomenon as they emerge, which can also form the foundation for subsequent studies.

Descriptive case studies

Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. The researcher is concerned with describing the phenomenon in detail, as it occurs naturally, without trying to influence or manipulate it.

Explanatory case studies

Explanatory case studies are focused on explanation - they seek to clarify how or why certain phenomena occur. Often used in complex, real-life situations, they can be particularly valuable in clarifying causal relationships among concepts and understanding the interplay between different factors within a specific context.

what are the benefits of case study research

Intrinsic, instrumental, and collective case studies

These three categories of case studies focus on the nature and purpose of the study. An intrinsic case study is conducted when a researcher has an inherent interest in the case itself. Instrumental case studies are employed when the case is used to provide insight into a particular issue or phenomenon. A collective case study, on the other hand, involves studying multiple cases simultaneously to investigate some general phenomena.

Each type of case study serves a different purpose and has its own strengths and challenges. The selection of the type should be guided by the research question and objectives, as well as the context and constraints of the research.

The flexibility, depth, and contextual richness offered by case studies make this approach an excellent research method for various fields of study. They enable researchers to investigate real-world phenomena within their specific contexts, capturing nuances that other research methods might miss. Across numerous fields, case studies provide valuable insights into complex issues.

Critical information systems research

Case studies provide a detailed understanding of the role and impact of information systems in different contexts. They offer a platform to explore how information systems are designed, implemented, and used and how they interact with various social, economic, and political factors. Case studies in this field often focus on examining the intricate relationship between technology, organizational processes, and user behavior, helping to uncover insights that can inform better system design and implementation.

Health research

Health research is another field where case studies are highly valuable. They offer a way to explore patient experiences, healthcare delivery processes, and the impact of various interventions in a real-world context.

what are the benefits of case study research

Case studies can provide a deep understanding of a patient's journey, giving insights into the intricacies of disease progression, treatment effects, and the psychosocial aspects of health and illness.

Asthma research studies

Specifically within medical research, studies on asthma often employ case studies to explore the individual and environmental factors that influence asthma development, management, and outcomes. A case study can provide rich, detailed data about individual patients' experiences, from the triggers and symptoms they experience to the effectiveness of various management strategies. This can be crucial for developing patient-centered asthma care approaches.

Other fields

Apart from the fields mentioned, case studies are also extensively used in business and management research, education research, and political sciences, among many others. They provide an opportunity to delve into the intricacies of real-world situations, allowing for a comprehensive understanding of various phenomena.

Case studies, with their depth and contextual focus, offer unique insights across these varied fields. They allow researchers to illuminate the complexities of real-life situations, contributing to both theory and practice.

what are the benefits of case study research

Whatever field you're in, ATLAS.ti puts your data to work for you

Download a free trial of ATLAS.ti to turn your data into insights.

Understanding the key elements of case study design is crucial for conducting rigorous and impactful case study research. A well-structured design guides the researcher through the process, ensuring that the study is methodologically sound and its findings are reliable and valid. The main elements of case study design include the research question , propositions, units of analysis, and the logic linking the data to the propositions.

The research question is the foundation of any research study. A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s).

Propositions

Propositions, though not necessary in every case study, provide a direction by stating what we might expect to find in the data collected. They guide how data is collected and analyzed by helping researchers focus on specific aspects of the case. They are particularly important in explanatory case studies, which seek to understand the relationships among concepts within the studied phenomenon.

Units of analysis

The unit of analysis refers to the case, or the main entity or entities that are being analyzed in the study. In case study research, the unit of analysis can be an individual, a group, an organization, a decision, an event, or even a time period. It's crucial to clearly define the unit of analysis, as it shapes the qualitative data analysis process by allowing the researcher to analyze a particular case and synthesize analysis across multiple case studies to draw conclusions.

Argumentation

This refers to the inferential model that allows researchers to draw conclusions from the data. The researcher needs to ensure that there is a clear link between the data, the propositions (if any), and the conclusions drawn. This argumentation is what enables the researcher to make valid and credible inferences about the phenomenon under study.

Understanding and carefully considering these elements in the design phase of a case study can significantly enhance the quality of the research. It can help ensure that the study is methodologically sound and its findings contribute meaningful insights about the case.

Ready to jumpstart your research with ATLAS.ti?

Conceptualize your research project with our intuitive data analysis interface. Download a free trial today.

Conducting a case study involves several steps, from defining the research question and selecting the case to collecting and analyzing data . This section outlines these key stages, providing a practical guide on how to conduct case study research.

Defining the research question

The first step in case study research is defining a clear, focused research question. This question should guide the entire research process, from case selection to analysis. It's crucial to ensure that the research question is suitable for a case study approach. Typically, such questions are exploratory or descriptive in nature and focus on understanding a phenomenon within its real-life context.

Selecting and defining the case

The selection of the case should be based on the research question and the objectives of the study. It involves choosing a unique example or a set of examples that provide rich, in-depth data about the phenomenon under investigation. After selecting the case, it's crucial to define it clearly, setting the boundaries of the case, including the time period and the specific context.

Previous research can help guide the case study design. When considering a case study, an example of a case could be taken from previous case study research and used to define cases in a new research inquiry. Considering recently published examples can help understand how to select and define cases effectively.

Developing a detailed case study protocol

A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

The protocol should also consider how to work with the people involved in the research context to grant the research team access to collecting data. As mentioned in previous sections of this guide, establishing rapport is an essential component of qualitative research as it shapes the overall potential for collecting and analyzing data.

Collecting data

Gathering data in case study research often involves multiple sources of evidence, including documents, archival records, interviews, observations, and physical artifacts. This allows for a comprehensive understanding of the case. The process for gathering data should be systematic and carefully documented to ensure the reliability and validity of the study.

Analyzing and interpreting data

The next step is analyzing the data. This involves organizing the data , categorizing it into themes or patterns , and interpreting these patterns to answer the research question. The analysis might also involve comparing the findings with prior research or theoretical propositions.

Writing the case study report

The final step is writing the case study report . This should provide a detailed description of the case, the data, the analysis process, and the findings. The report should be clear, organized, and carefully written to ensure that the reader can understand the case and the conclusions drawn from it.

Each of these steps is crucial in ensuring that the case study research is rigorous, reliable, and provides valuable insights about the case.

The type, depth, and quality of data in your study can significantly influence the validity and utility of the study. In case study research, data is usually collected from multiple sources to provide a comprehensive and nuanced understanding of the case. This section will outline the various methods of collecting data used in case study research and discuss considerations for ensuring the quality of the data.

Interviews are a common method of gathering data in case study research. They can provide rich, in-depth data about the perspectives, experiences, and interpretations of the individuals involved in the case. Interviews can be structured , semi-structured , or unstructured , depending on the research question and the degree of flexibility needed.

Observations

Observations involve the researcher observing the case in its natural setting, providing first-hand information about the case and its context. Observations can provide data that might not be revealed in interviews or documents, such as non-verbal cues or contextual information.

Documents and artifacts

Documents and archival records provide a valuable source of data in case study research. They can include reports, letters, memos, meeting minutes, email correspondence, and various public and private documents related to the case.

what are the benefits of case study research

These records can provide historical context, corroborate evidence from other sources, and offer insights into the case that might not be apparent from interviews or observations.

Physical artifacts refer to any physical evidence related to the case, such as tools, products, or physical environments. These artifacts can provide tangible insights into the case, complementing the data gathered from other sources.

Ensuring the quality of data collection

Determining the quality of data in case study research requires careful planning and execution. It's crucial to ensure that the data is reliable, accurate, and relevant to the research question. This involves selecting appropriate methods of collecting data, properly training interviewers or observers, and systematically recording and storing the data. It also includes considering ethical issues related to collecting and handling data, such as obtaining informed consent and ensuring the privacy and confidentiality of the participants.

Data analysis

Analyzing case study research involves making sense of the rich, detailed data to answer the research question. This process can be challenging due to the volume and complexity of case study data. However, a systematic and rigorous approach to analysis can ensure that the findings are credible and meaningful. This section outlines the main steps and considerations in analyzing data in case study research.

Organizing the data

The first step in the analysis is organizing the data. This involves sorting the data into manageable sections, often according to the data source or the theme. This step can also involve transcribing interviews, digitizing physical artifacts, or organizing observational data.

Categorizing and coding the data

Once the data is organized, the next step is to categorize or code the data. This involves identifying common themes, patterns, or concepts in the data and assigning codes to relevant data segments. Coding can be done manually or with the help of software tools, and in either case, qualitative analysis software can greatly facilitate the entire coding process. Coding helps to reduce the data to a set of themes or categories that can be more easily analyzed.

Identifying patterns and themes

After coding the data, the researcher looks for patterns or themes in the coded data. This involves comparing and contrasting the codes and looking for relationships or patterns among them. The identified patterns and themes should help answer the research question.

Interpreting the data

Once patterns and themes have been identified, the next step is to interpret these findings. This involves explaining what the patterns or themes mean in the context of the research question and the case. This interpretation should be grounded in the data, but it can also involve drawing on theoretical concepts or prior research.

Verification of the data

The last step in the analysis is verification. This involves checking the accuracy and consistency of the analysis process and confirming that the findings are supported by the data. This can involve re-checking the original data, checking the consistency of codes, or seeking feedback from research participants or peers.

Like any research method , case study research has its strengths and limitations. Researchers must be aware of these, as they can influence the design, conduct, and interpretation of the study.

Understanding the strengths and limitations of case study research can also guide researchers in deciding whether this approach is suitable for their research question . This section outlines some of the key strengths and limitations of case study research.

Benefits include the following:

  • Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena.
  • Flexibility: Case study research is flexible in terms of design , data collection , and analysis . A sufficient degree of flexibility allows the researcher to adapt the study according to the case and the emerging findings.
  • Real-world context: Case study research involves studying the case in its real-world context, which can provide valuable insights into the interplay between the case and its context.
  • Multiple sources of evidence: Case study research often involves collecting data from multiple sources , which can enhance the robustness and validity of the findings.

On the other hand, researchers should consider the following limitations:

  • Generalizability: A common criticism of case study research is that its findings might not be generalizable to other cases due to the specificity and uniqueness of each case.
  • Time and resource intensive: Case study research can be time and resource intensive due to the depth of the investigation and the amount of collected data.
  • Complexity of analysis: The rich, detailed data generated in case study research can make analyzing the data challenging.
  • Subjectivity: Given the nature of case study research, there may be a higher degree of subjectivity in interpreting the data , so researchers need to reflect on this and transparently convey to audiences how the research was conducted.

Being aware of these strengths and limitations can help researchers design and conduct case study research effectively and interpret and report the findings appropriately.

what are the benefits of case study research

Ready to analyze your data with ATLAS.ti?

See how our intuitive software can draw key insights from your data with a free trial today.

Educational resources and simple solutions for your research journey

case study in research

What is a Case Study in Research? Definition, Methods, and Examples

Case study methodology offers researchers an exciting opportunity to explore intricate phenomena within specific contexts using a wide range of data sources and collection methods. It is highly pertinent in health and social sciences, environmental studies, social work, education, and business studies. Its diverse applications, such as advancing theory, program evaluation, and intervention development, make it an invaluable tool for driving meaningful research and fostering positive change.[ 1]  

Table of Contents

What is a Case Study?  

A case study method involves a detailed examination of a single subject, such as an individual, group, organization, event, or community, to explore and understand complex issues in real-life contexts. By focusing on one specific case, researchers can gain a deep understanding of the factors and dynamics at play, understanding their complex relationships, which might be missed in broader, more quantitative studies.  

When to do a Case Study?  

A case study design is useful when you want to explore a phenomenon in-depth and in its natural context. Here are some examples of when to use a case study :[ 2]  

  • Exploratory Research: When you want to explore a new topic or phenomenon, a case study can help you understand the subject deeply. For example , a researcher studying a newly discovered plant species might use a case study to document its characteristics and behavior.  
  • Descriptive Research: If you want to describe a complex phenomenon or process, a case study can provide a detailed and comprehensive description. For instance, a case study design   could describe the experiences of a group of individuals living with a rare disease.  
  • Explanatory Research: When you want to understand why a particular phenomenon occurs, a case study can help you identify causal relationships. A case study design could investigate the reasons behind the success or failure of a particular business strategy.  
  • Theory Building: Case studies can also be used to develop or refine theories. By systematically analyzing a series of cases, researchers can identify patterns and relationships that can contribute to developing new theories or refining existing ones.  
  • Critical Instance: Sometimes, a single case can be used to study a rare or unusual phenomenon, but it is important for theoretical or practical reasons. For example , the case of Phineas Gage, a man who survived a severe brain injury, has been widely studied to understand the relationship between the brain and behavior.  
  • Comparative Analysis: Case studies can also compare different cases or contexts. A case study example involves comparing the implementation of a particular policy in different countries to understand its effectiveness and identifying best practices.  

what are the benefits of case study research

How to Create a Case Study – Step by Step  

Step 1: select a case  .

Careful case selection ensures relevance, insight, and meaningful contribution to existing knowledge in your field. Here’s how you can choose a case study design :[ 3]  

  • Define Your Objectives: Clarify the purpose of your case study and what you hope to achieve. Do you want to provide new insights, challenge existing theories, propose solutions to a problem, or explore new research directions?  
  • Consider Unusual or Outlying Cases: Focus on unusual, neglected, or outlying cases that can provide unique insights.  
  • Choose a Representative Case: Alternatively, select a common or representative case to exemplify a particular category, experience, or phenomenon.   
  • Avoid Bias: Ensure your selection process is unbiased using random or criteria-based selection.  
  • Be Clear and Specific: Clearly define the boundaries of your study design , including the scope, timeframe, and key stakeholders.   
  • Ethical Considerations: Consider ethical issues, such as confidentiality and informed consent.  

Step 2: Build a Theoretical Framework  

To ensure your case study has a solid academic foundation, it’s important to build a theoretical framework:   

  • Conduct a Literature Review: Identify key concepts and theories relevant to your case study .  
  • Establish Connections with Theory: Connect your case study with existing theories in the field.  
  • Guide Your Analysis and Interpretation: Use your theoretical framework to guide your analysis, ensuring your findings are grounded in established theories and concepts.   

Step 3: Collect Your Data  

To conduct a comprehensive case study , you can use various research methods. These include interviews, observations, primary and secondary sources analysis, surveys, and a mixed methods approach. The aim is to gather rich and diverse data to enable a detailed analysis of your case study .  

Step 4: Describe and Analyze the Case  

How you report your findings will depend on the type of research you’re conducting. Here are two approaches:   

  • Structured Approach: Follows a scientific paper format, making it easier for readers to follow your argument.  
  • Narrative Approach: A more exploratory style aiming to analyze meanings and implications.  

Regardless of the approach you choose, it’s important to include the following elements in your case study :   

  • Contextual Details: Provide background information about the case, including relevant historical, cultural, and social factors that may have influenced the outcome.  
  • Literature and Theory: Connect your case study to existing literature and theory in the field. Discuss how your findings contribute to or challenge existing knowledge.  
  • Wider Patterns or Debates: Consider how your case study fits into wider patterns or debates within the field. Discuss any implications your findings may have for future research or practice.  

what are the benefits of case study research

What Are the Benefits of a Case Study   

Case studies offer a range of benefits , making them a powerful tool in research.  

1. In-Depth Analysis  

  • Comprehensive Understanding: Case studies allow researchers to thoroughly explore a subject, understanding the complexities and nuances involved.  
  • Rich Data: They offer rich qualitative and sometimes quantitative data, capturing the intricacies of real-life contexts.  

2. Contextual Insight  

  • Real-World Application: Case studies provide insights into real-world applications, making the findings highly relevant and practical.  
  • Context-Specific: They highlight how various factors interact within a specific context, offering a detailed picture of the situation.  

3. Flexibility  

  • Methodological Diversity: Case studies can use various data collection methods, including interviews, observations, document analysis, and surveys.  
  • Adaptability: Researchers can adapt the case study approach to fit the specific needs and circumstances of the research.  

4. Practical Solutions  

  • Actionable Insights: The detailed findings from case studies can inform practical solutions and recommendations for practitioners and policymakers.  
  • Problem-Solving: They help understand the root causes of problems and devise effective strategies to address them.  

5. Unique Cases  

  • Rare Phenomena: Case studies are particularly valuable for studying rare or unique cases that other research methods may not capture.  
  • Detailed Documentation: They document and preserve detailed information about specific instances that might otherwise be overlooked.  

What Are the Limitations of a Case Study   

While case studies offer valuable insights and a detailed understanding of complex issues, they have several limitations .  

1. Limited Generalizability  

  • Specific Context: Case studies often focus on a single case or a small number of cases, which may limit the generalization of findings to broader populations or different contexts.  
  • Unique Situations: The unique characteristics of the case may not be representative of other situations, reducing the applicability of the results.  

2. Subjectivity  

  • Researcher Bias: The researcher’s perspectives and interpretations can influence the analysis and conclusions, potentially introducing bias.  
  • Participant Bias: Participants’ responses and behaviors may be influenced by their awareness of being studied, known as the Hawthorne effect.  

3. Time-Consuming  

  • Data Collection and Analysis: Gathering detailed, in-depth data requires significant time and effort, making case studies more time-consuming than other research methods.  
  • Longitudinal Studies: If the case study observes changes over time, it can become even more prolonged.  

4. Resource Intensive  

  • Financial and Human Resources: Conducting comprehensive case studies may require significant financial investment and human resources, including trained researchers and participant access.  
  • Access to Data: Accessing relevant and reliable data sources can be challenging, particularly in sensitive or proprietary contexts.  

5. Replication Difficulties  

  • Unique Contexts: A case study’s specific and detailed context makes it difficult to replicate the study exactly, limiting the ability to validate findings through repetition.  
  • Variability: Differences in contexts, researchers, and methodologies can lead to variations in findings, complicating efforts to achieve consistent results.  

By acknowledging and addressing these limitations , researchers can enhance the rigor and reliability of their case study findings.  

Key Takeaways  

Case studies are valuable in research because they provide an in-depth, contextual analysis of a single subject, event, or organization. They allow researchers to explore complex issues in real-world settings, capturing detailed qualitative and quantitative data. This method is useful for generating insights, developing theories, and offering practical solutions to problems. They are versatile, applicable in diverse fields such as business, education, and health, and can complement other research methods by providing rich, contextual evidence. However, their findings may have limited generalizability due to the focus on a specific case.  

what are the benefits of case study research

Frequently Asked Questions  

Q: What is a case study in research?  

A case study in research is an impactful tool for gaining a deep understanding of complex issues within their real-life context. It combines various data collection methods and provides rich, detailed insights that can inform theory development and practical applications.  

Q: What are the advantages of using case studies in research?  

Case studies are a powerful research method, offering advantages such as in-depth analysis, contextual insights, flexibility, rich data, and the ability to handle complex issues. They are particularly valuable for exploring new areas, generating hypotheses, and providing detailed, illustrative examples that can inform theory and practice.  

Q: Can case studies be used in quantitative research?  

While case studies are predominantly associated with qualitative research, they can effectively incorporate quantitative methods to provide a more comprehensive analysis. A mixed-methods approach leverages qualitative and quantitative research strengths, offering a powerful tool for exploring complex issues in a real-world context. For example , a new medical treatment case study can incorporate quantitative clinical outcomes (e.g., patient recovery rates and dosage levels) along with qualitative patient interviews.  

Q: What are the key components of a case study?  

A case study typically includes several key components:   

  • Introductio n, which provides an overview and sets the context by presenting the problem statement and research objectives;  
  • Literature review , which connects the study to existing theories and prior research;  
  • Methodology , which details the case study design , data collection methods, and analysis techniques;   
  • Findings , which present the data and results, including descriptions, patterns, and themes;   
  • Discussion and conclusion , which interpret the findings, discuss their implications, and offer conclusions, practical applications, limitations, and suggestions for future research.  

Together, these components ensure a comprehensive, systematic, and insightful exploration of the case.  

References  

  • de Vries, K. (2020). Case study methodology. In  Critical qualitative health research  (pp. 41-52). Routledge.  
  • Fidel, R. (1984). The case study method: A case study.  Library and Information Science Research ,  6 (3), 273-288.  
  • Thomas, G. (2021). How to do your case study.  How to do your case study , 1-320.  

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Back to school 2024 sale

Back to School – Lock-in All Access Pack for a Year at the Best Price

journal turnaround time

Journal Turnaround Time: Researcher.Life and Scholarly Intelligence Join Hands to Empower Researchers with Publication Time Insights 

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

What the Case Study Method Really Teaches

  • Nitin Nohria

what are the benefits of case study research

Seven meta-skills that stick even if the cases fade from memory.

It’s been 100 years since Harvard Business School began using the case study method. Beyond teaching specific subject matter, the case study method excels in instilling meta-skills in students. This article explains the importance of seven such skills: preparation, discernment, bias recognition, judgement, collaboration, curiosity, and self-confidence.

During my decade as dean of Harvard Business School, I spent hundreds of hours talking with our alumni. To enliven these conversations, I relied on a favorite question: “What was the most important thing you learned from your time in our MBA program?”

  • Nitin Nohria is the George F. Baker Jr. and Distinguished Service University Professor. He served as the 10th dean of Harvard Business School, from 2010 to 2020.

Partner Center

  • Open access
  • Published: 27 June 2011

The case study approach

  • Sarah Crowe 1 ,
  • Kathrin Cresswell 2 ,
  • Ann Robertson 2 ,
  • Guro Huby 3 ,
  • Anthony Avery 1 &
  • Aziz Sheikh 2  

BMC Medical Research Methodology volume  11 , Article number:  100 ( 2011 ) Cite this article

796k Accesses

1111 Citations

42 Altmetric

Metrics details

The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports.

Peer Review reports

Introduction

The case study approach is particularly useful to employ when there is a need to obtain an in-depth appreciation of an issue, event or phenomenon of interest, in its natural real-life context. Our aim in writing this piece is to provide insights into when to consider employing this approach and an overview of key methodological considerations in relation to the design, planning, analysis, interpretation and reporting of case studies.

The illustrative 'grand round', 'case report' and 'case series' have a long tradition in clinical practice and research. Presenting detailed critiques, typically of one or more patients, aims to provide insights into aspects of the clinical case and, in doing so, illustrate broader lessons that may be learnt. In research, the conceptually-related case study approach can be used, for example, to describe in detail a patient's episode of care, explore professional attitudes to and experiences of a new policy initiative or service development or more generally to 'investigate contemporary phenomena within its real-life context' [ 1 ]. Based on our experiences of conducting a range of case studies, we reflect on when to consider using this approach, discuss the key steps involved and illustrate, with examples, some of the practical challenges of attaining an in-depth understanding of a 'case' as an integrated whole. In keeping with previously published work, we acknowledge the importance of theory to underpin the design, selection, conduct and interpretation of case studies[ 2 ]. In so doing, we make passing reference to the different epistemological approaches used in case study research by key theoreticians and methodologists in this field of enquiry.

This paper is structured around the following main questions: What is a case study? What are case studies used for? How are case studies conducted? What are the potential pitfalls and how can these be avoided? We draw in particular on four of our own recently published examples of case studies (see Tables 1 , 2 , 3 and 4 ) and those of others to illustrate our discussion[ 3 – 7 ].

What is a case study?

A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the central tenet being the need to explore an event or phenomenon in depth and in its natural context. It is for this reason sometimes referred to as a "naturalistic" design; this is in contrast to an "experimental" design (such as a randomised controlled trial) in which the investigator seeks to exert control over and manipulate the variable(s) of interest.

Stake's work has been particularly influential in defining the case study approach to scientific enquiry. He has helpfully characterised three main types of case study: intrinsic , instrumental and collective [ 8 ]. An intrinsic case study is typically undertaken to learn about a unique phenomenon. The researcher should define the uniqueness of the phenomenon, which distinguishes it from all others. In contrast, the instrumental case study uses a particular case (some of which may be better than others) to gain a broader appreciation of an issue or phenomenon. The collective case study involves studying multiple cases simultaneously or sequentially in an attempt to generate a still broader appreciation of a particular issue.

These are however not necessarily mutually exclusive categories. In the first of our examples (Table 1 ), we undertook an intrinsic case study to investigate the issue of recruitment of minority ethnic people into the specific context of asthma research studies, but it developed into a instrumental case study through seeking to understand the issue of recruitment of these marginalised populations more generally, generating a number of the findings that are potentially transferable to other disease contexts[ 3 ]. In contrast, the other three examples (see Tables 2 , 3 and 4 ) employed collective case study designs to study the introduction of workforce reconfiguration in primary care, the implementation of electronic health records into hospitals, and to understand the ways in which healthcare students learn about patient safety considerations[ 4 – 6 ]. Although our study focusing on the introduction of General Practitioners with Specialist Interests (Table 2 ) was explicitly collective in design (four contrasting primary care organisations were studied), is was also instrumental in that this particular professional group was studied as an exemplar of the more general phenomenon of workforce redesign[ 4 ].

What are case studies used for?

According to Yin, case studies can be used to explain, describe or explore events or phenomena in the everyday contexts in which they occur[ 1 ]. These can, for example, help to understand and explain causal links and pathways resulting from a new policy initiative or service development (see Tables 2 and 3 , for example)[ 1 ]. In contrast to experimental designs, which seek to test a specific hypothesis through deliberately manipulating the environment (like, for example, in a randomised controlled trial giving a new drug to randomly selected individuals and then comparing outcomes with controls),[ 9 ] the case study approach lends itself well to capturing information on more explanatory ' how ', 'what' and ' why ' questions, such as ' how is the intervention being implemented and received on the ground?'. The case study approach can offer additional insights into what gaps exist in its delivery or why one implementation strategy might be chosen over another. This in turn can help develop or refine theory, as shown in our study of the teaching of patient safety in undergraduate curricula (Table 4 )[ 6 , 10 ]. Key questions to consider when selecting the most appropriate study design are whether it is desirable or indeed possible to undertake a formal experimental investigation in which individuals and/or organisations are allocated to an intervention or control arm? Or whether the wish is to obtain a more naturalistic understanding of an issue? The former is ideally studied using a controlled experimental design, whereas the latter is more appropriately studied using a case study design.

Case studies may be approached in different ways depending on the epistemological standpoint of the researcher, that is, whether they take a critical (questioning one's own and others' assumptions), interpretivist (trying to understand individual and shared social meanings) or positivist approach (orientating towards the criteria of natural sciences, such as focusing on generalisability considerations) (Table 6 ). Whilst such a schema can be conceptually helpful, it may be appropriate to draw on more than one approach in any case study, particularly in the context of conducting health services research. Doolin has, for example, noted that in the context of undertaking interpretative case studies, researchers can usefully draw on a critical, reflective perspective which seeks to take into account the wider social and political environment that has shaped the case[ 11 ].

How are case studies conducted?

Here, we focus on the main stages of research activity when planning and undertaking a case study; the crucial stages are: defining the case; selecting the case(s); collecting and analysing the data; interpreting data; and reporting the findings.

Defining the case

Carefully formulated research question(s), informed by the existing literature and a prior appreciation of the theoretical issues and setting(s), are all important in appropriately and succinctly defining the case[ 8 , 12 ]. Crucially, each case should have a pre-defined boundary which clarifies the nature and time period covered by the case study (i.e. its scope, beginning and end), the relevant social group, organisation or geographical area of interest to the investigator, the types of evidence to be collected, and the priorities for data collection and analysis (see Table 7 )[ 1 ]. A theory driven approach to defining the case may help generate knowledge that is potentially transferable to a range of clinical contexts and behaviours; using theory is also likely to result in a more informed appreciation of, for example, how and why interventions have succeeded or failed[ 13 ].

For example, in our evaluation of the introduction of electronic health records in English hospitals (Table 3 ), we defined our cases as the NHS Trusts that were receiving the new technology[ 5 ]. Our focus was on how the technology was being implemented. However, if the primary research interest had been on the social and organisational dimensions of implementation, we might have defined our case differently as a grouping of healthcare professionals (e.g. doctors and/or nurses). The precise beginning and end of the case may however prove difficult to define. Pursuing this same example, when does the process of implementation and adoption of an electronic health record system really begin or end? Such judgements will inevitably be influenced by a range of factors, including the research question, theory of interest, the scope and richness of the gathered data and the resources available to the research team.

Selecting the case(s)

The decision on how to select the case(s) to study is a very important one that merits some reflection. In an intrinsic case study, the case is selected on its own merits[ 8 ]. The case is selected not because it is representative of other cases, but because of its uniqueness, which is of genuine interest to the researchers. This was, for example, the case in our study of the recruitment of minority ethnic participants into asthma research (Table 1 ) as our earlier work had demonstrated the marginalisation of minority ethnic people with asthma, despite evidence of disproportionate asthma morbidity[ 14 , 15 ]. In another example of an intrinsic case study, Hellstrom et al.[ 16 ] studied an elderly married couple living with dementia to explore how dementia had impacted on their understanding of home, their everyday life and their relationships.

For an instrumental case study, selecting a "typical" case can work well[ 8 ]. In contrast to the intrinsic case study, the particular case which is chosen is of less importance than selecting a case that allows the researcher to investigate an issue or phenomenon. For example, in order to gain an understanding of doctors' responses to health policy initiatives, Som undertook an instrumental case study interviewing clinicians who had a range of responsibilities for clinical governance in one NHS acute hospital trust[ 17 ]. Sampling a "deviant" or "atypical" case may however prove even more informative, potentially enabling the researcher to identify causal processes, generate hypotheses and develop theory.

In collective or multiple case studies, a number of cases are carefully selected. This offers the advantage of allowing comparisons to be made across several cases and/or replication. Choosing a "typical" case may enable the findings to be generalised to theory (i.e. analytical generalisation) or to test theory by replicating the findings in a second or even a third case (i.e. replication logic)[ 1 ]. Yin suggests two or three literal replications (i.e. predicting similar results) if the theory is straightforward and five or more if the theory is more subtle. However, critics might argue that selecting 'cases' in this way is insufficiently reflexive and ill-suited to the complexities of contemporary healthcare organisations.

The selected case study site(s) should allow the research team access to the group of individuals, the organisation, the processes or whatever else constitutes the chosen unit of analysis for the study. Access is therefore a central consideration; the researcher needs to come to know the case study site(s) well and to work cooperatively with them. Selected cases need to be not only interesting but also hospitable to the inquiry [ 8 ] if they are to be informative and answer the research question(s). Case study sites may also be pre-selected for the researcher, with decisions being influenced by key stakeholders. For example, our selection of case study sites in the evaluation of the implementation and adoption of electronic health record systems (see Table 3 ) was heavily influenced by NHS Connecting for Health, the government agency that was responsible for overseeing the National Programme for Information Technology (NPfIT)[ 5 ]. This prominent stakeholder had already selected the NHS sites (through a competitive bidding process) to be early adopters of the electronic health record systems and had negotiated contracts that detailed the deployment timelines.

It is also important to consider in advance the likely burden and risks associated with participation for those who (or the site(s) which) comprise the case study. Of particular importance is the obligation for the researcher to think through the ethical implications of the study (e.g. the risk of inadvertently breaching anonymity or confidentiality) and to ensure that potential participants/participating sites are provided with sufficient information to make an informed choice about joining the study. The outcome of providing this information might be that the emotive burden associated with participation, or the organisational disruption associated with supporting the fieldwork, is considered so high that the individuals or sites decide against participation.

In our example of evaluating implementations of electronic health record systems, given the restricted number of early adopter sites available to us, we sought purposively to select a diverse range of implementation cases among those that were available[ 5 ]. We chose a mixture of teaching, non-teaching and Foundation Trust hospitals, and examples of each of the three electronic health record systems procured centrally by the NPfIT. At one recruited site, it quickly became apparent that access was problematic because of competing demands on that organisation. Recognising the importance of full access and co-operative working for generating rich data, the research team decided not to pursue work at that site and instead to focus on other recruited sites.

Collecting the data

In order to develop a thorough understanding of the case, the case study approach usually involves the collection of multiple sources of evidence, using a range of quantitative (e.g. questionnaires, audits and analysis of routinely collected healthcare data) and more commonly qualitative techniques (e.g. interviews, focus groups and observations). The use of multiple sources of data (data triangulation) has been advocated as a way of increasing the internal validity of a study (i.e. the extent to which the method is appropriate to answer the research question)[ 8 , 18 – 21 ]. An underlying assumption is that data collected in different ways should lead to similar conclusions, and approaching the same issue from different angles can help develop a holistic picture of the phenomenon (Table 2 )[ 4 ].

Brazier and colleagues used a mixed-methods case study approach to investigate the impact of a cancer care programme[ 22 ]. Here, quantitative measures were collected with questionnaires before, and five months after, the start of the intervention which did not yield any statistically significant results. Qualitative interviews with patients however helped provide an insight into potentially beneficial process-related aspects of the programme, such as greater, perceived patient involvement in care. The authors reported how this case study approach provided a number of contextual factors likely to influence the effectiveness of the intervention and which were not likely to have been obtained from quantitative methods alone.

In collective or multiple case studies, data collection needs to be flexible enough to allow a detailed description of each individual case to be developed (e.g. the nature of different cancer care programmes), before considering the emerging similarities and differences in cross-case comparisons (e.g. to explore why one programme is more effective than another). It is important that data sources from different cases are, where possible, broadly comparable for this purpose even though they may vary in nature and depth.

Analysing, interpreting and reporting case studies

Making sense and offering a coherent interpretation of the typically disparate sources of data (whether qualitative alone or together with quantitative) is far from straightforward. Repeated reviewing and sorting of the voluminous and detail-rich data are integral to the process of analysis. In collective case studies, it is helpful to analyse data relating to the individual component cases first, before making comparisons across cases. Attention needs to be paid to variations within each case and, where relevant, the relationship between different causes, effects and outcomes[ 23 ]. Data will need to be organised and coded to allow the key issues, both derived from the literature and emerging from the dataset, to be easily retrieved at a later stage. An initial coding frame can help capture these issues and can be applied systematically to the whole dataset with the aid of a qualitative data analysis software package.

The Framework approach is a practical approach, comprising of five stages (familiarisation; identifying a thematic framework; indexing; charting; mapping and interpretation) , to managing and analysing large datasets particularly if time is limited, as was the case in our study of recruitment of South Asians into asthma research (Table 1 )[ 3 , 24 ]. Theoretical frameworks may also play an important role in integrating different sources of data and examining emerging themes. For example, we drew on a socio-technical framework to help explain the connections between different elements - technology; people; and the organisational settings within which they worked - in our study of the introduction of electronic health record systems (Table 3 )[ 5 ]. Our study of patient safety in undergraduate curricula drew on an evaluation-based approach to design and analysis, which emphasised the importance of the academic, organisational and practice contexts through which students learn (Table 4 )[ 6 ].

Case study findings can have implications both for theory development and theory testing. They may establish, strengthen or weaken historical explanations of a case and, in certain circumstances, allow theoretical (as opposed to statistical) generalisation beyond the particular cases studied[ 12 ]. These theoretical lenses should not, however, constitute a strait-jacket and the cases should not be "forced to fit" the particular theoretical framework that is being employed.

When reporting findings, it is important to provide the reader with enough contextual information to understand the processes that were followed and how the conclusions were reached. In a collective case study, researchers may choose to present the findings from individual cases separately before amalgamating across cases. Care must be taken to ensure the anonymity of both case sites and individual participants (if agreed in advance) by allocating appropriate codes or withholding descriptors. In the example given in Table 3 , we decided against providing detailed information on the NHS sites and individual participants in order to avoid the risk of inadvertent disclosure of identities[ 5 , 25 ].

What are the potential pitfalls and how can these be avoided?

The case study approach is, as with all research, not without its limitations. When investigating the formal and informal ways undergraduate students learn about patient safety (Table 4 ), for example, we rapidly accumulated a large quantity of data. The volume of data, together with the time restrictions in place, impacted on the depth of analysis that was possible within the available resources. This highlights a more general point of the importance of avoiding the temptation to collect as much data as possible; adequate time also needs to be set aside for data analysis and interpretation of what are often highly complex datasets.

Case study research has sometimes been criticised for lacking scientific rigour and providing little basis for generalisation (i.e. producing findings that may be transferable to other settings)[ 1 ]. There are several ways to address these concerns, including: the use of theoretical sampling (i.e. drawing on a particular conceptual framework); respondent validation (i.e. participants checking emerging findings and the researcher's interpretation, and providing an opinion as to whether they feel these are accurate); and transparency throughout the research process (see Table 8 )[ 8 , 18 – 21 , 23 , 26 ]. Transparency can be achieved by describing in detail the steps involved in case selection, data collection, the reasons for the particular methods chosen, and the researcher's background and level of involvement (i.e. being explicit about how the researcher has influenced data collection and interpretation). Seeking potential, alternative explanations, and being explicit about how interpretations and conclusions were reached, help readers to judge the trustworthiness of the case study report. Stake provides a critique checklist for a case study report (Table 9 )[ 8 ].

Conclusions

The case study approach allows, amongst other things, critical events, interventions, policy developments and programme-based service reforms to be studied in detail in a real-life context. It should therefore be considered when an experimental design is either inappropriate to answer the research questions posed or impossible to undertake. Considering the frequency with which implementations of innovations are now taking place in healthcare settings and how well the case study approach lends itself to in-depth, complex health service research, we believe this approach should be more widely considered by researchers. Though inherently challenging, the research case study can, if carefully conceptualised and thoughtfully undertaken and reported, yield powerful insights into many important aspects of health and healthcare delivery.

Yin RK: Case study research, design and method. 2009, London: Sage Publications Ltd., 4

Google Scholar  

Keen J, Packwood T: Qualitative research; case study evaluation. BMJ. 1995, 311: 444-446.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Sheikh A, Halani L, Bhopal R, Netuveli G, Partridge M, Car J, et al: Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma. PLoS Med. 2009, 6 (10): 1-11.

Article   Google Scholar  

Pinnock H, Huby G, Powell A, Kielmann T, Price D, Williams S, et al: The process of planning, development and implementation of a General Practitioner with a Special Interest service in Primary Care Organisations in England and Wales: a comparative prospective case study. Report for the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D (NCCSDO). 2008, [ http://www.sdo.nihr.ac.uk/files/project/99-final-report.pdf ]

Robertson A, Cresswell K, Takian A, Petrakaki D, Crowe S, Cornford T, et al: Prospective evaluation of the implementation and adoption of NHS Connecting for Health's national electronic health record in secondary care in England: interim findings. BMJ. 2010, 41: c4564-

Pearson P, Steven A, Howe A, Sheikh A, Ashcroft D, Smith P, the Patient Safety Education Study Group: Learning about patient safety: organisational context and culture in the education of healthcare professionals. J Health Serv Res Policy. 2010, 15: 4-10. 10.1258/jhsrp.2009.009052.

Article   PubMed   Google Scholar  

van Harten WH, Casparie TF, Fisscher OA: The evaluation of the introduction of a quality management system: a process-oriented case study in a large rehabilitation hospital. Health Policy. 2002, 60 (1): 17-37. 10.1016/S0168-8510(01)00187-7.

Stake RE: The art of case study research. 1995, London: Sage Publications Ltd.

Sheikh A, Smeeth L, Ashcroft R: Randomised controlled trials in primary care: scope and application. Br J Gen Pract. 2002, 52 (482): 746-51.

PubMed   PubMed Central   Google Scholar  

King G, Keohane R, Verba S: Designing Social Inquiry. 1996, Princeton: Princeton University Press

Doolin B: Information technology as disciplinary technology: being critical in interpretative research on information systems. Journal of Information Technology. 1998, 13: 301-311. 10.1057/jit.1998.8.

George AL, Bennett A: Case studies and theory development in the social sciences. 2005, Cambridge, MA: MIT Press

Eccles M, the Improved Clinical Effectiveness through Behavioural Research Group (ICEBeRG): Designing theoretically-informed implementation interventions. Implementation Science. 2006, 1: 1-8. 10.1186/1748-5908-1-1.

Article   PubMed Central   Google Scholar  

Netuveli G, Hurwitz B, Levy M, Fletcher M, Barnes G, Durham SR, Sheikh A: Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet. 2005, 365 (9456): 312-7.

Sheikh A, Panesar SS, Lasserson T, Netuveli G: Recruitment of ethnic minorities to asthma studies. Thorax. 2004, 59 (7): 634-

CAS   PubMed   PubMed Central   Google Scholar  

Hellström I, Nolan M, Lundh U: 'We do things together': A case study of 'couplehood' in dementia. Dementia. 2005, 4: 7-22. 10.1177/1471301205049188.

Som CV: Nothing seems to have changed, nothing seems to be changing and perhaps nothing will change in the NHS: doctors' response to clinical governance. International Journal of Public Sector Management. 2005, 18: 463-477. 10.1108/09513550510608903.

Lincoln Y, Guba E: Naturalistic inquiry. 1985, Newbury Park: Sage Publications

Barbour RS: Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?. BMJ. 2001, 322: 1115-1117. 10.1136/bmj.322.7294.1115.

Mays N, Pope C: Qualitative research in health care: Assessing quality in qualitative research. BMJ. 2000, 320: 50-52. 10.1136/bmj.320.7226.50.

Mason J: Qualitative researching. 2002, London: Sage

Brazier A, Cooke K, Moravan V: Using Mixed Methods for Evaluating an Integrative Approach to Cancer Care: A Case Study. Integr Cancer Ther. 2008, 7: 5-17. 10.1177/1534735407313395.

Miles MB, Huberman M: Qualitative data analysis: an expanded sourcebook. 1994, CA: Sage Publications Inc., 2

Pope C, Ziebland S, Mays N: Analysing qualitative data. Qualitative research in health care. BMJ. 2000, 320: 114-116. 10.1136/bmj.320.7227.114.

Cresswell KM, Worth A, Sheikh A: Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare. BMC Med Inform Decis Mak. 2010, 10 (1): 67-10.1186/1472-6947-10-67.

Article   PubMed   PubMed Central   Google Scholar  

Malterud K: Qualitative research: standards, challenges, and guidelines. Lancet. 2001, 358: 483-488. 10.1016/S0140-6736(01)05627-6.

Article   CAS   PubMed   Google Scholar  

Yin R: Case study research: design and methods. 1994, Thousand Oaks, CA: Sage Publishing, 2

Yin R: Enhancing the quality of case studies in health services research. Health Serv Res. 1999, 34: 1209-1224.

Green J, Thorogood N: Qualitative methods for health research. 2009, Los Angeles: Sage, 2

Howcroft D, Trauth E: Handbook of Critical Information Systems Research, Theory and Application. 2005, Cheltenham, UK: Northampton, MA, USA: Edward Elgar

Book   Google Scholar  

Blakie N: Approaches to Social Enquiry. 1993, Cambridge: Polity Press

Doolin B: Power and resistance in the implementation of a medical management information system. Info Systems J. 2004, 14: 343-362. 10.1111/j.1365-2575.2004.00176.x.

Bloomfield BP, Best A: Management consultants: systems development, power and the translation of problems. Sociological Review. 1992, 40: 533-560.

Shanks G, Parr A: Positivist, single case study research in information systems: A critical analysis. Proceedings of the European Conference on Information Systems. 2003, Naples

Pre-publication history

The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2288/11/100/prepub

Download references

Acknowledgements

We are grateful to the participants and colleagues who contributed to the individual case studies that we have drawn on. This work received no direct funding, but it has been informed by projects funded by Asthma UK, the NHS Service Delivery Organisation, NHS Connecting for Health Evaluation Programme, and Patient Safety Research Portfolio. We would also like to thank the expert reviewers for their insightful and constructive feedback. Our thanks are also due to Dr. Allison Worth who commented on an earlier draft of this manuscript.

Author information

Authors and affiliations.

Division of Primary Care, The University of Nottingham, Nottingham, UK

Sarah Crowe & Anthony Avery

Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK

Kathrin Cresswell, Ann Robertson & Aziz Sheikh

School of Health in Social Science, The University of Edinburgh, Edinburgh, UK

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sarah Crowe .

Additional information

Competing interests.

The authors declare that they have no competing interests.

Authors' contributions

AS conceived this article. SC, KC and AR wrote this paper with GH, AA and AS all commenting on various drafts. SC and AS are guarantors.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article.

Crowe, S., Cresswell, K., Robertson, A. et al. The case study approach. BMC Med Res Methodol 11 , 100 (2011). https://doi.org/10.1186/1471-2288-11-100

Download citation

Received : 29 November 2010

Accepted : 27 June 2011

Published : 27 June 2011

DOI : https://doi.org/10.1186/1471-2288-11-100

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Case Study Approach
  • Electronic Health Record System
  • Case Study Design
  • Case Study Site
  • Case Study Report

BMC Medical Research Methodology

ISSN: 1471-2288

what are the benefits of case study research

Green Garage

Case Study Method – 18 Advantages and Disadvantages

The case study method uses investigatory research as a way to collect data about specific demographics. This approach can apply to individuals, businesses, groups, or events. Each participant receives an equal amount of participation, offering information for collection that can then find new insights into specific trends, ideas, of hypotheses.

Interviews and research observation are the two standard methods of data collection used when following the case study method.

Researchers initially developed the case study method to develop and support hypotheses in clinical medicine. The benefits found in these efforts led the approach to transition to other industries, allowing for the examination of results through proposed decisions, processes, or outcomes. Its unique approach to information makes it possible for others to glean specific points of wisdom that encourage growth.

Several case study method advantages and disadvantages can appear when researchers take this approach.

List of the Advantages of the Case Study Method

1. It requires an intensive study of a specific unit. Researchers must document verifiable data from direct observations when using the case study method. This work offers information about the input processes that go into the hypothesis under consideration. A casual approach to data-gathering work is not effective if a definitive outcome is desired. Each behavior, choice, or comment is a critical component that can verify or dispute the ideas being considered.

Intensive programs can require a significant amount of work for researchers, but it can also promote an improvement in the data collected. That means a hypothesis can receive immediate verification in some situations.

2. No sampling is required when following the case study method. This research method studies social units in their entire perspective instead of pulling individual data points out to analyze them. That means there is no sampling work required when using the case study method. The hypothesis under consideration receives support because it works to turn opinions into facts, verifying or denying the proposals that outside observers can use in the future.

Although researchers might pay attention to specific incidents or outcomes based on generalized behaviors or ideas, the study itself won’t sample those situations. It takes a look at the “bigger vision” instead.

3. This method offers a continuous analysis of the facts. The case study method will look at the facts continuously for the social group being studied by researchers. That means there aren’t interruptions in the process that could limit the validity of the data being collected through this work. This advantage reduces the need to use assumptions when drawing conclusions from the information, adding validity to the outcome of the study over time. That means the outcome becomes relevant to both sides of the equation as it can prove specific suppositions or invalidate a hypothesis under consideration.

This advantage can lead to inefficiencies because of the amount of data being studied by researchers. It is up to the individuals involved in the process to sort out what is useful and meaningful and what is not.

4. It is a useful approach to take when formulating a hypothesis. Researchers will use the case study method advantages to verify a hypothesis under consideration. It is not unusual for the collected data to lead people toward the formulation of new ideas after completing this work. This process encourages further study because it allows concepts to evolve as people do in social or physical environments. That means a complete data set can be gathered based on the skills of the researcher and the honesty of the individuals involved in the study itself.

Although this approach won’t develop a societal-level evaluation of a hypothesis, it can look at how specific groups will react in various circumstances. That information can lead to a better decision-making process in the future for everyone involved.

5. It provides an increase in knowledge. The case study method provides everyone with analytical power to increase knowledge. This advantage is possible because it uses a variety of methodologies to collect information while evaluating a hypothesis. Researchers prefer to use direct observation and interviews to complete their work, but it can also advantage through the use of questionnaires. Participants might need to fill out a journal or diary about their experiences that can be used to study behaviors or choices.

Some researchers incorporate memory tests and experimental tasks to determine how social groups will interact or respond in specific situations. All of this data then works to verify the possibilities that a hypothesis proposes.

6. The case study method allows for comparisons. The human experience is one that is built on individual observations from group situations. Specific demographics might think, act, or respond in particular ways to stimuli, but each person in that group will also contribute a small part to the whole. You could say that people are sponges that collect data from one another every day to create individual outcomes.

The case study method allows researchers to take the information from each demographic for comparison purposes. This information can then lead to proposals that support a hypothesis or lead to its disruption.

7. Data generalization is possible using the case study method. The case study method provides a foundation for data generalization, allowing researches to illustrate their statistical findings in meaningful ways. It puts the information into a usable format that almost anyone can use if they have the need to evaluate the hypothesis under consideration. This process makes it easier to discover unusual features, unique outcomes, or find conclusions that wouldn’t be available without this method. It does an excellent job of identifying specific concepts that relate to the proposed ideas that researchers were verifying through their work.

Generalization does not apply to a larger population group with the case study method. What researchers can do with this information is to suggest a predictable outcome when similar groups are placed in an equal situation.

8. It offers a comprehensive approach to research. Nothing gets ignored when using the case study method to collect information. Every person, place, or thing involved in the research receives the complete attention of those seeking data. The interactions are equal, which means the data is comprehensive and directly reflective of the group being observed.

This advantage means that there are fewer outliers to worry about when researching an idea, leading to a higher level of accuracy in the conclusions drawn by the researchers.

9. The identification of deviant cases is possible with this method. The case study method of research makes it easier to identify deviant cases that occur in each social group. These incidents are units (people) that behave in ways that go against the hypothesis under consideration. Instead of ignoring them like other options do when collecting data, this approach incorporates the “rogue” behavior to understand why it exists in the first place.

This advantage makes the eventual data and conclusions gathered more reliable because it incorporates the “alternative opinion” that exists. One might say that the case study method places as much emphasis on the yin as it does the yang so that the whole picture becomes available to the outside observer.

10. Questionnaire development is possible with the case study method. Interviews and direct observation are the preferred methods of implementing the case study method because it is cheap and done remotely. The information gathered by researchers can also lead to farming questionnaires that can farm additional data from those being studied. When all of the data resources come together, it is easier to formulate a conclusion that accurately reflects the demographics.

Some people in the case study method may try to manipulate the results for personal reasons, but this advantage makes it possible to identify this information readily. Then researchers can look into the thinking that goes into the dishonest behaviors observed.

List of the Disadvantages of the Case Study Method

1. The case study method offers limited representation. The usefulness of the case study method is limited to a specific group of representatives. Researchers are looking at a specific demographic when using this option. That means it is impossible to create any generalization that applies to the rest of society, an organization, or a larger community with this work. The findings can only apply to other groups caught in similar circumstances with the same experiences.

It is useful to use the case study method when attempting to discover the specific reasons why some people behave in a specific way. If researchers need something more generalized, then a different method must be used.

2. No classification is possible with the case study method. This disadvantage is also due to the sample size in the case study method. No classification is possible because researchers are studying such a small unit, group, or demographic. It can be an inefficient process since the skills of the researcher help to determine the quality of the data being collected to verify the validity of a hypothesis. Some participants may be unwilling to answer or participate, while others might try to guess at the outcome to support it.

Researchers can get trapped in a place where they explore more tangents than the actual hypothesis with this option. Classification can occur within the units being studied, but this data cannot extrapolate to other demographics.

3. The case study method still offers the possibility of errors. Each person has an unconscious bias that influences their behaviors and choices. The case study method can find outliers that oppose a hypothesis fairly easily thanks to its emphasis on finding facts, but it is up to the researchers to determine what information qualifies for this designation. If the results from the case study method are surprising or go against the opinion of participating individuals, then there is still the possibility that the information will not be 100% accurate.

Researchers must have controls in place that dictate how data gathering work occurs. Without this limitation in place, the results of the study cannot be guaranteed because of the presence of bias.

4. It is a subjective method to use for research. Although the purpose of the case study method of research is to gather facts, the foundation of what gets gathered is still based on opinion. It uses the subjective method instead of the objective one when evaluating data, which means there can be another layer of errors in the information to consider.

Imagine that a researcher interprets someone’s response as “angry” when performing direct observation, but the individual was feeling “shame” because of a decision they made. The difference between those two emotions is profound, and it could lead to information disruptions that could be problematic to the eventual work of hypothesis verification.

5. The processes required by the case study method are not useful for everyone. The case study method uses a person’s memories, explanations, and records from photographs and diaries to identify interactions on influences on psychological processes. People are given the chance to describe what happens in the world around them as a way for researchers to gather data. This process can be an advantage in some industries, but it can also be a worthless approach to some groups.

If the social group under study doesn’t have the information, knowledge, or wisdom to provide meaningful data, then the processes are no longer useful. Researchers must weigh the advantages and disadvantages of the case study method before starting their work to determine if the possibility of value exists. If it does not, then a different method may be necessary.

6. It is possible for bias to form in the data. It’s not just an unconscious bias that can form in the data when using the case study method. The narrow study approach can lead to outright discrimination in the data. Researchers can decide to ignore outliers or any other information that doesn’t support their hypothesis when using this method. The subjective nature of this approach makes it difficult to challenge the conclusions that get drawn from this work, and the limited pool of units (people) means that duplication is almost impossible.

That means unethical people can manipulate the results gathered by the case study method to their own advantage without much accountability in the process.

7. This method has no fixed limits to it. This method of research is highly dependent on situational circumstances rather than overarching societal or corporate truths. That means the researcher has no fixed limits of investigation. Even when controls are in place to limit bias or recommend specific activities, the case study method has enough flexibility built into its structures to allow for additional exploration. That means it is possible for this work to continue indefinitely, gathering data that never becomes useful.

Scientists began to track the health of 268 sophomores at Harvard in 1938. The Great Depression was in its final years at that point, so the study hoped to reveal clues that lead to happy and healthy lives. It continues still today, now incorporating the children of the original participants, providing over 80 years of information to sort through for conclusions.

8. The case study method is time-consuming and expensive. The case study method can be affordable in some situations, but the lack of fixed limits and the ability to pursue tangents can make it a costly process in most situations. It takes time to gather the data in the first place, and then researchers must interpret the information received so that they can use it for hypothesis evaluation. There are other methods of data collection that can be less expensive and provide results faster.

That doesn’t mean the case study method is useless. The individualization of results can help the decision-making process advance in a variety of industries successfully. It just takes more time to reach the appropriate conclusion, and that might be a resource that isn’t available.

The advantages and disadvantages of the case study method suggest that the helpfulness of this research option depends on the specific hypothesis under consideration. When researchers have the correct skills and mindset to gather data accurately, then it can lead to supportive data that can verify ideas with tremendous accuracy.

This research method can also be used unethically to produce specific results that can be difficult to challenge.

When bias enters into the structure of the case study method, the processes become inefficient, inaccurate, and harmful to the hypothesis. That’s why great care must be taken when designing a study with this approach. It might be a labor-intensive way to develop conclusions, but the outcomes are often worth the investments needed.

  • Open access
  • Published: 10 November 2020

Case study research for better evaluations of complex interventions: rationale and challenges

  • Sara Paparini   ORCID: orcid.org/0000-0002-1909-2481 1 ,
  • Judith Green 2 ,
  • Chrysanthi Papoutsi 1 ,
  • Jamie Murdoch 3 ,
  • Mark Petticrew 4 ,
  • Trish Greenhalgh 1 ,
  • Benjamin Hanckel 5 &
  • Sara Shaw 1  

BMC Medicine volume  18 , Article number:  301 ( 2020 ) Cite this article

19k Accesses

46 Citations

35 Altmetric

Metrics details

The need for better methods for evaluation in health research has been widely recognised. The ‘complexity turn’ has drawn attention to the limitations of relying on causal inference from randomised controlled trials alone for understanding whether, and under which conditions, interventions in complex systems improve health services or the public health, and what mechanisms might link interventions and outcomes. We argue that case study research—currently denigrated as poor evidence—is an under-utilised resource for not only providing evidence about context and transferability, but also for helping strengthen causal inferences when pathways between intervention and effects are likely to be non-linear.

Case study research, as an overall approach, is based on in-depth explorations of complex phenomena in their natural, or real-life, settings. Empirical case studies typically enable dynamic understanding of complex challenges and provide evidence about causal mechanisms and the necessary and sufficient conditions (contexts) for intervention implementation and effects. This is essential evidence not just for researchers concerned about internal and external validity, but also research users in policy and practice who need to know what the likely effects of complex programmes or interventions will be in their settings. The health sciences have much to learn from scholarship on case study methodology in the social sciences. However, there are multiple challenges in fully exploiting the potential learning from case study research. First are misconceptions that case study research can only provide exploratory or descriptive evidence. Second, there is little consensus about what a case study is, and considerable diversity in how empirical case studies are conducted and reported. Finally, as case study researchers typically (and appropriately) focus on thick description (that captures contextual detail), it can be challenging to identify the key messages related to intervention evaluation from case study reports.

Whilst the diversity of published case studies in health services and public health research is rich and productive, we recommend further clarity and specific methodological guidance for those reporting case study research for evaluation audiences.

Peer Review reports

The need for methodological development to address the most urgent challenges in health research has been well-documented. Many of the most pressing questions for public health research, where the focus is on system-level determinants [ 1 , 2 ], and for health services research, where provisions typically vary across sites and are provided through interlocking networks of services [ 3 ], require methodological approaches that can attend to complexity. The need for methodological advance has arisen, in part, as a result of the diminishing returns from randomised controlled trials (RCTs) where they have been used to answer questions about the effects of interventions in complex systems [ 4 , 5 , 6 ]. In conditions of complexity, there is limited value in maintaining the current orientation to experimental trial designs in the health sciences as providing ‘gold standard’ evidence of effect.

There are increasing calls for methodological pluralism [ 7 , 8 ], with the recognition that complex intervention and context are not easily or usefully separated (as is often the situation when using trial design), and that system interruptions may have effects that are not reducible to linear causal pathways between intervention and outcome. These calls are reflected in a shifting and contested discourse of trial design, seen with the emergence of realist [ 9 ], adaptive and hybrid (types 1, 2 and 3) [ 10 , 11 ] trials that blend studies of effectiveness with a close consideration of the contexts of implementation. Similarly, process evaluation has now become a core component of complex healthcare intervention trials, reflected in MRC guidance on how to explore implementation, causal mechanisms and context [ 12 ].

Evidence about the context of an intervention is crucial for questions of external validity. As Woolcock [ 4 ] notes, even if RCT designs are accepted as robust for maximising internal validity, questions of transferability (how well the intervention works in different contexts) and generalisability (how well the intervention can be scaled up) remain unanswered [ 5 , 13 ]. For research evidence to have impact on policy and systems organisation, and thus to improve population and patient health, there is an urgent need for better methods for strengthening external validity, including a better understanding of the relationship between intervention and context [ 14 ].

Policymakers, healthcare commissioners and other research users require credible evidence of relevance to their settings and populations [ 15 ], to perform what Rosengarten and Savransky [ 16 ] call ‘careful abstraction’ to the locales that matter for them. They also require robust evidence for understanding complex causal pathways. Case study research, currently under-utilised in public health and health services evaluation, can offer considerable potential for strengthening faith in both external and internal validity. For example, in an empirical case study of how the policy of free bus travel had specific health effects in London, UK, a quasi-experimental evaluation (led by JG) identified how important aspects of context (a good public transport system) and intervention (that it was universal) were necessary conditions for the observed effects, thus providing useful, actionable evidence for decision-makers in other contexts [ 17 ].

The overall approach of case study research is based on the in-depth exploration of complex phenomena in their natural, or ‘real-life’, settings. Empirical case studies typically enable dynamic understanding of complex challenges rather than restricting the focus on narrow problem delineations and simple fixes. Case study research is a diverse and somewhat contested field, with multiple definitions and perspectives grounded in different ways of viewing the world, and involving different combinations of methods. In this paper, we raise awareness of such plurality and highlight the contribution that case study research can make to the evaluation of complex system-level interventions. We review some of the challenges in exploiting the current evidence base from empirical case studies and conclude by recommending that further guidance and minimum reporting criteria for evaluation using case studies, appropriate for audiences in the health sciences, can enhance the take-up of evidence from case study research.

Case study research offers evidence about context, causal inference in complex systems and implementation

Well-conducted and described empirical case studies provide evidence on context, complexity and mechanisms for understanding how, where and why interventions have their observed effects. Recognition of the importance of context for understanding the relationships between interventions and outcomes is hardly new. In 1943, Canguilhem berated an over-reliance on experimental designs for determining universal physiological laws: ‘As if one could determine a phenomenon’s essence apart from its conditions! As if conditions were a mask or frame which changed neither the face nor the picture!’ ([ 18 ] p126). More recently, a concern with context has been expressed in health systems and public health research as part of what has been called the ‘complexity turn’ [ 1 ]: a recognition that many of the most enduring challenges for developing an evidence base require a consideration of system-level effects [ 1 ] and the conceptualisation of interventions as interruptions in systems [ 19 ].

The case study approach is widely recognised as offering an invaluable resource for understanding the dynamic and evolving influence of context on complex, system-level interventions [ 20 , 21 , 22 , 23 ]. Empirically, case studies can directly inform assessments of where, when, how and for whom interventions might be successfully implemented, by helping to specify the necessary and sufficient conditions under which interventions might have effects and to consolidate learning on how interdependencies, emergence and unpredictability can be managed to achieve and sustain desired effects. Case study research has the potential to address four objectives for improving research and reporting of context recently set out by guidance on taking account of context in population health research [ 24 ], that is to (1) improve the appropriateness of intervention development for specific contexts, (2) improve understanding of ‘how’ interventions work, (3) better understand how and why impacts vary across contexts and (4) ensure reports of intervention studies are most useful for decision-makers and researchers.

However, evaluations of complex healthcare interventions have arguably not exploited the full potential of case study research and can learn much from other disciplines. For evaluative research, exploratory case studies have had a traditional role of providing data on ‘process’, or initial ‘hypothesis-generating’ scoping, but might also have an increasing salience for explanatory aims. Across the social and political sciences, different kinds of case studies are undertaken to meet diverse aims (description, exploration or explanation) and across different scales (from small N qualitative studies that aim to elucidate processes, or provide thick description, to more systematic techniques designed for medium-to-large N cases).

Case studies with explanatory aims vary in terms of their positioning within mixed-methods projects, with designs including (but not restricted to) (1) single N of 1 studies of interventions in specific contexts, where the overall design is a case study that may incorporate one or more (randomised or not) comparisons over time and between variables within the case; (2) a series of cases conducted or synthesised to provide explanation from variations between cases; and (3) case studies of particular settings within RCT or quasi-experimental designs to explore variation in effects or implementation.

Detailed qualitative research (typically done as ‘case studies’ within process evaluations) provides evidence for the plausibility of mechanisms [ 25 ], offering theoretical generalisations for how interventions may function under different conditions. Although RCT designs reduce many threats to internal validity, the mechanisms of effect remain opaque, particularly when the causal pathways between ‘intervention’ and ‘effect’ are long and potentially non-linear: case study research has a more fundamental role here, in providing detailed observational evidence for causal claims [ 26 ] as well as producing a rich, nuanced picture of tensions and multiple perspectives [ 8 ].

Longitudinal or cross-case analysis may be best suited for evidence generation in system-level evaluative research. Turner [ 27 ], for instance, reflecting on the complex processes in major system change, has argued for the need for methods that integrate learning across cases, to develop theoretical knowledge that would enable inferences beyond the single case, and to develop generalisable theory about organisational and structural change in health systems. Qualitative Comparative Analysis (QCA) [ 28 ] is one such formal method for deriving causal claims, using set theory mathematics to integrate data from empirical case studies to answer questions about the configurations of causal pathways linking conditions to outcomes [ 29 , 30 ].

Nonetheless, the single N case study, too, provides opportunities for theoretical development [ 31 ], and theoretical generalisation or analytical refinement [ 32 ]. How ‘the case’ and ‘context’ are conceptualised is crucial here. Findings from the single case may seem to be confined to its intrinsic particularities in a specific and distinct context [ 33 ]. However, if such context is viewed as exemplifying wider social and political forces, the single case can be ‘telling’, rather than ‘typical’, and offer insight into a wider issue [ 34 ]. Internal comparisons within the case can offer rich possibilities for logical inferences about causation [ 17 ]. Further, case studies of any size can be used for theory testing through refutation [ 22 ]. The potential lies, then, in utilising the strengths and plurality of case study to support theory-driven research within different methodological paradigms.

Evaluation research in health has much to learn from a range of social sciences where case study methodology has been used to develop various kinds of causal inference. For instance, Gerring [ 35 ] expands on the within-case variations utilised to make causal claims. For Gerring [ 35 ], case studies come into their own with regard to invariant or strong causal claims (such as X is a necessary and/or sufficient condition for Y) rather than for probabilistic causal claims. For the latter (where experimental methods might have an advantage in estimating effect sizes), case studies offer evidence on mechanisms: from observations of X affecting Y, from process tracing or from pattern matching. Case studies also support the study of emergent causation, that is, the multiple interacting properties that account for particular and unexpected outcomes in complex systems, such as in healthcare [ 8 ].

Finally, efficacy (or beliefs about efficacy) is not the only contributor to intervention uptake, with a range of organisational and policy contingencies affecting whether an intervention is likely to be rolled out in practice. Case study research is, therefore, invaluable for learning about contextual contingencies and identifying the conditions necessary for interventions to become normalised (i.e. implemented routinely) in practice [ 36 ].

The challenges in exploiting evidence from case study research

At present, there are significant challenges in exploiting the benefits of case study research in evaluative health research, which relate to status, definition and reporting. Case study research has been marginalised at the bottom of an evidence hierarchy, seen to offer little by way of explanatory power, if nonetheless useful for adding descriptive data on process or providing useful illustrations for policymakers [ 37 ]. This is an opportune moment to revisit this low status. As health researchers are increasingly charged with evaluating ‘natural experiments’—the use of face masks in the response to the COVID-19 pandemic being a recent example [ 38 ]—rather than interventions that take place in settings that can be controlled, research approaches using methods to strengthen causal inference that does not require randomisation become more relevant.

A second challenge for improving the use of case study evidence in evaluative health research is that, as we have seen, what is meant by ‘case study’ varies widely, not only across but also within disciplines. There is indeed little consensus amongst methodologists as to how to define ‘a case study’. Definitions focus, variously, on small sample size or lack of control over the intervention (e.g. [ 39 ] p194), on in-depth study and context [ 40 , 41 ], on the logic of inference used [ 35 ] or on distinct research strategies which incorporate a number of methods to address questions of ‘how’ and ‘why’ [ 42 ]. Moreover, definitions developed for specific disciplines do not capture the range of ways in which case study research is carried out across disciplines. Multiple definitions of case study reflect the richness and diversity of the approach. However, evidence suggests that a lack of consensus across methodologists results in some of the limitations of published reports of empirical case studies [ 43 , 44 ]. Hyett and colleagues [ 43 ], for instance, reviewing reports in qualitative journals, found little match between methodological definitions of case study research and how authors used the term.

This raises the third challenge we identify that case study reports are typically not written in ways that are accessible or useful for the evaluation research community and policymakers. Case studies may not appear in journals widely read by those in the health sciences, either because space constraints preclude the reporting of rich, thick descriptions, or because of the reported lack of willingness of some biomedical journals to publish research that uses qualitative methods [ 45 ], signalling the persistence of the aforementioned evidence hierarchy. Where they do, however, the term ‘case study’ is used to indicate, interchangeably, a qualitative study, an N of 1 sample, or a multi-method, in-depth analysis of one example from a population of phenomena. Definitions of what constitutes the ‘case’ are frequently lacking and appear to be used as a synonym for the settings in which the research is conducted. Despite offering insights for evaluation, the primary aims may not have been evaluative, so the implications may not be explicitly drawn out. Indeed, some case study reports might properly be aiming for thick description without necessarily seeking to inform about context or causality.

Acknowledging plurality and developing guidance

We recognise that definitional and methodological plurality is not only inevitable, but also a necessary and creative reflection of the very different epistemological and disciplinary origins of health researchers, and the aims they have in doing and reporting case study research. Indeed, to provide some clarity, Thomas [ 46 ] has suggested a typology of subject/purpose/approach/process for classifying aims (e.g. evaluative or exploratory), sample rationale and selection and methods for data generation of case studies. We also recognise that the diversity of methods used in case study research, and the necessary focus on narrative reporting, does not lend itself to straightforward development of formal quality or reporting criteria.

Existing checklists for reporting case study research from the social sciences—for example Lincoln and Guba’s [ 47 ] and Stake’s [ 33 ]—are primarily orientated to the quality of narrative produced, and the extent to which they encapsulate thick description, rather than the more pragmatic issues of implications for intervention effects. Those designed for clinical settings, such as the CARE (CAse REports) guidelines, provide specific reporting guidelines for medical case reports about single, or small groups of patients [ 48 ], not for case study research.

The Design of Case Study Research in Health Care (DESCARTE) model [ 44 ] suggests a series of questions to be asked of a case study researcher (including clarity about the philosophy underpinning their research), study design (with a focus on case definition) and analysis (to improve process). The model resembles toolkits for enhancing the quality and robustness of qualitative and mixed-methods research reporting, and it is usefully open-ended and non-prescriptive. However, even if it does include some reflections on context, the model does not fully address aspects of context, logic and causal inference that are perhaps most relevant for evaluative research in health.

Hence, for evaluative research where the aim is to report empirical findings in ways that are intended to be pragmatically useful for health policy and practice, this may be an opportune time to consider how to best navigate plurality around what is (minimally) important to report when publishing empirical case studies, especially with regards to the complex relationships between context and interventions, information that case study research is well placed to provide.

The conventional scientific quest for certainty, predictability and linear causality (maximised in RCT designs) has to be augmented by the study of uncertainty, unpredictability and emergent causality [ 8 ] in complex systems. This will require methodological pluralism, and openness to broadening the evidence base to better understand both causality in and the transferability of system change intervention [ 14 , 20 , 23 , 25 ]. Case study research evidence is essential, yet is currently under exploited in the health sciences. If evaluative health research is to move beyond the current impasse on methods for understanding interventions as interruptions in complex systems, we need to consider in more detail how researchers can conduct and report empirical case studies which do aim to elucidate the contextual factors which interact with interventions to produce particular effects. To this end, supported by the UK’s Medical Research Council, we are embracing the challenge to develop guidance for case study researchers studying complex interventions. Following a meta-narrative review of the literature, we are planning a Delphi study to inform guidance that will, at minimum, cover the value of case study research for evaluating the interrelationship between context and complex system-level interventions; for situating and defining ‘the case’, and generalising from case studies; as well as provide specific guidance on conducting, analysing and reporting case study research. Our hope is that such guidance can support researchers evaluating interventions in complex systems to better exploit the diversity and richness of case study research.

Availability of data and materials

Not applicable (article based on existing available academic publications)

Abbreviations

Qualitative comparative analysis

Quasi-experimental design

Randomised controlled trial

Diez Roux AV. Complex systems thinking and current impasses in health disparities research. Am J Public Health. 2011;101(9):1627–34.

Article   Google Scholar  

Ogilvie D, Mitchell R, Mutrie N, M P, Platt S. Evaluating health effects of transport interventions: methodologic case study. Am J Prev Med 2006;31:118–126.

Walshe C. The evaluation of complex interventions in palliative care: an exploration of the potential of case study research strategies. Palliat Med. 2011;25(8):774–81.

Woolcock M. Using case studies to explore the external validity of ‘complex’ development interventions. Evaluation. 2013;19:229–48.

Cartwright N. Are RCTs the gold standard? BioSocieties. 2007;2(1):11–20.

Deaton A, Cartwright N. Understanding and misunderstanding randomized controlled trials. Soc Sci Med. 2018;210:2–21.

Salway S, Green J. Towards a critical complex systems approach to public health. Crit Public Health. 2017;27(5):523–4.

Greenhalgh T, Papoutsi C. Studying complexity in health services research: desperately seeking an overdue paradigm shift. BMC Med. 2018;16(1):95.

Bonell C, Warren E, Fletcher A. Realist trials and the testing of context-mechanism-outcome configurations: a response to Van Belle et al. Trials. 2016;17:478.

Pallmann P, Bedding AW, Choodari-Oskooei B. Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Med. 2018;16:29.

Curran G, Bauer M, Mittman B, Pyne J, Stetler C. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. Med Care. 2012;50(3):217–26. https://doi.org/10.1097/MLR.0b013e3182408812 .

Moore GF, Audrey S, Barker M, Bond L, Bonell C, Hardeman W, et al. Process evaluation of complex interventions: Medical Research Council guidance. BMJ. 2015 [cited 2020 Jun 27];350. Available from: https://www.bmj.com/content/350/bmj.h1258 .

Evans RE, Craig P, Hoddinott P, Littlecott H, Moore L, Murphy S, et al. When and how do ‘effective’ interventions need to be adapted and/or re-evaluated in new contexts? The need for guidance. J Epidemiol Community Health. 2019;73(6):481–2.

Shoveller J. A critical examination of representations of context within research on population health interventions. Crit Public Health. 2016;26(5):487–500.

Treweek S, Zwarenstein M. Making trials matter: pragmatic and explanatory trials and the problem of applicability. Trials. 2009;10(1):37.

Rosengarten M, Savransky M. A careful biomedicine? Generalization and abstraction in RCTs. Crit Public Health. 2019;29(2):181–91.

Green J, Roberts H, Petticrew M, Steinbach R, Goodman A, Jones A, et al. Integrating quasi-experimental and inductive designs in evaluation: a case study of the impact of free bus travel on public health. Evaluation. 2015;21(4):391–406.

Canguilhem G. The normal and the pathological. New York: Zone Books; 1991. (1949).

Google Scholar  

Hawe P, Shiell A, Riley T. Theorising interventions as events in systems. Am J Community Psychol. 2009;43:267–76.

King G, Keohane RO, Verba S. Designing social inquiry: scientific inference in qualitative research: Princeton University Press; 1994.

Greenhalgh T, Robert G, Macfarlane F, Bate P, Kyriakidou O. Diffusion of innovations in service organizations: systematic review and recommendations. Milbank Q. 2004;82(4):581–629.

Yin R. Enhancing the quality of case studies in health services research. Health Serv Res. 1999;34(5 Pt 2):1209.

CAS   PubMed   PubMed Central   Google Scholar  

Raine R, Fitzpatrick R, Barratt H, Bevan G, Black N, Boaden R, et al. Challenges, solutions and future directions in the evaluation of service innovations in health care and public health. Health Serv Deliv Res. 2016 [cited 2020 Jun 30];4(16). Available from: https://www.journalslibrary.nihr.ac.uk/hsdr/hsdr04160#/abstract .

Craig P, Di Ruggiero E, Frohlich KL, E M, White M, Group CCGA. Taking account of context in population health intervention research: guidance for producers, users and funders of research. NIHR Evaluation, Trials and Studies Coordinating Centre; 2018.

Grant RL, Hood R. Complex systems, explanation and policy: implications of the crisis of replication for public health research. Crit Public Health. 2017;27(5):525–32.

Mahoney J. Strategies of causal inference in small-N analysis. Sociol Methods Res. 2000;4:387–424.

Turner S. Major system change: a management and organisational research perspective. In: Rosalind Raine, Ray Fitzpatrick, Helen Barratt, Gywn Bevan, Nick Black, Ruth Boaden, et al. Challenges, solutions and future directions in the evaluation of service innovations in health care and public health. Health Serv Deliv Res. 2016;4(16) 2016. https://doi.org/10.3310/hsdr04160.

Ragin CC. Using qualitative comparative analysis to study causal complexity. Health Serv Res. 1999;34(5 Pt 2):1225.

Hanckel B, Petticrew M, Thomas J, Green J. Protocol for a systematic review of the use of qualitative comparative analysis for evaluative questions in public health research. Syst Rev. 2019;8(1):252.

Schneider CQ, Wagemann C. Set-theoretic methods for the social sciences: a guide to qualitative comparative analysis: Cambridge University Press; 2012. 369 p.

Flyvbjerg B. Five misunderstandings about case-study research. Qual Inq. 2006;12:219–45.

Tsoukas H. Craving for generality and small-N studies: a Wittgensteinian approach towards the epistemology of the particular in organization and management studies. Sage Handb Organ Res Methods. 2009:285–301.

Stake RE. The art of case study research. London: Sage Publications Ltd; 1995.

Mitchell JC. Typicality and the case study. Ethnographic research: A guide to general conduct. Vol. 238241. 1984.

Gerring J. What is a case study and what is it good for? Am Polit Sci Rev. 2004;98(2):341–54.

May C, Mort M, Williams T, F M, Gask L. Health technology assessment in its local contexts: studies of telehealthcare. Soc Sci Med 2003;57:697–710.

McGill E. Trading quality for relevance: non-health decision-makers’ use of evidence on the social determinants of health. BMJ Open. 2015;5(4):007053.

Greenhalgh T. We can’t be 100% sure face masks work – but that shouldn’t stop us wearing them | Trish Greenhalgh. The Guardian. 2020 [cited 2020 Jun 27]; Available from: https://www.theguardian.com/commentisfree/2020/jun/05/face-masks-coronavirus .

Hammersley M. So, what are case studies? In: What’s wrong with ethnography? New York: Routledge; 1992.

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach. BMC Med Res Methodol. 2011;11(1):100.

Luck L, Jackson D, Usher K. Case study: a bridge across the paradigms. Nurs Inq. 2006;13(2):103–9.

Yin RK. Case study research and applications: design and methods: Sage; 2017.

Hyett N, A K, Dickson-Swift V. Methodology or method? A critical review of qualitative case study reports. Int J Qual Stud Health Well-Being. 2014;9:23606.

Carolan CM, Forbat L, Smith A. Developing the DESCARTE model: the design of case study research in health care. Qual Health Res. 2016;26(5):626–39.

Greenhalgh T, Annandale E, Ashcroft R, Barlow J, Black N, Bleakley A, et al. An open letter to the BMJ editors on qualitative research. Bmj. 2016;352.

Thomas G. A typology for the case study in social science following a review of definition, discourse, and structure. Qual Inq. 2011;17(6):511–21.

Lincoln YS, Guba EG. Judging the quality of case study reports. Int J Qual Stud Educ. 1990;3(1):53–9.

Riley DS, Barber MS, Kienle GS, Aronson JK, Schoen-Angerer T, Tugwell P, et al. CARE guidelines for case reports: explanation and elaboration document. J Clin Epidemiol. 2017;89:218–35.

Download references

Acknowledgements

Not applicable

This work was funded by the Medical Research Council - MRC Award MR/S014632/1 HCS: Case study, Context and Complex interventions (TRIPLE C). SP was additionally funded by the University of Oxford's Higher Education Innovation Fund (HEIF).

Author information

Authors and affiliations.

Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK

Sara Paparini, Chrysanthi Papoutsi, Trish Greenhalgh & Sara Shaw

Wellcome Centre for Cultures & Environments of Health, University of Exeter, Exeter, UK

Judith Green

School of Health Sciences, University of East Anglia, Norwich, UK

Jamie Murdoch

Public Health, Environments and Society, London School of Hygiene & Tropical Medicin, London, UK

Mark Petticrew

Institute for Culture and Society, Western Sydney University, Penrith, Australia

Benjamin Hanckel

You can also search for this author in PubMed   Google Scholar

Contributions

JG, MP, SP, JM, TG, CP and SS drafted the initial paper; all authors contributed to the drafting of the final version, and read and approved the final manuscript.

Corresponding author

Correspondence to Sara Paparini .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Paparini, S., Green, J., Papoutsi, C. et al. Case study research for better evaluations of complex interventions: rationale and challenges. BMC Med 18 , 301 (2020). https://doi.org/10.1186/s12916-020-01777-6

Download citation

Received : 03 July 2020

Accepted : 07 September 2020

Published : 10 November 2020

DOI : https://doi.org/10.1186/s12916-020-01777-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Qualitative
  • Case studies
  • Mixed-method
  • Public health
  • Health services research
  • Interventions

BMC Medicine

ISSN: 1741-7015

what are the benefits of case study research

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • Write for Us
  • BMJ Journals

You are here

  • Volume 21, Issue 1
  • What is a case study?
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • Roberta Heale 1 ,
  • Alison Twycross 2
  • 1 School of Nursing , Laurentian University , Sudbury , Ontario , Canada
  • 2 School of Health and Social Care , London South Bank University , London , UK
  • Correspondence to Dr Roberta Heale, School of Nursing, Laurentian University, Sudbury, ON P3E2C6, Canada; rheale{at}laurentian.ca

https://doi.org/10.1136/eb-2017-102845

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

What is it?

Case study is a research methodology, typically seen in social and life sciences. There is no one definition of case study research. 1 However, very simply… ‘a case study can be defined as an intensive study about a person, a group of people or a unit, which is aimed to generalize over several units’. 1 A case study has also been described as an intensive, systematic investigation of a single individual, group, community or some other unit in which the researcher examines in-depth data relating to several variables. 2

Often there are several similar cases to consider such as educational or social service programmes that are delivered from a number of locations. Although similar, they are complex and have unique features. In these circumstances, the evaluation of several, similar cases will provide a better answer to a research question than if only one case is examined, hence the multiple-case study. Stake asserts that the cases are grouped and viewed as one entity, called the quintain . 6  ‘We study what is similar and different about the cases to understand the quintain better’. 6

The steps when using case study methodology are the same as for other types of research. 6 The first step is defining the single case or identifying a group of similar cases that can then be incorporated into a multiple-case study. A search to determine what is known about the case(s) is typically conducted. This may include a review of the literature, grey literature, media, reports and more, which serves to establish a basic understanding of the cases and informs the development of research questions. Data in case studies are often, but not exclusively, qualitative in nature. In multiple-case studies, analysis within cases and across cases is conducted. Themes arise from the analyses and assertions about the cases as a whole, or the quintain, emerge. 6

Benefits and limitations of case studies

If a researcher wants to study a specific phenomenon arising from a particular entity, then a single-case study is warranted and will allow for a in-depth understanding of the single phenomenon and, as discussed above, would involve collecting several different types of data. This is illustrated in example 1 below.

Using a multiple-case research study allows for a more in-depth understanding of the cases as a unit, through comparison of similarities and differences of the individual cases embedded within the quintain. Evidence arising from multiple-case studies is often stronger and more reliable than from single-case research. Multiple-case studies allow for more comprehensive exploration of research questions and theory development. 6

Despite the advantages of case studies, there are limitations. The sheer volume of data is difficult to organise and data analysis and integration strategies need to be carefully thought through. There is also sometimes a temptation to veer away from the research focus. 2 Reporting of findings from multiple-case research studies is also challenging at times, 1 particularly in relation to the word limits for some journal papers.

Examples of case studies

Example 1: nurses’ paediatric pain management practices.

One of the authors of this paper (AT) has used a case study approach to explore nurses’ paediatric pain management practices. This involved collecting several datasets:

Observational data to gain a picture about actual pain management practices.

Questionnaire data about nurses’ knowledge about paediatric pain management practices and how well they felt they managed pain in children.

Questionnaire data about how critical nurses perceived pain management tasks to be.

These datasets were analysed separately and then compared 7–9 and demonstrated that nurses’ level of theoretical did not impact on the quality of their pain management practices. 7 Nor did individual nurse’s perceptions of how critical a task was effect the likelihood of them carrying out this task in practice. 8 There was also a difference in self-reported and observed practices 9 ; actual (observed) practices did not confirm to best practice guidelines, whereas self-reported practices tended to.

Example 2: quality of care for complex patients at Nurse Practitioner-Led Clinics (NPLCs)

The other author of this paper (RH) has conducted a multiple-case study to determine the quality of care for patients with complex clinical presentations in NPLCs in Ontario, Canada. 10 Five NPLCs served as individual cases that, together, represented the quatrain. Three types of data were collected including:

Review of documentation related to the NPLC model (media, annual reports, research articles, grey literature and regulatory legislation).

Interviews with nurse practitioners (NPs) practising at the five NPLCs to determine their perceptions of the impact of the NPLC model on the quality of care provided to patients with multimorbidity.

Chart audits conducted at the five NPLCs to determine the extent to which evidence-based guidelines were followed for patients with diabetes and at least one other chronic condition.

The three sources of data collected from the five NPLCs were analysed and themes arose related to the quality of care for complex patients at NPLCs. The multiple-case study confirmed that nurse practitioners are the primary care providers at the NPLCs, and this positively impacts the quality of care for patients with multimorbidity. Healthcare policy, such as lack of an increase in salary for NPs for 10 years, has resulted in issues in recruitment and retention of NPs at NPLCs. This, along with insufficient resources in the communities where NPLCs are located and high patient vulnerability at NPLCs, have a negative impact on the quality of care. 10

These examples illustrate how collecting data about a single case or multiple cases helps us to better understand the phenomenon in question. Case study methodology serves to provide a framework for evaluation and analysis of complex issues. It shines a light on the holistic nature of nursing practice and offers a perspective that informs improved patient care.

  • Gustafsson J
  • Calanzaro M
  • Sandelowski M

Competing interests None declared.

Provenance and peer review Commissioned; internally peer reviewed.

Read the full text or download the PDF:

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • BMC Med Res Methodol

Logo of bmcmrm

The case study approach

Sarah crowe.

1 Division of Primary Care, The University of Nottingham, Nottingham, UK

Kathrin Cresswell

2 Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK

Ann Robertson

3 School of Health in Social Science, The University of Edinburgh, Edinburgh, UK

Anthony Avery

Aziz sheikh.

The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports.

Introduction

The case study approach is particularly useful to employ when there is a need to obtain an in-depth appreciation of an issue, event or phenomenon of interest, in its natural real-life context. Our aim in writing this piece is to provide insights into when to consider employing this approach and an overview of key methodological considerations in relation to the design, planning, analysis, interpretation and reporting of case studies.

The illustrative 'grand round', 'case report' and 'case series' have a long tradition in clinical practice and research. Presenting detailed critiques, typically of one or more patients, aims to provide insights into aspects of the clinical case and, in doing so, illustrate broader lessons that may be learnt. In research, the conceptually-related case study approach can be used, for example, to describe in detail a patient's episode of care, explore professional attitudes to and experiences of a new policy initiative or service development or more generally to 'investigate contemporary phenomena within its real-life context' [ 1 ]. Based on our experiences of conducting a range of case studies, we reflect on when to consider using this approach, discuss the key steps involved and illustrate, with examples, some of the practical challenges of attaining an in-depth understanding of a 'case' as an integrated whole. In keeping with previously published work, we acknowledge the importance of theory to underpin the design, selection, conduct and interpretation of case studies[ 2 ]. In so doing, we make passing reference to the different epistemological approaches used in case study research by key theoreticians and methodologists in this field of enquiry.

This paper is structured around the following main questions: What is a case study? What are case studies used for? How are case studies conducted? What are the potential pitfalls and how can these be avoided? We draw in particular on four of our own recently published examples of case studies (see Tables ​ Tables1, 1 , ​ ,2, 2 , ​ ,3 3 and ​ and4) 4 ) and those of others to illustrate our discussion[ 3 - 7 ].

Example of a case study investigating the reasons for differences in recruitment rates of minority ethnic people in asthma research[ 3 ]

Minority ethnic people experience considerably greater morbidity from asthma than the White majority population. Research has shown however that these minority ethnic populations are likely to be under-represented in research undertaken in the UK; there is comparatively less marginalisation in the US.
To investigate approaches to bolster recruitment of South Asians into UK asthma studies through qualitative research with US and UK researchers, and UK community leaders.
Single intrinsic case study
Centred on the issue of recruitment of South Asian people with asthma.
In-depth interviews were conducted with asthma researchers from the UK and US. A supplementary questionnaire was also provided to researchers.
Framework approach.
Barriers to ethnic minority recruitment were found to centre around:
 1. The attitudes of the researchers' towards inclusion: The majority of UK researchers interviewed were generally supportive of the idea of recruiting ethnically diverse participants but expressed major concerns about the practicalities of achieving this; in contrast, the US researchers appeared much more committed to the policy of inclusion.
 2. Stereotypes and prejudices: We found that some of the UK researchers' perceptions of ethnic minorities may have influenced their decisions on whether to approach individuals from particular ethnic groups. These stereotypes centred on issues to do with, amongst others, language barriers and lack of altruism.
 3. Demographic, political and socioeconomic contexts of the two countries: Researchers suggested that the demographic profile of ethnic minorities, their political engagement and the different configuration of the health services in the UK and the US may have contributed to differential rates.
 4. Above all, however, it appeared that the overriding importance of the US National Institute of Health's policy to mandate the inclusion of minority ethnic people (and women) had a major impact on shaping the attitudes and in turn the experiences of US researchers'; the absence of any similar mandate in the UK meant that UK-based researchers had not been forced to challenge their existing practices and they were hence unable to overcome any stereotypical/prejudicial attitudes through experiential learning.

Example of a case study investigating the process of planning and implementing a service in Primary Care Organisations[ 4 ]

Health work forces globally are needing to reorganise and reconfigure in order to meet the challenges posed by the increased numbers of people living with long-term conditions in an efficient and sustainable manner. Through studying the introduction of General Practitioners with a Special Interest in respiratory disorders, this study aimed to provide insights into this important issue by focusing on community respiratory service development.
To understand and compare the process of workforce change in respiratory services and the impact on patient experience (specifically in relation to the role of general practitioners with special interests) in a theoretically selected sample of Primary Care Organisations (PCOs), in order to derive models of good practice in planning and the implementation of a broad range of workforce issues.
Multiple-case design of respiratory services in health regions in England and Wales.
Four PCOs.
Face-to-face and telephone interviews, e-mail discussions, local documents, patient diaries, news items identified from local and national websites, national workshop.
Reading, coding and comparison progressed iteratively.
 1. In the screening phase of this study (which involved semi-structured telephone interviews with the person responsible for driving the reconfiguration of respiratory services in 30 PCOs), the barriers of financial deficit, organisational uncertainty, disengaged clinicians and contradictory policies proved insurmountable for many PCOs to developing sustainable services. A key rationale for PCO re-organisation in 2006 was to strengthen their commissioning function and those of clinicians through Practice-Based Commissioning. However, the turbulence, which surrounded reorganisation was found to have the opposite desired effect.
 2. Implementing workforce reconfiguration was strongly influenced by the negotiation and contest among local clinicians and managers about "ownership" of work and income.
 3. Despite the intention to make the commissioning system more transparent, personal relationships based on common professional interests, past work history, friendships and collegiality, remained as key drivers for sustainable innovation in service development.
It was only possible to undertake in-depth work in a selective number of PCOs and, even within these selected PCOs, it was not possible to interview all informants of potential interest and/or obtain all relevant documents. This work was conducted in the early stages of a major NHS reorganisation in England and Wales and thus, events are likely to have continued to evolve beyond the study period; we therefore cannot claim to have seen any of the stories through to their conclusion.

Example of a case study investigating the introduction of the electronic health records[ 5 ]

Healthcare systems globally are moving from paper-based record systems to electronic health record systems. In 2002, the NHS in England embarked on the most ambitious and expensive IT-based transformation in healthcare in history seeking to introduce electronic health records into all hospitals in England by 2010.
To describe and evaluate the implementation and adoption of detailed electronic health records in secondary care in England and thereby provide formative feedback for local and national rollout of the NHS Care Records Service.
A mixed methods, longitudinal, multi-site, socio-technical collective case study.
Five NHS acute hospital and mental health Trusts that have been the focus of early implementation efforts.
Semi-structured interviews, documentary data and field notes, observations and quantitative data.
Qualitative data were analysed thematically using a socio-technical coding matrix, combined with additional themes that emerged from the data.
 1. Hospital electronic health record systems have developed and been implemented far more slowly than was originally envisioned.
 2. The top-down, government-led standardised approach needed to evolve to admit more variation and greater local choice for hospitals in order to support local service delivery.
 3. A range of adverse consequences were associated with the centrally negotiated contracts, which excluded the hospitals in question.
 4. The unrealistic, politically driven, timeline (implementation over 10 years) was found to be a major source of frustration for developers, implementers and healthcare managers and professionals alike.
We were unable to access details of the contracts between government departments and the Local Service Providers responsible for delivering and implementing the software systems. This, in turn, made it difficult to develop a holistic understanding of some key issues impacting on the overall slow roll-out of the NHS Care Record Service. Early adopters may also have differed in important ways from NHS hospitals that planned to join the National Programme for Information Technology and implement the NHS Care Records Service at a later point in time.

Example of a case study investigating the formal and informal ways students learn about patient safety[ 6 ]

There is a need to reduce the disease burden associated with iatrogenic harm and considering that healthcare education represents perhaps the most sustained patient safety initiative ever undertaken, it is important to develop a better appreciation of the ways in which undergraduate and newly qualified professionals receive and make sense of the education they receive.
To investigate the formal and informal ways pre-registration students from a range of healthcare professions (medicine, nursing, physiotherapy and pharmacy) learn about patient safety in order to become safe practitioners.
Multi-site, mixed method collective case study.
: Eight case studies (two for each professional group) were carried out in educational provider sites considering different programmes, practice environments and models of teaching and learning.
Structured in phases relevant to the three knowledge contexts:
Documentary evidence (including undergraduate curricula, handbooks and module outlines), complemented with a range of views (from course leads, tutors and students) and observations in a range of academic settings.
Policy and management views of patient safety and influences on patient safety education and practice. NHS policies included, for example, implementation of the National Patient Safety Agency's , which encourages organisations to develop an organisational safety culture in which staff members feel comfortable identifying dangers and reporting hazards.
The cultures to which students are exposed i.e. patient safety in relation to day-to-day working. NHS initiatives included, for example, a hand washing initiative or introduction of infection control measures.
 1. Practical, informal, learning opportunities were valued by students. On the whole, however, students were not exposed to nor engaged with important NHS initiatives such as risk management activities and incident reporting schemes.
 2. NHS policy appeared to have been taken seriously by course leaders. Patient safety materials were incorporated into both formal and informal curricula, albeit largely implicit rather than explicit.
 3. Resource issues and peer pressure were found to influence safe practice. Variations were also found to exist in students' experiences and the quality of the supervision available.
The curriculum and organisational documents collected differed between sites, which possibly reflected gatekeeper influences at each site. The recruitment of participants for focus group discussions proved difficult, so interviews or paired discussions were used as a substitute.

What is a case study?

A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table ​ (Table5), 5 ), the central tenet being the need to explore an event or phenomenon in depth and in its natural context. It is for this reason sometimes referred to as a "naturalistic" design; this is in contrast to an "experimental" design (such as a randomised controlled trial) in which the investigator seeks to exert control over and manipulate the variable(s) of interest.

Definitions of a case study

AuthorDefinition
Stake[ ] (p.237)
Yin[ , , ] (Yin 1999 p. 1211, Yin 1994 p. 13)
 •
 • (Yin 2009 p18)
Miles and Huberman[ ] (p. 25)
Green and Thorogood[ ] (p. 284)
George and Bennett[ ] (p. 17)"

Stake's work has been particularly influential in defining the case study approach to scientific enquiry. He has helpfully characterised three main types of case study: intrinsic , instrumental and collective [ 8 ]. An intrinsic case study is typically undertaken to learn about a unique phenomenon. The researcher should define the uniqueness of the phenomenon, which distinguishes it from all others. In contrast, the instrumental case study uses a particular case (some of which may be better than others) to gain a broader appreciation of an issue or phenomenon. The collective case study involves studying multiple cases simultaneously or sequentially in an attempt to generate a still broader appreciation of a particular issue.

These are however not necessarily mutually exclusive categories. In the first of our examples (Table ​ (Table1), 1 ), we undertook an intrinsic case study to investigate the issue of recruitment of minority ethnic people into the specific context of asthma research studies, but it developed into a instrumental case study through seeking to understand the issue of recruitment of these marginalised populations more generally, generating a number of the findings that are potentially transferable to other disease contexts[ 3 ]. In contrast, the other three examples (see Tables ​ Tables2, 2 , ​ ,3 3 and ​ and4) 4 ) employed collective case study designs to study the introduction of workforce reconfiguration in primary care, the implementation of electronic health records into hospitals, and to understand the ways in which healthcare students learn about patient safety considerations[ 4 - 6 ]. Although our study focusing on the introduction of General Practitioners with Specialist Interests (Table ​ (Table2) 2 ) was explicitly collective in design (four contrasting primary care organisations were studied), is was also instrumental in that this particular professional group was studied as an exemplar of the more general phenomenon of workforce redesign[ 4 ].

What are case studies used for?

According to Yin, case studies can be used to explain, describe or explore events or phenomena in the everyday contexts in which they occur[ 1 ]. These can, for example, help to understand and explain causal links and pathways resulting from a new policy initiative or service development (see Tables ​ Tables2 2 and ​ and3, 3 , for example)[ 1 ]. In contrast to experimental designs, which seek to test a specific hypothesis through deliberately manipulating the environment (like, for example, in a randomised controlled trial giving a new drug to randomly selected individuals and then comparing outcomes with controls),[ 9 ] the case study approach lends itself well to capturing information on more explanatory ' how ', 'what' and ' why ' questions, such as ' how is the intervention being implemented and received on the ground?'. The case study approach can offer additional insights into what gaps exist in its delivery or why one implementation strategy might be chosen over another. This in turn can help develop or refine theory, as shown in our study of the teaching of patient safety in undergraduate curricula (Table ​ (Table4 4 )[ 6 , 10 ]. Key questions to consider when selecting the most appropriate study design are whether it is desirable or indeed possible to undertake a formal experimental investigation in which individuals and/or organisations are allocated to an intervention or control arm? Or whether the wish is to obtain a more naturalistic understanding of an issue? The former is ideally studied using a controlled experimental design, whereas the latter is more appropriately studied using a case study design.

Case studies may be approached in different ways depending on the epistemological standpoint of the researcher, that is, whether they take a critical (questioning one's own and others' assumptions), interpretivist (trying to understand individual and shared social meanings) or positivist approach (orientating towards the criteria of natural sciences, such as focusing on generalisability considerations) (Table ​ (Table6). 6 ). Whilst such a schema can be conceptually helpful, it may be appropriate to draw on more than one approach in any case study, particularly in the context of conducting health services research. Doolin has, for example, noted that in the context of undertaking interpretative case studies, researchers can usefully draw on a critical, reflective perspective which seeks to take into account the wider social and political environment that has shaped the case[ 11 ].

Example of epistemological approaches that may be used in case study research

ApproachCharacteristicsCriticismsKey references
Involves questioning one's own assumptions taking into account the wider political and social environment.It can possibly neglect other factors by focussing only on power relationships and may give the researcher a position that is too privileged.Howcroft and Trauth[ ] Blakie[ ] Doolin[ , ]
Interprets the limiting conditions in relation to power and control that are thought to influence behaviour.Bloomfield and Best[ ]
Involves understanding meanings/contexts and processes as perceived from different perspectives, trying to understand individual and shared social meanings. Focus is on theory building.Often difficult to explain unintended consequences and for neglecting surrounding historical contextsStake[ ] Doolin[ ]
Involves establishing which variables one wishes to study in advance and seeing whether they fit in with the findings. Focus is often on testing and refining theory on the basis of case study findings.It does not take into account the role of the researcher in influencing findings.Yin[ , , ] Shanks and Parr[ ]

How are case studies conducted?

Here, we focus on the main stages of research activity when planning and undertaking a case study; the crucial stages are: defining the case; selecting the case(s); collecting and analysing the data; interpreting data; and reporting the findings.

Defining the case

Carefully formulated research question(s), informed by the existing literature and a prior appreciation of the theoretical issues and setting(s), are all important in appropriately and succinctly defining the case[ 8 , 12 ]. Crucially, each case should have a pre-defined boundary which clarifies the nature and time period covered by the case study (i.e. its scope, beginning and end), the relevant social group, organisation or geographical area of interest to the investigator, the types of evidence to be collected, and the priorities for data collection and analysis (see Table ​ Table7 7 )[ 1 ]. A theory driven approach to defining the case may help generate knowledge that is potentially transferable to a range of clinical contexts and behaviours; using theory is also likely to result in a more informed appreciation of, for example, how and why interventions have succeeded or failed[ 13 ].

Example of a checklist for rating a case study proposal[ 8 ]

Clarity: Does the proposal read well?
Integrity: Do its pieces fit together?
Attractiveness: Does it pique the reader's interest?
The case: Is the case adequately defined?
The issues: Are major research questions identified?
Data Resource: Are sufficient data sources identified?
Case Selection: Is the selection plan reasonable?
Data Gathering: Are data-gathering activities outlined?
Validation: Is the need and opportunity for triangulation indicated?
Access: Are arrangements for start-up anticipated?
Confidentiality: Is there sensitivity to the protection of people?
Cost: Are time and resource estimates reasonable?

For example, in our evaluation of the introduction of electronic health records in English hospitals (Table ​ (Table3), 3 ), we defined our cases as the NHS Trusts that were receiving the new technology[ 5 ]. Our focus was on how the technology was being implemented. However, if the primary research interest had been on the social and organisational dimensions of implementation, we might have defined our case differently as a grouping of healthcare professionals (e.g. doctors and/or nurses). The precise beginning and end of the case may however prove difficult to define. Pursuing this same example, when does the process of implementation and adoption of an electronic health record system really begin or end? Such judgements will inevitably be influenced by a range of factors, including the research question, theory of interest, the scope and richness of the gathered data and the resources available to the research team.

Selecting the case(s)

The decision on how to select the case(s) to study is a very important one that merits some reflection. In an intrinsic case study, the case is selected on its own merits[ 8 ]. The case is selected not because it is representative of other cases, but because of its uniqueness, which is of genuine interest to the researchers. This was, for example, the case in our study of the recruitment of minority ethnic participants into asthma research (Table ​ (Table1) 1 ) as our earlier work had demonstrated the marginalisation of minority ethnic people with asthma, despite evidence of disproportionate asthma morbidity[ 14 , 15 ]. In another example of an intrinsic case study, Hellstrom et al.[ 16 ] studied an elderly married couple living with dementia to explore how dementia had impacted on their understanding of home, their everyday life and their relationships.

For an instrumental case study, selecting a "typical" case can work well[ 8 ]. In contrast to the intrinsic case study, the particular case which is chosen is of less importance than selecting a case that allows the researcher to investigate an issue or phenomenon. For example, in order to gain an understanding of doctors' responses to health policy initiatives, Som undertook an instrumental case study interviewing clinicians who had a range of responsibilities for clinical governance in one NHS acute hospital trust[ 17 ]. Sampling a "deviant" or "atypical" case may however prove even more informative, potentially enabling the researcher to identify causal processes, generate hypotheses and develop theory.

In collective or multiple case studies, a number of cases are carefully selected. This offers the advantage of allowing comparisons to be made across several cases and/or replication. Choosing a "typical" case may enable the findings to be generalised to theory (i.e. analytical generalisation) or to test theory by replicating the findings in a second or even a third case (i.e. replication logic)[ 1 ]. Yin suggests two or three literal replications (i.e. predicting similar results) if the theory is straightforward and five or more if the theory is more subtle. However, critics might argue that selecting 'cases' in this way is insufficiently reflexive and ill-suited to the complexities of contemporary healthcare organisations.

The selected case study site(s) should allow the research team access to the group of individuals, the organisation, the processes or whatever else constitutes the chosen unit of analysis for the study. Access is therefore a central consideration; the researcher needs to come to know the case study site(s) well and to work cooperatively with them. Selected cases need to be not only interesting but also hospitable to the inquiry [ 8 ] if they are to be informative and answer the research question(s). Case study sites may also be pre-selected for the researcher, with decisions being influenced by key stakeholders. For example, our selection of case study sites in the evaluation of the implementation and adoption of electronic health record systems (see Table ​ Table3) 3 ) was heavily influenced by NHS Connecting for Health, the government agency that was responsible for overseeing the National Programme for Information Technology (NPfIT)[ 5 ]. This prominent stakeholder had already selected the NHS sites (through a competitive bidding process) to be early adopters of the electronic health record systems and had negotiated contracts that detailed the deployment timelines.

It is also important to consider in advance the likely burden and risks associated with participation for those who (or the site(s) which) comprise the case study. Of particular importance is the obligation for the researcher to think through the ethical implications of the study (e.g. the risk of inadvertently breaching anonymity or confidentiality) and to ensure that potential participants/participating sites are provided with sufficient information to make an informed choice about joining the study. The outcome of providing this information might be that the emotive burden associated with participation, or the organisational disruption associated with supporting the fieldwork, is considered so high that the individuals or sites decide against participation.

In our example of evaluating implementations of electronic health record systems, given the restricted number of early adopter sites available to us, we sought purposively to select a diverse range of implementation cases among those that were available[ 5 ]. We chose a mixture of teaching, non-teaching and Foundation Trust hospitals, and examples of each of the three electronic health record systems procured centrally by the NPfIT. At one recruited site, it quickly became apparent that access was problematic because of competing demands on that organisation. Recognising the importance of full access and co-operative working for generating rich data, the research team decided not to pursue work at that site and instead to focus on other recruited sites.

Collecting the data

In order to develop a thorough understanding of the case, the case study approach usually involves the collection of multiple sources of evidence, using a range of quantitative (e.g. questionnaires, audits and analysis of routinely collected healthcare data) and more commonly qualitative techniques (e.g. interviews, focus groups and observations). The use of multiple sources of data (data triangulation) has been advocated as a way of increasing the internal validity of a study (i.e. the extent to which the method is appropriate to answer the research question)[ 8 , 18 - 21 ]. An underlying assumption is that data collected in different ways should lead to similar conclusions, and approaching the same issue from different angles can help develop a holistic picture of the phenomenon (Table ​ (Table2 2 )[ 4 ].

Brazier and colleagues used a mixed-methods case study approach to investigate the impact of a cancer care programme[ 22 ]. Here, quantitative measures were collected with questionnaires before, and five months after, the start of the intervention which did not yield any statistically significant results. Qualitative interviews with patients however helped provide an insight into potentially beneficial process-related aspects of the programme, such as greater, perceived patient involvement in care. The authors reported how this case study approach provided a number of contextual factors likely to influence the effectiveness of the intervention and which were not likely to have been obtained from quantitative methods alone.

In collective or multiple case studies, data collection needs to be flexible enough to allow a detailed description of each individual case to be developed (e.g. the nature of different cancer care programmes), before considering the emerging similarities and differences in cross-case comparisons (e.g. to explore why one programme is more effective than another). It is important that data sources from different cases are, where possible, broadly comparable for this purpose even though they may vary in nature and depth.

Analysing, interpreting and reporting case studies

Making sense and offering a coherent interpretation of the typically disparate sources of data (whether qualitative alone or together with quantitative) is far from straightforward. Repeated reviewing and sorting of the voluminous and detail-rich data are integral to the process of analysis. In collective case studies, it is helpful to analyse data relating to the individual component cases first, before making comparisons across cases. Attention needs to be paid to variations within each case and, where relevant, the relationship between different causes, effects and outcomes[ 23 ]. Data will need to be organised and coded to allow the key issues, both derived from the literature and emerging from the dataset, to be easily retrieved at a later stage. An initial coding frame can help capture these issues and can be applied systematically to the whole dataset with the aid of a qualitative data analysis software package.

The Framework approach is a practical approach, comprising of five stages (familiarisation; identifying a thematic framework; indexing; charting; mapping and interpretation) , to managing and analysing large datasets particularly if time is limited, as was the case in our study of recruitment of South Asians into asthma research (Table ​ (Table1 1 )[ 3 , 24 ]. Theoretical frameworks may also play an important role in integrating different sources of data and examining emerging themes. For example, we drew on a socio-technical framework to help explain the connections between different elements - technology; people; and the organisational settings within which they worked - in our study of the introduction of electronic health record systems (Table ​ (Table3 3 )[ 5 ]. Our study of patient safety in undergraduate curricula drew on an evaluation-based approach to design and analysis, which emphasised the importance of the academic, organisational and practice contexts through which students learn (Table ​ (Table4 4 )[ 6 ].

Case study findings can have implications both for theory development and theory testing. They may establish, strengthen or weaken historical explanations of a case and, in certain circumstances, allow theoretical (as opposed to statistical) generalisation beyond the particular cases studied[ 12 ]. These theoretical lenses should not, however, constitute a strait-jacket and the cases should not be "forced to fit" the particular theoretical framework that is being employed.

When reporting findings, it is important to provide the reader with enough contextual information to understand the processes that were followed and how the conclusions were reached. In a collective case study, researchers may choose to present the findings from individual cases separately before amalgamating across cases. Care must be taken to ensure the anonymity of both case sites and individual participants (if agreed in advance) by allocating appropriate codes or withholding descriptors. In the example given in Table ​ Table3, 3 , we decided against providing detailed information on the NHS sites and individual participants in order to avoid the risk of inadvertent disclosure of identities[ 5 , 25 ].

What are the potential pitfalls and how can these be avoided?

The case study approach is, as with all research, not without its limitations. When investigating the formal and informal ways undergraduate students learn about patient safety (Table ​ (Table4), 4 ), for example, we rapidly accumulated a large quantity of data. The volume of data, together with the time restrictions in place, impacted on the depth of analysis that was possible within the available resources. This highlights a more general point of the importance of avoiding the temptation to collect as much data as possible; adequate time also needs to be set aside for data analysis and interpretation of what are often highly complex datasets.

Case study research has sometimes been criticised for lacking scientific rigour and providing little basis for generalisation (i.e. producing findings that may be transferable to other settings)[ 1 ]. There are several ways to address these concerns, including: the use of theoretical sampling (i.e. drawing on a particular conceptual framework); respondent validation (i.e. participants checking emerging findings and the researcher's interpretation, and providing an opinion as to whether they feel these are accurate); and transparency throughout the research process (see Table ​ Table8 8 )[ 8 , 18 - 21 , 23 , 26 ]. Transparency can be achieved by describing in detail the steps involved in case selection, data collection, the reasons for the particular methods chosen, and the researcher's background and level of involvement (i.e. being explicit about how the researcher has influenced data collection and interpretation). Seeking potential, alternative explanations, and being explicit about how interpretations and conclusions were reached, help readers to judge the trustworthiness of the case study report. Stake provides a critique checklist for a case study report (Table ​ (Table9 9 )[ 8 ].

Potential pitfalls and mitigating actions when undertaking case study research

Potential pitfallMitigating action
Selecting/conceptualising the wrong case(s) resulting in lack of theoretical generalisationsDeveloping in-depth knowledge of theoretical and empirical literature, justifying choices made
Collecting large volumes of data that are not relevant to the case or too little to be of any valueFocus data collection in line with research questions, whilst being flexible and allowing different paths to be explored
Defining/bounding the caseFocus on related components (either by time and/or space), be clear what is outside the scope of the case
Lack of rigourTriangulation, respondent validation, the use of theoretical sampling, transparency throughout the research process
Ethical issuesAnonymise appropriately as cases are often easily identifiable to insiders, informed consent of participants
Integration with theoretical frameworkAllow for unexpected issues to emerge and do not force fit, test out preliminary explanations, be clear about epistemological positions in advance

Stake's checklist for assessing the quality of a case study report[ 8 ]

1. Is this report easy to read?
2. Does it fit together, each sentence contributing to the whole?
3. Does this report have a conceptual structure (i.e. themes or issues)?
4. Are its issues developed in a series and scholarly way?
5. Is the case adequately defined?
6. Is there a sense of story to the presentation?
7. Is the reader provided some vicarious experience?
8. Have quotations been used effectively?
9. Are headings, figures, artefacts, appendices, indexes effectively used?
10. Was it edited well, then again with a last minute polish?
11. Has the writer made sound assertions, neither over- or under-interpreting?
12. Has adequate attention been paid to various contexts?
13. Were sufficient raw data presented?
14. Were data sources well chosen and in sufficient number?
15. Do observations and interpretations appear to have been triangulated?
16. Is the role and point of view of the researcher nicely apparent?
17. Is the nature of the intended audience apparent?
18. Is empathy shown for all sides?
19. Are personal intentions examined?
20. Does it appear individuals were put at risk?

Conclusions

The case study approach allows, amongst other things, critical events, interventions, policy developments and programme-based service reforms to be studied in detail in a real-life context. It should therefore be considered when an experimental design is either inappropriate to answer the research questions posed or impossible to undertake. Considering the frequency with which implementations of innovations are now taking place in healthcare settings and how well the case study approach lends itself to in-depth, complex health service research, we believe this approach should be more widely considered by researchers. Though inherently challenging, the research case study can, if carefully conceptualised and thoughtfully undertaken and reported, yield powerful insights into many important aspects of health and healthcare delivery.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AS conceived this article. SC, KC and AR wrote this paper with GH, AA and AS all commenting on various drafts. SC and AS are guarantors.

Pre-publication history

The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2288/11/100/prepub

Acknowledgements

We are grateful to the participants and colleagues who contributed to the individual case studies that we have drawn on. This work received no direct funding, but it has been informed by projects funded by Asthma UK, the NHS Service Delivery Organisation, NHS Connecting for Health Evaluation Programme, and Patient Safety Research Portfolio. We would also like to thank the expert reviewers for their insightful and constructive feedback. Our thanks are also due to Dr. Allison Worth who commented on an earlier draft of this manuscript.

  • Yin RK. Case study research, design and method. 4. London: Sage Publications Ltd.; 2009. [ Google Scholar ]
  • Keen J, Packwood T. Qualitative research; case study evaluation. BMJ. 1995; 311 :444–446. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Sheikh A, Halani L, Bhopal R, Netuveli G, Partridge M, Car J. et al. Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma. PLoS Med. 2009; 6 (10):1–11. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Pinnock H, Huby G, Powell A, Kielmann T, Price D, Williams S, The process of planning, development and implementation of a General Practitioner with a Special Interest service in Primary Care Organisations in England and Wales: a comparative prospective case study. Report for the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D (NCCSDO) 2008. http://www.sdo.nihr.ac.uk/files/project/99-final-report.pdf
  • Robertson A, Cresswell K, Takian A, Petrakaki D, Crowe S, Cornford T. et al. Prospective evaluation of the implementation and adoption of NHS Connecting for Health's national electronic health record in secondary care in England: interim findings. BMJ. 2010; 41 :c4564. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Pearson P, Steven A, Howe A, Sheikh A, Ashcroft D, Smith P. the Patient Safety Education Study Group. Learning about patient safety: organisational context and culture in the education of healthcare professionals. J Health Serv Res Policy. 2010; 15 :4–10. doi: 10.1258/jhsrp.2009.009052. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • van Harten WH, Casparie TF, Fisscher OA. The evaluation of the introduction of a quality management system: a process-oriented case study in a large rehabilitation hospital. Health Policy. 2002; 60 (1):17–37. doi: 10.1016/S0168-8510(01)00187-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Stake RE. The art of case study research. London: Sage Publications Ltd.; 1995. [ Google Scholar ]
  • Sheikh A, Smeeth L, Ashcroft R. Randomised controlled trials in primary care: scope and application. Br J Gen Pract. 2002; 52 (482):746–51. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • King G, Keohane R, Verba S. Designing Social Inquiry. Princeton: Princeton University Press; 1996. [ Google Scholar ]
  • Doolin B. Information technology as disciplinary technology: being critical in interpretative research on information systems. Journal of Information Technology. 1998; 13 :301–311. doi: 10.1057/jit.1998.8. [ CrossRef ] [ Google Scholar ]
  • George AL, Bennett A. Case studies and theory development in the social sciences. Cambridge, MA: MIT Press; 2005. [ Google Scholar ]
  • Eccles M. the Improved Clinical Effectiveness through Behavioural Research Group (ICEBeRG) Designing theoretically-informed implementation interventions. Implementation Science. 2006; 1 :1–8. doi: 10.1186/1748-5908-1-1. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Netuveli G, Hurwitz B, Levy M, Fletcher M, Barnes G, Durham SR, Sheikh A. Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet. 2005; 365 (9456):312–7. [ PubMed ] [ Google Scholar ]
  • Sheikh A, Panesar SS, Lasserson T, Netuveli G. Recruitment of ethnic minorities to asthma studies. Thorax. 2004; 59 (7):634. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Hellström I, Nolan M, Lundh U. 'We do things together': A case study of 'couplehood' in dementia. Dementia. 2005; 4 :7–22. doi: 10.1177/1471301205049188. [ CrossRef ] [ Google Scholar ]
  • Som CV. Nothing seems to have changed, nothing seems to be changing and perhaps nothing will change in the NHS: doctors' response to clinical governance. International Journal of Public Sector Management. 2005; 18 :463–477. doi: 10.1108/09513550510608903. [ CrossRef ] [ Google Scholar ]
  • Lincoln Y, Guba E. Naturalistic inquiry. Newbury Park: Sage Publications; 1985. [ Google Scholar ]
  • Barbour RS. Checklists for improving rigour in qualitative research: a case of the tail wagging the dog? BMJ. 2001; 322 :1115–1117. doi: 10.1136/bmj.322.7294.1115. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mays N, Pope C. Qualitative research in health care: Assessing quality in qualitative research. BMJ. 2000; 320 :50–52. doi: 10.1136/bmj.320.7226.50. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mason J. Qualitative researching. London: Sage; 2002. [ Google Scholar ]
  • Brazier A, Cooke K, Moravan V. Using Mixed Methods for Evaluating an Integrative Approach to Cancer Care: A Case Study. Integr Cancer Ther. 2008; 7 :5–17. doi: 10.1177/1534735407313395. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Miles MB, Huberman M. Qualitative data analysis: an expanded sourcebook. 2. CA: Sage Publications Inc.; 1994. [ Google Scholar ]
  • Pope C, Ziebland S, Mays N. Analysing qualitative data. Qualitative research in health care. BMJ. 2000; 320 :114–116. doi: 10.1136/bmj.320.7227.114. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cresswell KM, Worth A, Sheikh A. Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare. BMC Med Inform Decis Mak. 2010; 10 (1):67. doi: 10.1186/1472-6947-10-67. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Malterud K. Qualitative research: standards, challenges, and guidelines. Lancet. 2001; 358 :483–488. doi: 10.1016/S0140-6736(01)05627-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yin R. Case study research: design and methods. 2. Thousand Oaks, CA: Sage Publishing; 1994. [ Google Scholar ]
  • Yin R. Enhancing the quality of case studies in health services research. Health Serv Res. 1999; 34 :1209–1224. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Green J, Thorogood N. Qualitative methods for health research. 2. Los Angeles: Sage; 2009. [ Google Scholar ]
  • Howcroft D, Trauth E. Handbook of Critical Information Systems Research, Theory and Application. Cheltenham, UK: Northampton, MA, USA: Edward Elgar; 2005. [ Google Scholar ]
  • Blakie N. Approaches to Social Enquiry. Cambridge: Polity Press; 1993. [ Google Scholar ]
  • Doolin B. Power and resistance in the implementation of a medical management information system. Info Systems J. 2004; 14 :343–362. doi: 10.1111/j.1365-2575.2004.00176.x. [ CrossRef ] [ Google Scholar ]
  • Bloomfield BP, Best A. Management consultants: systems development, power and the translation of problems. Sociological Review. 1992; 40 :533–560. [ Google Scholar ]
  • Shanks G, Parr A. Proceedings of the European Conference on Information Systems. Naples; 2003. Positivist, single case study research in information systems: A critical analysis. [ Google Scholar ]

Case Study Research Method | Benefits, Limitations

Case study research is a type of qualitative research that helps understand an individual case or a specific situation in detail.

A case study can be written as a final report or it can be presented as an article in a journal or conference proceedings. Before you begin your next case study, you must know about its scope and limitations.

What is a Case Study?

Case studies concentrate on gathering data about a particular object, event, or activity, like a certain business unit or organization. The person, group, organization, event, or circumstance that the researcher is interested in is the case in a case study.

Most importantly, a case study helps you understand the reasons for the occurrence or failure of a specific event. Case studies are common in business and management research . They can be qualitative or quantitative in nature. Researchers explore a single case, typically a business-related event or experiment.

Researchers document findings as case studies and present them with the help of visuals such as

Case Study- Example

This might be stated as a case study of a nearby school that encourages active learning.

When to do a case study?

Step by step guide for conducting case study research, define the problem, create a research plan, conduct field research.

Once you have a research plan, start your field research . You can use a variety of methods to conduct field research in a case study. You can use observation, interviews, or document analysis to collect data related to your case study.

Analyze data

Organize data, present case findings.

Once you have organized data and summarized it, it’s time to present your case findings. You can write a case study report or present it in the form of an article in a journal or conference proceedings.

Benefits of Case Study Research

Multiple case studies are frequently more robust and trustworthy than single case studies. Studies with multiple cases enable the formation of theories and a more thorough investigation of research problems .

Limitations of Case Study Research

Bottom line, other articles.

Please read through some of our other articles with examples and explanations if you’d like to learn more about research methodology.

Related Posts

Top 13 essential research methodology books for researchers and academics, types of research questions, correlational research | example, types, inductive vs deductive approach: which is more effective, 8 types of validity in research | examples, nominal, ordinal, interval, and ratio scales | measurement of scale, conclusive research | types, pros, operationalization of variables in research | examples | benefits, types of quasi experimental design, difference between experimental and non-experimental research.

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

sustainability-logo

Article Menu

what are the benefits of case study research

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Integrated assessment of health benefits and burdens of urban greenspace designs.

what are the benefits of case study research

1. Introduction

2.1. scenario study approach and input data, 2.2. ugs design scenarios, 2.2.1. scenario ‘no greenspace’, 2.2.2. ‘current greenspace’ scenario, 2.2.3. ‘green parking lots and squares’ scenario, 2.2.4. ‘optimized greenspace locations’ scenario.

Click here to enlarge figure

2.3. Threshold Values to Assess and Compare UGS Design Scenarios

3.1. greenspace design per scenario, 3.2. health benefits and burdens per scenario, 3.2.1. detailed results for the ‘green parking lots and squares’ scenario, 3.2.2. detailed results for the ‘optimized greenspace locations’ scenario, 4. discussion and conclusions, 4.1. major findings and implications for urban greenspace planning, 4.2. limitations, 4.3. conclusions, author contributions, institutional review board statement, informed consent statement, data availability statement, acknowledgments, conflicts of interest, appendix a. overview of the geo-processing method to create ‘optimized greenspace locations’ scenario.

  • European Commission. EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives. 2021. Available online: https://op.europa.eu/en/publication-detail/-/publication/31e4609f-b91e-11eb-8aca-01aa75ed71a1 (accessed on 1 March 2024).
  • United Nations. Goal 11: Sustainable Cities and Communities. Available online: https://sdgs.un.org/goals/goal11 (accessed on 1 March 2024).
  • Chen, T.; Lang, W.; Li, X. Exploring the impact of urban green space on residents’ health in Guangzhou, China. J. Urban Plan. Dev. 2020 , 146 , 05019022. [ Google Scholar ] [ CrossRef ]
  • Coppel, G.; Wüstemann, H. The impact of urban green space on health in Berlin, Germany: Empirical findings and implications for urban planning. Landsc. Urban Plan. 2017 , 167 , 410–418. [ Google Scholar ] [ CrossRef ]
  • Fischer, T.B.; Jha-Thakur, U.; Fawcett, P.; Clement, S.; Hayes, S.; Nowacki, J. Consideration of urban green space in impact assessments for health. Impact Assess. Proj. Apprais. 2018 , 36 , 32–44. [ Google Scholar ] [ CrossRef ]
  • Kondo, M.C.; Fluehr, J.M.; McKeon, T.; Branas, C.C. Urban green space and its impact on human health. Int. J. Environ. Res. Public Health 2018 , 15 , 445. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kruize, H.; van der Vliet, N.; Staatsen, B.; Bell, R.; Chiabai, A.; Muiños, G.; Higgins, S.; Quiroga, S.; Martinez-Juarez, P.; Aberg Yngwe, M.; et al. Urban Green Space: Creating a Triple Win for Environmental Sustainability, Health, and Health Equity through Behavior Change. Int. J. Environ. Res. Public Health 2019 , 16 , 4403. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Bush, J. The role of local government greening policies in the transition towards nature-based cities. Environ. Innov. Soc. Transit. 2020 , 35 , 35–44. [ Google Scholar ] [ CrossRef ]
  • Maes, J.; Zulian, G.; Günther, S.; Thijssen, M.; Raynal, J. Enhancing Resilience of Urban Ecosystems through Green Infrastructure (EnRoute) ; Publications Office of the European Union: Luxembourg, 2019. [ Google Scholar ]
  • Dütemeyer, D.; Barlag, A.-B.; Kuttler, W.; Axt-Kittner, U. Measures against heat stress in the city of Gelsenkirchen, Germany. DIE ERDE–J. Geogr. Soc. Berl. 2013 , 144 , 181–201. [ Google Scholar ]
  • Gassner, F.; van Lier, A.; Pronk, W.; Brandwagt, D. ‘Teek II’ Omgaan Met Teken in de Bebouwde Kom. 2018. Available online: https://www.rivm.nl/ (accessed on 1 March 2024).
  • Thierfelder, H.; Kabisch, N. Viewpoint Berlin: Strategic urban development in Berlin–Challenges for future urban green space development. Environ. Sci. Policy 2016 , 62 , 120–122. [ Google Scholar ] [ CrossRef ]
  • Liou, Y.-A.; Nguyen, K.-A.; Ho, L.-T. Altering urban greenspace patterns and heat stress risk in Hanoi city during Master Plan 2030 implementation. Land Use Policy 2021 , 105 , 105405. [ Google Scholar ] [ CrossRef ]
  • Rijksinstituut voor Volksgezondheid en Milieu (RIVM). Ontwikkeling Standaard Stresstest Hitte. 2019. Available online: https://www.rivm.nl/bibliotheek/rapporten/2019-0008.pdf (accessed on 1 March 2024).
  • Spijker, J.; Jacobs, C.; Mol, G.; Aanpak hittestress Harderwijk. Wagening. Environ. Res. 2019. Available online: https://research.wur.nl/en/publications/aanpak-hittestress-harderwijk (accessed on 1 March 2024).
  • Oosterbroek, B.; de Kraker, J.; Akkermans, S.; Esser, P.; Martens, P. Participatory Design of Urban Green Spaces to Improve Residents’ Health. Land 2024 , 13 , 88. [ Google Scholar ] [ CrossRef ]
  • Oosterbroek, B.; de Kraker, J.; Huynen, M.M.T.E.; Martens, P.; Verhoeven, K. Assessment of green space benefits and burdens for urban health with spatial modeling. Urban For. Urban Green. 2023 , 86 , 128023. [ Google Scholar ] [ CrossRef ]
  • Börjeson, L.; Höjer, M.; Dreborg, K.-H.; Ekvall, T.; Finnveden, G. Scenario types and techniques: Towards a user’s guide. Futures 2006 , 38 , 723–739. [ Google Scholar ] [ CrossRef ]
  • Irvine, K.; Loc, H.H.; Sovann, C.; Suwanarit, A.; Likitswat, F.; Jindal, R.; Koottatep, T.; Gaut, J.; Chua, L.; Lai, W.; et al. Bridging the form and function gap in urban green space design through environmental systems modeling. J. Water Manag. Model. 2021 , 29 , C476. [ Google Scholar ]
  • Kadaverugu, R.; Gurav, C.; Rai, A.; Sharma, A.; Matli, C.; Biniwale, R. Quantification of heat mitigation by urban green spaces using InVEST model—A scenario analysis of Nagpur City, India. Arab. J. Geosci. 2021 , 14 , 82. [ Google Scholar ] [ CrossRef ]
  • Kim, I.; Kwon, H. Assessing the Impacts of Urban Land Use Changes on Regional Ecosystem Services According to Urban Green Space Policies Via the Patch-Based Cellular Automata Model. Environ. Manag. 2021 , 67 , 192–204. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Lauf, S.; Haase, D.; Kleinschmit, B. The effects of growth, shrinkage, population aging and preference shifts on urban development—A spatial scenario analysis of Berlin, Germany. Land Use Policy 2016 , 52 , 240–254. [ Google Scholar ] [ CrossRef ]
  • Zhang, D.; Huang, Q.; He, C.; Yin, D.; Liu, Z. Planning urban landscape to maintain key ecosystem services in a rapidly urbanizing area: A scenario analysis in the Beijing-Tianjin-Hebei urban agglomeration, China. Ecol. Indic. 2019 , 96 , 559–571. [ Google Scholar ] [ CrossRef ]
  • Rayaprolu, H.S.; Llorca, C.; Moeckel, R. Impact of bicycle highways on commuter mode choice: A scenario analysis. Environ. Plan. B Urban Anal. City Sci. 2020 , 47 , 662–677. [ Google Scholar ] [ CrossRef ]
  • Koopmans, S.; Ronda, R.; Steeneveld, G.-J.; Holtslag, A.A.M.; Klein Tank, A.M.G. Quantifying the Effect of Different Urban Planning Strategies on Heat Stress for Current and Future Climates in the Agglomeration of The Hague (The Netherlands). Atmosphere 2018 , 9 , 353. [ Google Scholar ] [ CrossRef ]
  • Mikovits, C.; Rauch, W.; Kleidorfer, M. Importance of scenario analysis in urban development for urban water infrastructure planning and management. Comput. Environ. Urban Syst. 2018 , 68 , 9–16. [ Google Scholar ] [ CrossRef ]
  • CBS. Bevolking; Ontwikkeling in Gemeenten Met 100,000 of Meer Inwoners. 2018. Available online: https://statline.cbs.nl (accessed on 1 March 2024).
  • Maastricht. Omgevingsvisie Maastricht 2040 Deel 2. 2019. Available online: https://www.maastrichtbeleid.nl (accessed on 1 March 2024).
  • Nouri, A.S.; Lopes, A.; Costa, J.P.; Matzarakis, A. Confronting potential future augmentations of the physiologically equivalent temperature through public space design: The case of Rossio, Lisbon. Sustain. Cities Soc. 2018 , 37 , 7–25. [ Google Scholar ] [ CrossRef ]
  • WHO. Ambient (Outdoor) Air Pollution. 2021. Available online: https://www.who.int/ (accessed on 1 March 2024).
  • World Health Organization. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulphur Dioxide. Global Update 2005 ; World Health Organization: Geneva, Switzerland, 2006; Volume 38, p. E90038. Available online: http://www.euro.who.int/__data/assets/pdf_file/0005/786 (accessed on 1 March 2024).
  • KNMI. Heatwaves. 2021. Available online: https://www.knmi.nl/nederland-nu/klimatologie/lijsten/hittegolven (accessed on 1 March 2024).
  • Woloshin, S.; Schwartz, L.M.; Byram, S.; Fischhoff, B.; Welch, H.G. A new scale for assessing perceptions of chance: A validation study. Med. Decis. Mak. 2000 , 20 , 298–307. [ Google Scholar ] [ CrossRef ]
  • Takken, W. Phenology of Ixodes ricinus and Lyme borreliosis risk. In Ecology and Prevention of Lyme Borreliosis ; Braks, M.A.H., van Wieren, S.E., Takken, W., Sprong, H., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; Volume 4, p. 149. [ Google Scholar ]
  • Wang, H.; Tassinary, L.G. Association between greenspace morphology and prevalence of non-communicable diseases mediated by air pollution and physical activity. Landsc. Urban Plan. 2024 , 242 , 104934. [ Google Scholar ] [ CrossRef ]
  • Wang, H.; Gholami, S.; Xu, W.; Samavatekbatan, A.; Sleipness, O.; Tassinary, L.G. Where and how to invest in greenspace for optimal health benefits: A systematic review of greenspace morphology and human health relationships. Lancet Planet. Health 2024 , 8 , e574–e587. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Lafrenz, A.J. Designing multifunctional urban green spaces: An inclusive public health framework. Int. J. Environ. Res. Public Health 2022 , 19 , 10867. [ Google Scholar ] [ CrossRef ]
  • Pluchinotta, I.; Zhou, K.; Moore, G.; Salvia, G.; Belesova, K.; Mohajeri, N.; Hale, J.; Davies, M.; Zimmermann, N. Co-producing knowledge on the use of urban natural space: Participatory system dynamics modelling to understand a complex urban system. J. Environ. Manag. 2024 , 353 , 120110. [ Google Scholar ]
  • Datta, S.; Sharma, A.; Parkar, V.; Hakkim, H.; Kumar, A.; Chauhan, A.; Tomar, S.S.; Sinha, B. A new index to assess the air quality impact of urban tree plantation. Urban Clim. 2021 , 40 , 100995. [ Google Scholar ]
  • Speak, A.; Montagnani, L.; Wellstein, C.; Zerbe, S. The influence of tree traits on urban ground surface shade cooling. Landsc. Urban Plan. 2020 , 197 , 103748. [ Google Scholar ] [ CrossRef ]
Health DeterminantThreshold ValueUnitDescription
0m /mA score larger than this threshold value means that unattractive objects are more dominant within the pedestrian’s field of view than attractive objects.
46°C PETPhysiologically equivalent temperature (PET) at ‘Extreme Heat Stress Level 2’ [ ]. It refers to the mean PET between 12:00 and 18:00 local time for the hottest day in 2018 during a national heatwave (July 26).
20μg/m NO This threshold value is twice the WHO guideline value for the annual mean concentration of 10 μg/m NO [ ]. The value is chosen because the WHO guideline value is exceeded for all street segments in all scenarios. (The lowest value per street segment is 15 μg/m .)
50-This threshold value is reached when, for example, the location is over 50% concealed, supervision from the most nearby home is 25 m away, and an area with at least 50 houses per ha is 50 m away.
1%This threshold value is reached when, for example, all conditions are optimal for survival and activity of ticks and tick-host animals, but only 1% of the area directly adjacent to footpaths contains shrubs and herbs.
ScenarioUnattractive Views
(m /m)
Heat Stress
(°C PET)
Air Pollution
(μg/m NO )
Perceived Unsafety
(0–100)
Tick-Bite Risk
(%)
-87%-35%-14%-7%-0.0%

−49.124%−2.218%+0.114%6.211%+0.040.5%
−75.78%−2.713%−0.114%7.211%+0.070.5%
−85.616%−3.012%−0.213%6.611%+0.000.4%
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Oosterbroek, B.; de Kraker, J.; Huynen, M.M.T.E.; Martens, P. Integrated Assessment of Health Benefits and Burdens of Urban Greenspace Designs. Sustainability 2024 , 16 , 7534. https://doi.org/10.3390/su16177534

Oosterbroek B, de Kraker J, Huynen MMTE, Martens P. Integrated Assessment of Health Benefits and Burdens of Urban Greenspace Designs. Sustainability . 2024; 16(17):7534. https://doi.org/10.3390/su16177534

Oosterbroek, Bram, Joop de Kraker, Maud M. T. E. Huynen, and Pim Martens. 2024. "Integrated Assessment of Health Benefits and Burdens of Urban Greenspace Designs" Sustainability 16, no. 17: 7534. https://doi.org/10.3390/su16177534

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

  • Open access
  • Published: 26 August 2024

Solid health care waste management practice in Ethiopia, a convergent mixed method study

  • Yeshanew Ayele Tiruneh 1 ,
  • L. M. Modiba 2 &
  • S. M. Zuma 2  

BMC Health Services Research volume  24 , Article number:  985 ( 2024 ) Cite this article

66 Accesses

Metrics details

Introduction

Healthcare waste is any waste generated by healthcare facilities that is considered potentially hazardous to health. Solid healthcare waste is categorized into infectious and non-infectious wastes. Infectious waste is material suspected of containing pathogens and potentially causing disease. Non-infectious waste includes wastes that have not been in contact with infectious agents, hazardous chemicals, or radioactive substances, similar to household waste, i.e. plastic, papers and leftover foods.

This study aimed to investigate solid healthcare waste management practices and develop guidelines to improve solid healthcare waste management practices in Ethiopia. The setting was all health facilities found in Hossaena town.

A mixed-method study design was used. For the qualitative phase of this study, eight FGDs were conducted from 4 government health facilities, one FGD from each private health facility (which is 37 in number), and forty-five FGDs were conducted. Four FGDs were executed with cleaners; another four were only health care providers because using homogeneous groups promotes discussion. The remaining 37 FGDs in private health facilities were mixed from health professionals and cleaners because of the number of workers in the private facilities. For the quantitative phase, all health facilities and health facility workers who have direct contact with healthcare waste management practice participated in this study. Both qualitative and quantitative study participants were taken from the health facilities found in Hossaena town.

Seventeen (3.1%) health facility workers have hand washing facilities. Three hundred ninety-two (72.6%) of the participants agree on the availability of one or more personal protective equipment (PPE) in the facility ‘‘ the reason for the absence of some of the PPEs, like boots and goggles, and the shortage of disposable gloves owes to cost inflation from time to time and sometimes absent from the market’’ . The observational finding shows that colour-coded waste bins are available in 23 (9.6%) rooms. 90% of the sharp containers were reusable, and 100% of the waste storage bins were plastic buckets that were easily cleanable. In 40 (97.56%) health facilities, infectious wastes were collected daily from the waste generation areas to the final disposal points. Two hundred seventy-one (50.2%) of the respondents were satisfied or agreed that satisfactory procedures are available in case of an accident. Only 220 (40.8%) respondents were vaccinated for the Hepatitis B virus.

Hand washing facilities, personal protective equipment and preventive vaccinations are not readily available for health workers. Solid waste segregation practices are poor and showed that solid waste management practices (SWMP) are below the acceptable level.

Peer Review reports

Healthcare waste (HCW) encompasses all types of waste generated while providing health-related services, spanning activities such as diagnosis, immunization, treatment, and research. It constitutes a diverse array of materials, each presenting potential hazards to health and the environment. Within the realm of HCW, one finds secretions and excretions from humans, cultures, and waste containing a stock of infectious agents. Discarded plastic materials contaminated with blood or other bodily fluids, pathological wastes, and discarded medical equipment are classified as healthcare waste. Sharps, including needles, scalpels, and other waste materials generated during any healthcare service provision, are also considered potentially hazardous to health [ 1 ].

Healthcare waste in solid form (HCW) is commonly divided into two primary groups: infectious and non-infectious. The existence of pathogens in concentrations identifies infectious waste or amounts significant enough to induce diseases in vulnerable hosts [ 1 ] If healthcare facility waste is free from any combination with infectious agents, nearly 85% is categorized as non-hazardous waste, exhibiting characteristics similar to conventional solid waste found in households [ 2 ]. World Health Organization (WHO) recommends that appropriate colour-coded waste receptacles be available in all medical and other waste-producing areas [ 3 ].

Solid waste produced in the course of healthcare activities carries a higher potential for infection and injury than any other type of waste. Improper disposal of sharps waste increases the risk of disease transmission among health facility workers and general populations [ 1 ]. Inadequate and inappropriate handling of healthcare waste may have serious public health consequences and a significant environmental impact. The World Health Organization (2014) guidelines also include the following guidance for hand washing and the use of alcohol-based hand rubs: Wash hands before starting work, before entering an operating theatre, before eating, after touching contaminated objects, after using a toilet, and in all cases where hands are visibly soiled [ 4 ].

Among the infectious waste category, sharps waste is the most hazardous waste because of its ability to puncture the skin and cause infection [ 3 ]. Accidents or occurrences, such as near misses, spills, container damage, improper waste segregation, and incidents involving sharps, must be reported promptly to the waste management officer or an assigned representative [ 5 ].

Africa is facing a growing waste management crisis. While the volumes of waste generated in Africa are relatively small compared to developed regions, the mismanagement of waste in Africa already impacts human and environmental health. Infectious waste management has always remained a neglected public health problem in developing countries, resulting in a high burden of environmental pollution affecting the general masses. In Ethiopia, there is no updated separate regulation specific to healthcare waste management in the country to enforce the proper management of solid HCW [ 6 ].

In Ethiopia, like other developing countries, healthcare waste segregation practice was not given attention and did not meet the minimum HCWM standards, and it is still not jumped from paper. Previous study reveals that healthcare waste generation rates are significantly higher than the World Health Organization threshold, which ranges from 29.5–53.12% [ 7 , 8 ]. In Meneilk II Hospital, the proportion of infectious waste was 53.73%, and in the southern and northern parts of Ethiopia, it was 34.3 and 53%, respectively. Generally, this figure shows a value 3 to 4 times greater than the threshold value recommended by the World Health Organization [ 7 ].

Except for sharp wastes, segregation practice was poor, and all solid wastes were collected without respecting the colour-coded waste disposal system [ 9 ]. The median waste generation rate was found to vary from 0.361- 0.669 kg/patient/day, comprising 58.69% non-hazardous and 41.31% hazardous wastes. The amount of waste generated increased as the number of patients flow increased. Public hospitals generated a high proportion of total healthcare waste (59.22%) in comparison with private hospitals (40.48) [ 10 ]. The primary SHCW treatment and disposal mechanism was incineration, open burning, burring into unprotected pits and open dumping on municipal dumping sites as well as in the hospital backyard. Carelessness, negligence of the health workers, patients and cleaners, and poor commitment of the facility leaders were among the major causes of poor HCWM practice in Ethiopia [ 9 ]. This study aimed to investigate solid healthcare waste management practices and develop guidelines to improve solid healthcare waste management practices in Ethiopia.

The setting for this study was all health facilities found in Hossaena town, which is situated 232 kms from the capital city of Ethiopia, Addis Ababa, and 165 kms from the regional municipality of Hawasa. The health facilities found in the town were one university hospital, one private surgical centre, three government health centres, 17 medium clinics, and 19 small clinics were available in the city and; health facility workers who have direct contact with generating and disposal of HCW and those who are responsible as a manager of health facilities found in Hossaena town are the study settings. All health facilities except drug stores and health facility workers who have direct contact with healthcare waste generation participated in this study.

A mixed-method study design was used. For the quantitative part of this study, all healthcare workers who have direct contact with healthcare waste management practice participated in this study, and one focus group discussion from each health facility was used. Both of the study participants were taken from the same population. All health facility workers who have a role in healthcare waste management practice were included in the quantitative part of this study. The qualitative data collection phase used open-ended interviews, focus group discussions, and visual material analysis like posters and written materials. All FGDs were conducted by the principal investigator, one moderator, and one note-taker, and it took 50 to 75 min. 4–6 participants participated in each FGD.

According to Elizabeth (2018: 5), cited by Creswell and Plano (2007: 147), the mixed method is one of the research designs with philosophical assumptions as well as methods of inquiry. As a method, it focuses on collecting, analyzing, and mixing both quantitative and qualitative data in a single study. As a methodology, it involves philosophical assumptions guiding the direction of the collection and analysis and combining qualitative and quantitative approaches in many phases of the research project. The central premise is that using qualitative and quantitative approaches together provides a better understanding of the research problems than either approach alone.

The critical assumption of the concurrent mixed methods approach in this study is that quantitative and qualitative data provide different types of information, often detailed views of participants’ solid waste management practice qualitatively and scores on instruments quantitatively, and together, they yield results that should be the same. In this approach, the researcher collected quantitative and qualitative data almost simultaneously and analyzed them separately to cross-validate or compare whether the findings were similar or different between the qualitative and quantitative information. Concurrent approaches to the data collection process are less time-consuming than other types of mixed methods studies because both data collection processes are conducted on time and at the same visit to the field [ 11 ].

Data collection

The data collection involves collecting both quantitative and qualitative data simultaneously. The quantitative phase of this study assessed three components. Health care waste segregation practice, the availability of waste segregation equipment for HCW segregation, temporary storage facilities, transportation for final disposal, and disposal facilities data were collected using a structured questionnaire and observation of HCW generation. Recycling or re-using practice, waste treatment, the availability of the HCWM committee, and training data were collected.

Qualitative data collection

The qualitative phase of the data collection for this study was employed by using focus group discussions and semi-structured interviews about SHCWMP. Two focus group discussions (FGD) from each health facility were conducted in the government health facilities, one at the administrative level and one at the technical worker level, and one FGD was conducted for all private health facilities because of the number of available health facility workers. Each focus group has 4–6 individuals.

In this study, the qualitative and the quantitative data provide different information, and it is suitable for this study to compare and contrast the findings of the two results to obtain the best understanding of this research problem.

Quantitative data collection

The quantitative data were entered into Epi data version 3.1 to minimize the data entry mistakes and exported to the statistical package for social science SPSS window version 27.0 for analysis. A numeric value was assigned to each response in a database, cleaning the data, recoding, establishing a codebook, and visually inspecting the trends to check whether the data were typically distributed.

Data analysis

Data were analyzed quantitatively by using relevant statistical tools, such as SPSS. Descriptive statistics and the Pearson correlation test were used for the bivariate associations and analysis of variance (ANOVA) to compare the HCW generation rate between private and government health facilities and between clinics, health centres and hospitals in the town. Normality tests were performed to determine whether the sample data were drawn from a normally distributed population.

The Shapiro–Wilk normality tests were used to calculate a test statistic based on the sample data and compare it to critical values. The Shapiro–Wilk test is a statistical test used to assess whether a given sample comes from a normally distributed population. The P value greater than the significance level of 0.05 fails to reject the null hypothesis. It concludes that there is not enough evidence to suggest that the data does not follow the normal distribution. Visual inspection of a histogram, Q-Q plot, and P-P plot (probability-probability plot) was assessed.

Bivariate (correlation) analysis assessed the relationships between independent and dependent variables. Then, multiple linear regression analysis was used to establish the simple correlation matrices between different variables for investigating the strength relationships of the study variables in the analysis. In most variables, percentages and means were used to report the findings with a 95% confidence interval. Open-ended responses and focused group findings were undertaken by quantifying and coding the data to provide a thematic narrative explanation.

Appropriate and scientific care was taken to maintain the data quality before, during, and after data collection by preparing the proper data collection tools, pretesting the data collection tools, providing training for data collectors, and proper data entry practice. Data were cleaned on a daily basis during data collection practice, during data entry, and before analysis of its completeness and consistency.

Data analysis in a concurrent design consists of three phases. First, analyze the quantitative database in terms of statistical results. Second, analyze the qualitative database by coding the data and collapsing the codes into broad themes. Third comes the mixed-method data analysis. This is the analysis that consists of integrating the two databases. This integration consists of merging the results from both the qualitative and the quantitative findings.

Descriptive analysis was conducted to describe and summarise the data obtained from the samples used for this study. Reliability statistics for constructs, means and modes of each item, frequencies and percentage distributions, chi-square test of association, and correlations (Spearman rho) were used to portray the respondents’ responses.

All patient care-providing health facilities were included in this study, and the generation rate of healthcare waste and composition assessed the practice of segregation, collection, transportation, and disposal system was observed quantitatively using adopted and adapted structured questionnaires. To ensure representativeness, various levels of health facilities like hospitals, health centres, medium clinics, small clinics and surgical centres were considered from the town. All levels of health facilities are diagnosing, providing first aid services and treating patients accordingly.

The hospital and surgical centre found in the town provide advanced surgical service, inpatient service and food for the patients that other health facilities do not. The HCW generation rate was proportional to the number of patients who visited the health facilities and the type of service provided. The highest number of patients who visited the health facilities was in NEMMCSH; the service provided was diverse, and the waste generation rate was higher than that of other health facilities. About 272, 18, 15, 17, and 20 average patients visited the health facilities daily in NEMMCSH: government health centres, medium clinics, small clinics, and surgical centres. Paper and cardboard (141.65 kg), leftover food (81.71 kg), and contaminated gloves (42.96 kg) are the leading HCWs generated per day.

A total of 556 individual respondents from sampled health facilities were interviewed to complete the questionnaire. The total number of filled questionnaires was 540 (97.1) from individuals representing these 41 health facilities.

The principal investigator observed the availability of handwashing facilities near SHCW generation sites. 17(3.1%) of health facility workers had hand washing facilities near the health care waste generation and disposal site. Furthermore,10 (3.87%), 2 (2.1%), 2 (2.53%), 2 (2.1%), 1 (6.6%) of health facility workers had the facility of hand washing near the health care waste generation site in Nigist Eleni Mohamed Memorial Comprehensive Specialized Hospital (NEMMCSH), government health centres, medium clinics, small clinics, and surgical centre respectively. This finding was nearly the same as the study findings conducted in Myanmar; the availability of hand washing facilities near the solid health care waste generation was absent in all service areas [ 12 ]. The observational result was convergent with the response of facility workers’ response regarding the availabilities of hand washing facilities near to the solid health care waste generation sites.

The observational result was concurrent with the response of facility workers regarding the availability of hand-washing facilities near the solid health care waste generation sites.

The availability of personal protective equipment (PPE) was checked in this study. Three hundred ninety-two (72.6%) of the respondents agree on the facility’s availability of one or more personal protective equipment (PPE). The availability of PPEs in different levels of health facilities shows 392 (72.6%), 212 (82.2%), 56 (58.9%), 52 (65.8%), 60 (65.2%), 12 (75%) health facility workers in NEMMCSH, government health centres, medium clinics, small clinics, and surgical centres respectively agree to the presence of personal protective equipment in their department. The analysis further shows that the availability of masks for healthcare workers was above the mean in NEMMCSH and surgical centres.

Focus group participants indicated that health facilities did not volunteer to supply Personal protective equipment (PPEs) for the cleaning staff.

“We cannot purchase PPE by ourselves because of the salary paid for the cleaning staff.”

Cost inflation and the high cost of purchasing PPEs like gloves and boots are complained about by all (41) health facility owners.

“the reason for the absence of some of the PPEs like boots, goggles, and shortage of disposable gloves are owing to cost inflation from time to time and sometimes absent from the market is the reason why we do not supply PPE to our workers.”

Using essential personal protective equipment (PPEs) based on the risk (if the risk is a splash of blood or body fluid, use a mask and goggles; if the risk is on foot, use appropriate shoes) is recommended by the World Health Organization [ 13 ]. The mean availability of gloves in health facilities was 343 (63.5% (95% CI: 59.3–67.4). Private health institutions are better at providing gloves for their workers, 67.1%, 72.8%, and 62.5% in medium clinics, small clinics, and surgical centres, respectively, which is above the mean.

Research participants agree that.

‘‘ there is a shortage of gloves to give service in Nigist Eleni Mohamed Memorial Comprehensive Specialized Hospital (NEMMCSH) and government health centres .’’

Masks are the most available personal protective equipment for health facility workers compared to others. 65.4%, 55.6%, and 38% of the staff are available with gloves, plastic aprons and boots, respectively.

The mean availability of masks, heavy-duty gloves, boots, and aprons was 71.1%, 65.4%, 38%, and 44.4% in the study health facilities. Health facility workers were asked about the availability of different personal protective equipment, and 38% of the respondents agreed with the presence of boots in the facility. Still, the qualitative observational findings of this study show that all health facility workers have no shoes or footwear during solid health care waste management practice.

SHCW segregation practice was checked by observing the availability of SHCW collection bins in each patient care room. Only 4 (1.7%) of the room’s SHCW bins are collected segregated (non-infectious wastes segregated in black bins and infectious wastes segregated in yellow bins) based on the World Health Organization standard. Colour-coded waste bins, black for non-infectious and yellow for infectious wastes, were available in 23 (9.6%) rooms. 90% of the sharp containers were reusable, and 100% of the waste storage bins were plastic buckets that were easily cleanable. Only 6.7% of the waste bins were pedal operated and adequately covered, and the rest were fully opened, or a tiny hole was prepared on the container’s cover. All of the healthcare waste disposal bins in each health facility and at all service areas were away from the arm’s reach distance of the waste generation places, and this is contrary to World Health Organization SHCWM guidelines [ 13 ]. The observation result reveals that the reason for the above result was that medication trolleys were not used during medication or while healthcare providers provided any health services to patients.

Most medical wastes are incinerated. Burning solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and ash residues that are the primary source of environmental dioxins. Public concerns about incinerator emissions and the creation of federal regulations for medical waste incinerators are causing many healthcare facilities to rethink their choices in medical waste treatment. Health Care Without Harm [ 14 ], states that non-incineration treatment technologies are a growing and developing field. The U.S. National Academy of Science 2000 argued that the emission of pollutants during incineration is a potential risk to human health, and living or working near an incineration facility can have social, economic, and psychological effects [ 15 ].

The incineration of solid healthcare waste technology has been accepted and adopted as an effective method in Ethiopia. Incineration of healthcare waste can produce secondary waste and pollutants if the treatment facilities are not appropriately constructed, designed, and operated. It can be one of the significant sources of toxic substances, such as polychlorinated dibenzo-dioxins/dibenzofurans (PCDD/ PCDF), polyvinyl chloride (PVC), hexachlorobenzenes and polychlorinated biphenyls, and dioxins and furans that are known as hazardous pollutants. These pollutants may have undesirable environmental impacts on human and animal health, such as liver failure and cancer [ 15 , 16 ].

All government health facilities (4 in number) used incineration to dispose of solid waste. 88.4% and 100% of the wastes are incinerated in WUNEMMCSH and government health centres. This finding contradicts the study findings in the United States of America and Malaysia, in which 49–60% and 59–60 were incinerated, respectively, and the rest were treated using other technologies [ 15 , 16 ].

World Health Organization (2014:45) highlighted those critical elements of the appropriate operation of incinerators include effective waste reduction and waste segregation, placing incinerators away from populated areas, satisfactory engineered design, construction following appropriate dimensional plans, proper operation, periodic maintenance, and staff training and management are mandatory.

Solid waste collection times should be fixed and appropriate to the quantity of waste produced in each area of the health care facility. General waste should not be collected simultaneously or in the same trolley as infectious or hazardous wastes. The collection should be done daily for most wastes, with collection timed to match the pattern of waste generation during the day [ 13 ].

SHCW segregation practices were observed for 240 rooms in 41 health facilities that provide health services in the town. In government health centres, medium clinics, small clinics, and surgical centres, SHCW segregation practice was not based on the World Health Organization standard. All types of solid waste were collected in a single container near the generation area, and there were no colour-coded SHCW storage dust bins. Still, in NEMMCSH, in most of the service areas, colour-coded waste bins are available, and the segregation practice was not based on the standard. Only 3 (10%) of the dust bins collected the appropriate wastes according to the World Health Organization standard, and the rest were mixed with infectious and non-infectious SHCW.

Table 1 below shows health facility managers were asked about healthcare waste segregation practices, and 9 (22%) of the facility leaders responded that there is an appropriate solid healthcare waste segregation practice in their health facilities. Still, during observation, only 4 (1.7%) of the rooms in two (4.87%) of the facilities, SHCW bins collected the segregated wastes (non-infectious wastes segregated at the black bin and infectious wastes segregated at yellow bin) based on the world health organization standard. The findings of this study show there is a poor segregation practice, and all kinds of solid wastes are collected together.

In 40 (97.56%) health facilities, infectious wastes were collected daily from the waste generation areas to the final disposal points. During observation in one of the study health facilities, infectious wastes were not collected daily and left for days. Utility gloves, boots, and aprons are not available for cleaning staff to collect and transport solid healthcare wastes in all study health facilities. 29.26% of the facilities’ cleaning staff have a face mask, and 36.5% of the facilities remove waste bins from the service area when 3/4 full, and the rest were not removed or replaced with new ones. There is a separate container only in 2 health facilities for infectious and non-infectious waste segregation practice, and the rest were segregated and collected using single and non-colour coded containers.

At all of the facilities in the study area, SHCW was transported from the service areas to the disposal site were transported manually by carrying the collection container and there is no trolley for transportation. This finding was contrary to the study findings conducted in India, which show segregated waste from the generation site was being transported through the chute to the carts placed at various points on the hospital premises by skilled sanitary workers [ 17 ].

Only 2 out of 41 health facilities have temporary solid waste storage points at the facility. One of the temporary storage places was clean, and the other needed to be properly cleaned and unsightly. Two (100%) of the temporary storage areas are not fenced and have no restriction to an authorized person. Temporary storage areas are available only in two health facilities that are away from the service provision areas.

Observational findings revealed that pre-treatment of SHCW before disposal was not practised at all study health facilities. 95% of the facilities have no water supply for hand washing during and after solid healthcare waste generation, collection, and disposal.

The United States Agency estimated sharp injuries from medical wastes to health professionals and sanitary service personnel for toxic substances and disease registry. Most of the injuries are caused during the recapping of hypodermic needles before disposal into sharps containers [ 13 ]. Nearly half of the respondents, 245 (51.5%), are recapping needles after providing an injection to the patient. Recapping was more practised in NEMMCSH and surgical centres, which is 57.5% and 57.5%, respectively. In government health centres, medium clinics, and surgical centres, the recapping of used needles was practised below the mean, which is 47.9%, 48, and 43.8%, respectively. This finding was reasonable compared to the study findings of Doylo et al. [ 18 ] in western Ethiopia, where 91% of the health workers are recapping needles after injection [ 18 ]. The research finding shows that there is no significant association P-value of 0.82 between the training and recapping of needles after injection.

Focus group participants ’ response for appropriate SHCWMP regarding patients ’ and visitors ’ lack of knowledge on SHCW segregation practice

“The personal responsibilities of patients and visitors on solid HCW disposal should be explained to help appropriate safe waste management practice and maintain good hygiene .” “Providing waste management training and creating awareness are the two aspects of improving SHCW segregation practice.” “Training upgrades and creates awareness on hygiene for all workers.”

Sharp waste collection practices were observed in 240 rooms in the study health facilities, and 9.2% of the rooms used disposable sharp containers.

Sixty per cent (60%), 13.3%, 8.24%, and 15.71% of the sharps containers in NEMMCSH, government health centres, medium clinics, and small clinics, respectively, were using disposable sharps containers; sharps were disposed together with the sharps container, and surgical centre was using reusable sharp collection container. All disposable sharps containers in medium and small clinics used non-puncture-resistant or simple packaging carton boxes. 60% and 13.3% of the disposable sharps containers in NEMMCSH and the government health centre use purposefully manufactured disposable safety boxes.

figure a

Needle sticks injury reporting and occurrence

A total of 70 injuries were reported to the health facility manager in the last one year, and 44 of the injuries were reported by health professionals. The rest of the injuries were reported by supportive staff. These injuries were reported from 35 health facilities, and the remaining six health facilities did not report any cases of injury related to work; see Tables 2 and 3 below.

Accidents or incidents, including near misses, spillages, damaged containers, inappropriate segregation, and any incidents involving sharps, should be reported to the waste-management officer. Accidental contamination must be notified using a standard-format document. The cause of the accident or incident should be investigated by the waste-management officer (in case of waste) or another responsible officer, who should also take action to prevent a recurrence [ 13 ]. Two hundred seventy-one (50.2% (CI: 45.7–54.6) of the respondents agree that satisfactory procedures are available in case of an accident, while the remaining 269 (49.8%( CI: 45.4–54.3) of respondents do not agree on the availability of satisfactory procedures in case of an accident, see Table  4 below. The availability of satisfactory procedures in case of an accident is above the mean in medium clinics, which is 60.8%. 132(24.4%) of the staff are pricked by needle stick injury while providing health services. Nearly half of the respondents, 269 (49.8%), who have been exposed to needle stick injury do not get satisfactory procedures after being pricked by a needle, and those who have not been stung by a needle stick injury for the last year. 204 (37.8%) disagree with the presence of satisfactory procedures in the case of a needle stick injury. In NEMMCSH, 30.2% of the research participants were pricked by needle stick injury within one year of period, and 48.8% of those who were stung by needle stick injuries did not agree upon the presence of satisfactory procedures in case of needle stick injuries in the study hospital. 17.9% and 49.5%, 24.1% and 60.8%, 7.6% and 50% of the respondents are pricked by needle sticks, and they disagree on the availability of satisfactory procedures in case of accidents, respectively, in government health centres, medium clinics, small clinics, and surgical centre respectively.

One hundred seventy-seven (32.7% (CI:29.1–37) respondents were exposed to needle stick injury while working in the current health facilities. One hundred three (58.1%) and 26 (32.9%) needle stick injuries were reported from WUNEMMCSH and medium clinics, which is above the mean. One hundred thirty-two(24.7% (95%CI:20.7–28.1) of the respondents are exposed to needle stick injury within one year of the period. Seventy-eight(30.2%), 17 (17.9%), 19 (24.1%), 15 (16.3%), 3 (18.8%) of the staff are injured by needle sticks from NEMMCSH, government health centres, medium clinics, small clinics, and surgical centre staffs respectively within one year of service.

The mean availabilities of satisfactory procedures in case of accidents were 321 (59.4% (CI:55.4–63.7). Out of this, 13.7% of the staff is injured by needle sticks within one year before the survey. Except in NEMMCSH, the mean availabilities of satisfactory procedures were above the mean, which is 50%, 60%, 77.2%, 66.3%, and 81.3% in NEMMCSH, government health centres, medium clinics, small clinics, and surgical centres respectively.

Table 5 below shows that Hepatitis B, COVID-19, and tetanus toxoid vaccinations are the responses of the research participants to an open-ended question on which vaccine they took. The finding shows that 220 (40.8%) of the respondents were vaccinated to prevent themselves from health facility-acquired infection. One hundred fifty-six (70.9%) of the respondents are vaccinated to avoid themselves from Hep B infection. Fifty-nine (26%0.8) of the respondents were vaccinated to protect themselves from two diseases that are Hep B and COVID-19.

Appropriate health care waste management practice was assessed by using 12 questions: availability of colour-coded waste bins, foot-operated dust bins, elbow or foot-operated hand washing basin, personal protective equipment, training, role and responsibility of the worker, the presence of satisfactory procedures in case of an accident, incinerator, vaccination, guideline, onsite treatment, and the availability of poster. The mean of appropriate healthcare waste management practice was 55.58%. The mean of solid health care waste management practice based on the level of health facilities was summed and divided into 12 variables to get each health facility’s level of waste management practice. 64.9%, 45.58%, 49%, 46.9%, and 51.8% are the mean appropriate health care waste management practices in NEMMCSH, government health centres, medium clinics, small clinics, and surgical centres, respectively. In NEMMCSH, the practice of solid healthcare waste management shows above the mean, and the rest was below the mean of solid healthcare waste management practice.

Healthcare waste treatment and disposal practice

Solid waste treatment before disposal was not practised at all study health facilities. There is an incineration practice at all of the study health facilities, and the World Health Organization 2014 recommended three types of incineration practice for solid health care waste management: dual-chamber starved-air incinerators, multiple chamber incinerators, and rotary kilns incinerators. Single-chamber, drum, and brick incinerators do not meet the best available technique requirements of the Stockholm Convention guidelines [ 13 ]. The findings of this study show that none of the incinerators found in the study health facilities meet the minimum standards of solid healthcare waste incineration practice, and they need an air inlet to facilitate combustion. Eleven (26.82%) of the health facilities have an ash pit to dispose of burned SHCW; the majority, 30 (73.17%), dispose of the incinerated ash and burned needles in the municipal waste disposal site. In one out of 11 health facilities with an ash pit, one of the incinerators was built on the ash pit, and the incinerated ashes were disposed of in the ash pit directly. Pre-treatment of SHCW before disposal was not practised at all health facilities; see Table  6 below.

All government health facilities use incineration to dispose of solid waste. 88.4% and 100% of the solid wastes are incinerated in WUNEMMCS Hospital and government health centres, respectively. This finding was not similar to the other studies because other technologies like autoclave microwave and incineration were used for 59–60% of the waste [ 15 ]. Forty-one (100%) of the study facilities were using incinerators, and only 5 (12.19%) of the incinerators were constructed by using brick and more or less promising than others for incinerating the generated solid wastes without considering the emitting gases into the atmosphere and the residue chemicals and minerals in the ashes.

Research participants’ understanding of the environmental friendliness of health care waste management practice was assessed, and the result shows that more than half, 312(57%) of the research participants do not agree on the environmental friendliness of the waste disposal practices in the health facilities. The most disagreement regarding environmental friendliness was observed in NEMMCSH; 100 (38.8%) of the participants only agreed the practice was environmentally friendly of the service. Forty-four (46.3%), 37 (46.8%), 40 (43.5%), and 7 (43.8%) of the participants agree on the environmental friendliness of healthcare waste management practice in government health centres, medium clinics, small clinics, and surgical centres, respectively.

One hundred twenty-five (48.4%) and 39(42.4%) staff are trained in solid health care waste management practice in NEMMCSH and small clinic staff, respectively; this result shows above the mean. Twenty-seven (28.4%), 30 (38%), and 4 (25%) of the staff are trained in health care waste management practice in Government health centres, medium clinics, and surgical centres, respectively. The training has been significantly associated with needle stick injury, and the more trained staff are, the less exposed to needle stick injury. One hundred ninety-six (36.4%) of the participants answered yes to the question about the availability of trainers in the institution. 43.8% of the NEMMCSH staff agreed on the availability of trainers on solid health care waste management, which is above the mean, and 26.3%, 31.6%, 31.5%, and 25% for the government health centres, medium clinics, small clinics, and surgical centre respectively, which is below the mean.

Trained health professionals are more compliant with SHCWM standards, and the self-reported study findings of this study show that 41.7% (95%CI:37.7–46) of the research participants are trained in health care waste management practice. This finding was higher compared to the study findings of Sahiledengle in 2019 in the southeast of Ethiopia, shows 13.0% of healthcare workers received training related to HCWM in the past one year preceding the study period and significantly lower when compared to the study findings in Egypt which is 71% of the study participants were trained on SHCWM [ 8 , 19 , 20 ].

Three out of four government health facility leaders, 17 (45.94%) of private health facility leaders/owners of the clinic and 141 FGD participants complain about the absence of some PPEs like boots and aprons to protect themselves from infectious agents.

‘ ‘Masks, disposable gloves, and changing gowns are a critical shortage at all health facilities.’’

Cleaners in private health facilities are more exposed to infectious agents because of the absence of personal protective equipment. Except for the cleaning staff working in the private surgical centre, all cleaning staff 40 (97.56) of the health facilities complain about the absence of changing gowns and the fact that there are no boots in the facilities.

Cost inflation and the high cost of purchasing PPEs like gloves and boots are complained by all of (41) the health facility owners and the reason for the absence of some of the PPEs like boots, goggles, and shortage of disposable gloves. Sometimes, absence from the market is the reason why we do not supply PPE to our workers.

Thirty-four (82.92%) of the facility leaders are forwarded, and there is a high expense and even unavailability of some of the PPEs, which are the reasons for not providing PPEs for the workers.

‘‘Medical equipment and consumables importers and whole sellers are selective for importing health supplies, and because of a small number of importers in the country and specifically, in the locality, we can’t get materials used for health care waste management practice even disposable gloves. ’’

One of the facility leaders from a private clinic forwarded that before the advent of COVID-19 -19) personal protective equipment was more or less chip-and-get without difficulty. Still, after the advent of the first Japanese COVID-19 patient in Ethiopia, people outside the health facilities collect PPEs like gloves and masks and storing privately in their homes.

‘‘PPEs were getting expensive and unavailable in the market. Incinerator construction materials cost inflation, and the ownership of the facility building are other problems for private health facilities to construct standard incinerators.’’

For all of the focus group discussion participants except in NEMMCSH and two private health facilities, covered and foot-operated dust bins were absent or in a critical shortage compared to the needed ones.

‘‘ Waste bins are open and not colour-coded. The practice attracts flies and other insects. Empty waste bins are replaced without cleaning and disinfecting by using chlorine solution.’’ “HCW containers are not colour-coded, but we are trying to label infectious and non-infectious in Amharic languages.”

Another issue raised during focus group discussions is incineration is not the final disposal method. It needs additional disposal sites, lacks technology, is costly to construct a brick incinerator, lacks knowledge for health facility workers, shortage of man powers /cleaners, absence of environmental health professionals in health centres and all private clinics, and continues exposure to the staff for needle stick injury, foully smell, human scavengers, unsightly, fire hazard, and lack of water supply in the town are the major teams that FGD participants raise and forwarded the above issue as a problem to improve SHCWMP.

Focus group participants, during the discussion, raised issues that could be more comfortable managing SHCWs properly in their institution. Two of the 37 private health facilities are working in their own compound, and the remaining 35 are rented; because of this, they have difficulty constructing incinerators and ash removal pits and are not confident about investing in SHCWM systems. Staff negligence and involuntary abiding by the rules of the facilities were raised by four of the government health facilities, and it was difficult to punish those who violated the healthcare waste management rules because the health facility leaders were not giving appropriate attention to the problem.

Focus group participants forwarded recommendations on which interventions can improve the management of SHCW, and recommendations are summarised as follows:

“PPE should be available in quality and quantity for all health facility workers who have direct contact with SHCW.” “Scientific-based waste management technologies should be availed for health facilities.” “Continuous induction HCW management training should be provided to the workers. Law enforcement should be strengthened.” “Communal HCW management sites should be availed, especially for private health facilities.” “HCWM committee should be strengthened.” “Non-infectious wastes should be collected communally and transported to the municipal SHCW disposal places.” “Leaders should be knowledgeable on the SHCWM system and supervise the practice continuously.” “Patient and client should be oriented daily about HCW segregation practice.” “Regulatory bodies should supervise the health facilities before commencing and periodically between services .”

The above are the themes that FGD participants discussed and forwarded for the future improvements of SHAWMP in the study areas.

Lack of water supply in the town

Other issues raised during FGDs were health facilities’ lack of water supply. World Health Organization (2014: 89) highlights that water supply for the appropriate waste management system should be mandatory at any time in all health service delivery points.

Thirty-nine (95.12%) of the health facilities complain about the absence of water supply to improve HCW management practices and infection prevention and control practices in the facilities.

“We get water once per week, and most of the time, the water is available at night, and if we are not fetching as scheduled, we can’t get water the whole week”.

In this research, only those who have direct contact have participated in this study, and 434 (80.4%) of the respondents agree they have roles and responsibilities for appropriate solid health care waste management practice. The rest, 19.6%, do not agree with their commitment to manage health care wastes properly, even though they are responsible. Health facility workers in NEMMCSH and medium clinics know their responsibilities better than others, and their results show above the mean. 84.5%, 74.5%, 81%, 73.9% and 75% in NEMMCSH, Government health centres, medium clinics, small clinics, and surgical centres, respectively.

Establishing a policy and a legal framework, training personnel, and raising public awareness are essential elements of successful healthcare waste management. A policy can be viewed as a blueprint that drives decision-making at a political level and should mobilize government effort and resources to create the conditions to make changes in healthcare facilities. Three hundred and seventy-four (69.3%) of the respondents agree with the presence of any solid healthcare waste management policy in Ethiopia. The more knowledge above the mean (72.9%) on the presence of the policy is reported from NEMMCSH.

Self-reported level of knowledge on what to do in case of an accident revealed that 438 (81.1% CI: 77.6–84.3%) of the respondents knew what to do in case of an accident. Government health centre staff and medium clinic staff’s knowledge about what to do in case of an accident was above the mean (88.4% and 82.3%), respectively, and the rest were below the mean. The action performed after an occupational accident revealed that 56 (35.7%) of the respondents did nothing after any exposure to an accident. Out of 56 respondents who have done nothing after exposure, 47 (83.92%) of the respondents answered yes to their knowledge about what to do in case of an accident. Out of 157 respondents who have been exposed to occupational accidents, only 59 (37.6%) of the respondents performed the appropriate measures, 18 (11.5%), 9 (5.7%), 26 (16.6%), 6 (3.8%) of the respondents are taking prophylaxis, linked to the incident officer, consult the available doctors near to the department, and test the status of the patient (source of infection) respectively and the rest were not performing the scientific measures, that is only practising one of the following practices washing the affected part, squeezing the affected part to remove blood, cleaning the affected part with alcohol.

Health facility workers’ understanding of solid health care waste management practices was assessed by asking whether the current SHCWM practice needs improvement. Four hundred forty-nine (83.1%) health facility workers are unsatisfied with the current solid waste management practice at the different health facility levels, and they recommend changing it to a scientific one. 82.6%, 87.4%, 89.9%, 75%, and 81.3% of the respondents are uncomfortable or need to improve solid health care waste management practices in NEMMCSH, government health centres, medium clinics, small clinics, and surgical centres, respectively.

Lack of safety box, lack of colour-coded waste bins, lack of training, and no problems are the responses to the question problems encountered in managing SHCWMP. Two Hundred and Fifty (46.92%) and 232 (42.96%) of the respondents recommend the availability of safety boxes and training, respectively.

Four or 9.8% of the facilities have infection prevention and control (IPC) teams in the study health facilities. This finding differed from the study in Pakistan, where thirty per cent (30%) of the study hospitals had HCWM or infection control teams [ 21 ]. This study’s findings were similar to those conducted in Pakistan by Khan et al. [ 21 ], which confirmed that the teams were almost absent at the secondary and primary healthcare levels [ 20 ].

The availability of health care waste management policy report reveals that 69.3% (95% CI: 65.4–73) of the staff are aware of the presence of solid health care waste management policy in the institution. Availability of health care waste management policy was 188 (72.9%), 66 (69.5%), 53 (677.1%), 57 (62%), 10 (62.5%) in NEMMCSH, Government health centres, medium clinics, small clinics, and surgical centre respectively. Healthcare waste management policy availability was above the mean in NEMMCSH and government health centres; see Table  6 below.

Open-ended responses on the SHCWM practice of health facility workers were collected using the prepared interview guide, and the responses were analyzed using thematic analysis. All the answered questions were tallied on the paper and exported to Excel software for thematic analysis.

The study participants recommend.

“appropriate segregation practice at the point of generation” "health facility must avail all the necessary supplies that used for SHCWMP, punishment for those violating the rule of SHCWMP",
“waste management technologies should be included in solid waste management guidelines, and enforcement should be strengthened.”

The availability of written national or adopted/adapted SHCWM policies was observed at all study health facilities. Twenty eight (11.66%) of the rooms have either a poster or a written document of the national policy document. However, all staff working in the observed rooms have yet to see the inside content of the policy. The presence of the policy alone cannot bring change to SHCWMP. This finding shows that the presence of policy in the institution was reasonable compared to the study findings in Menelik II hospital in Addis Ababa, showing that HCWM regulations and any applicable facility-based policy and strategy were not found [ 22 ]. The findings of this study were less compared to the study findings in Pakistan; 41% of the health facilities had the policy document or internal rules for the HCWM [ 21 ].

Focus group participants have forwarded recommendations on which interventions can improve the management of SHCW, and recommendations are summarised as follows.

‘‘Supplies should be available in quality and quantity for all health facility workers with direct contact with SHCW. Scientific-based waste management technologies should be available for health facilities. Continues and induction health care waste management training should be provided to the workers. Law enforcement should be strengthened. Community healthcare waste management sites should be available, especially for private health facilities. HCWM committee should be strengthened. Non-infectious wastes should be collected communally and transported to the municipal SHCW disposal places. Leaders should be knowledgeable about the SHCWM system and supervise the practice continuously. Patients and clients should be oriented daily about health care waste segregation practices. Regulatory bodies should supervise the health facilities before commencing and periodically in between the service are the themes those FGD participants discussed and forward for the future improvements of SHCWMP in the study areas.’’

The availability of PPEs in different levels of health facilities shows 392 (72.6%), 212 (82.2%), 56 (58.9%), 52 (65.8%), 60 (65.2%), 12 (75%) health facility workers in NEMMCSH, government health centres, medium clinics, small clinics, and surgical centres respectively agree to the presence of personal protective equipment in their department. The availability of PPEs in this study was nearly two-fold when compared to the study findings in Myanmar, where 37.6% of the staff have PPEs [ 12 ].

The mean availability of masks, heavy-duty gloves, boots, and aprons was 71.1%, 65.4%, 38%, and 44.4% in the study health facilities. This finding shows masks are less available in the study health facilities compared to other studies. The availability of utility gloves, boots, and plastic aprons is good in this study compared to the study conducted by Banstola, D in Pokhara Sub-Metropolitan City [ 23 ].

The findings of this study show there is a poor segregation practice, and all kinds of solid wastes were collected together. This finding was similar to the study findings conducted in Addis Ababa, Ethiopia, by Debere et al. [ 24 ] and contrary to the study findings conducted in Nepal and India, which shows 50% and 65–75% of the surveyed health facilities were practising proper waste segregation systems at the point of generation without mixing general wastes with hazardous wastes respectively [ 9 , 17 ].

Ninety percent of private health facilities collect and transport SHCW generated in every service area and transport it to the disposal place by the collection container (no separate container to collect and transport the waste to the final disposal site). This finding was similar to the study findings of Debre Markos’s town [ 25 ]. At all of the facilities in the study area, SHCW was transported from the service areas to the disposal site manually by carrying the collection container, and there was no trolley for transportation. This finding was contrary to the study findings conducted in India, which show segregated waste from the generation site was being transported through the chute to the carts placed at various points on the hospital premises by skilled sanitary workers [ 17 ].

Observational findings revealed that pre-treatment of SHCW before disposal was not practised at all study health facilities. This study was contrary to the findings of Pullishery et al. [ 26 ], conducted in Mangalore, India, which depicted pre-treatment of the waste in 46% of the hospitals [ 26 ]. 95% of the facilities have no water supply for handwashing during and after solid healthcare waste generation, collection, and disposal. This finding was contrary to the study findings in Pakistan hospitals, which show all health facilities have an adequate water supply near the health care waste management sites [ 27 ].

Questionnaire data collection tools show that 129 (23.8%) of the staff needle stick injuries have occurred on health facility workers within one year of the period before the data collection. This finding was slightly smaller than the study findings of Deress et al. [ 25 ] in Debre Markos town, North East Ethiopia, where 30.9% of the workers had been exposed to needle stick injury one year prior to the study [ 25 ]. Reported and registered needle stick injuries in health facilities are less reported, and only 70 (54.2%) of the injuries are reported to the health facilities. This finding shows an underestimation of the risk and the problem, which was supported by the study conducted in Menilik II hospitals in Addis Ababa [ 22 ]. 50%, 33.4%, 48%, 52%, and 62.5% of needle stick injuries were not reported in NEMMCSH, Government health centres, medium clinics, small clinics, and surgical centres, respectively, to the health facility manager.

Nearly 1/3 (177 or 32.7%) of the staff are exposed to needle stick injuries. Needle stick injuries in health facilities are less reported, and only 73 (41.24%) of the injuries are reported to the health facilities within 12 months of the data collection. This finding is slightly higher than the study finding of Deress et al. [ 25 ] in Debere Markos, Ethiopia, in which 23.3% of the study participants had encountered needle stick/sharps injuries preceding 12 months of the data collection period [ 25 ].

Seventy-three injuries were reported to the health facility manager in the last one year, 44 of the injuries were reported by health professionals, and the rest were reported by supportive staff. These injuries were reported from 35(85.3%) health facilities; the remaining six have no report. These study findings were better than the findings of Khan et al. [ 21 ], in which one-third of the facilities had a reporting system for an incident, and almost the same percentage of the facilities had post-exposure procedures in both public and private sectors [ 21 ].

Within one year of the study period, 129 (23.88%) needle stick injuries occurred. However, needle stick injuries in health facilities are less reported, and only 70 (39.5%) of the injuries are reported to the health facilities. These findings were reasonable compared to the study findings of the southwest region of Cameroon, in which 50.9% (110/216) of all participants had at least one occupational exposure [ 28 , 29 ]. This result report shows a very high exposure to needle stick injury compared to the study findings in Brazil, which shows 6.1% of the research participants were injured [ 27 ].

The finding shows that 220 (40.8%) of the respondents were vaccinated to prevent themselves from health facility-acquired infection. One Hundred Fifty-six (70.9%) of the respondents are vaccinated in order to avoid themselves from Hep B infection. Fifty-nine (26%0.8) of the respondents were vaccinated to protect themselves from two diseases that are Hep B and COVID-19. This finding was nearly the same as the study findings of Deress et al. [ 7 ],in Ethiopia, 30.7% were vaccinated, and very low compared to the study findings of Qadir et al. [ 30 ] in Pakistan and Saha & Bhattacharjya India which is 66.67% and 66.17% respectively [ 25 , 30 , 31 ].

The incineration of solid healthcare waste technology has been accepted and adopted as an effective method in Ethiopia. These pollutants may have undesirable environmental impacts on human and animal health, such as liver failure and cancer [ 15 , 16 ]. All government health facilities use incineration to dispose of solid waste. 88.4% and 100% of the wastes are incinerated in WUNEMMCSH and government health centres, respectively. This finding contradicts the study findings in the United States of America and Malaysia, which are 49–60% and 59–60 are incinerated, respectively, and the rest are treated using other technologies [ 15 , 16 ].

All study health facilities used a brick or barrel type of incinerator. The incinerators found in the study health facilities need to meet the minimum standards of solid health care waste incineration practice. These findings were similar to the study findings of Nepal and Pakistan [ 32 ]. The health care waste treatment system in health facilities was found to be very unsystematic and unscientific, which cannot guarantee that there is no risk to the environment and public health, as well as safety for personnel involved in health care waste treatment. Most incinerators are not properly operated and maintained, resulting in poor performance.

All government health facilities use incineration to dispose of solid waste. All the generated sharp wastes are incinerated using brick or barrel incinerators, as shown in Fig.  1 above. This finding was consistent with the findings of Veilla and Samwel [ 33 ], who depicted that sharp waste generation is the same as sharps waste incinerated [ 33 ]. All brick incinerators were constructed without appropriate air inlets to facilitate combustion except in NEMMCSH, which is built at a 4-m height. These findings were similar to the findings of Tadese and Kumie at Addis Ababa [ 34 ].

figure 1

Barrel and brick incinerators used in private clinic

Strengths and limitations

This is a mixed-method study; both qualitative and quantitative study design, data collection and analysis techniques were used to understand the problem better. The setting for this study was one town, which is found in the southern part of the country. It only represents some of the country’s health facilities, and it is difficult to generalize the findings to other hospitals and health centres. Another limitation of this study was that private drug stores and private pharmacies were not incorporated.

Conclusions

In the study, health facilities’ foot-operated solid waste dust bins are not available for healthcare workers and patients to dispose of the generated wastes. Health facility managers in government and private health institutions should pay more attention to the availability of colour-coded dust bins. Most containers are opened, and insects and rodents can access them anytime. Some of them are even closed (not foot-operated), leading to contamination of hands when trying to open them.

Healthcare waste management training is mandatory for appropriate healthcare waste disposal. Healthcare-associated exposure should be appropriately managed, and infection prevention and control training should be provided to all staff working in the health facilities.

Availability of data and materials

The authors declare that data for this work are available upon request to the first author.

Chartier, Y et al. Safe management of wastes from health-care activities. 2nd ed. WHO; 2014.

Tesfahun E, et al. Developing models for the prediction of hospital healthcare waste generation rate. Waste Manag Res. 2014;34(1):75–80.

Manzoor J, Sharma M. Impact of Biomedical Waste on Environment and Human Health. Environmental Claims Journal. 2019;31(4):311–34.

Article   Google Scholar  

Yves C, Jorge E, Ute P, Annette P, et al. Safe management of wastes from health-care activities. WHO 2nd ed. 2014.

OSHA. Occupational Safety and Health Administration, Guidelines for Healthcare Waste Management. 2023.

Godfrey L, Ahmed M, et al. Solid waste management in Africa: governance failure or development opportunity?. Intech open. 2019.

Deress T, Jemal M, Girma M, Adane K. Knowledge, attitude, and practice of waste handlers about medical waste management in Debre Markos town healthcare facilities, northwest Ethiopia. BMC Res Notes. 2019;12(1):146.

Article   PubMed   PubMed Central   Google Scholar  

Sahiledengle B. Self-reported healthcare waste segregation practice and its correlate among healthcare workers in hospitals of Southeast Ethiopia. BMC Health Serv Res. 2019;19(1):591.

Debalkie D, Kume A. Healthcare Waste Management: The Current Issue in Menellik II Referral Hospital, Ethiopia. Curr World Environ. 2017;12(1):42–52.

Debere MK, Gelaye KA, Alamdo AG, Trifa ZM. Assessment of the health care waste generation rates and its management system in hospitals of Addis Ababa, Ethiopia, 2011. BMC Public Health. 2013;13(28).

Creswell JW. Research design qualitative, quantitative, & mixed method approach. 4th ed. SAGE Publications, Inc.; 2014.

Win EM, Saw YM, Oo KL, Than TM, Cho SM, Kariya T, et al. Healthcare waste management at primary health centres in Mon State, Myanmar: the comparisons between hospital and non-hospital type primary health centres. Nagoya J Med Sci. 2019;81(1):81–91.

PubMed   PubMed Central   Google Scholar  

WHO. Safe management of wastes from health-care activities. 2nd ed. editor Chartier, Y et al. 2014. 

Richard B, Ben A, Kristian S. Health care without harm climate-smart health care series green paper number one. 2019.

Khadem Ghasemi M, Mohd YR. Advantages and Disadvantages of Healthcare Waste Treatment and Disposal Alternatives: Malaysian Scenario. Pol J Environ Stud. 2016;25(1):17–25.

Mohseni-Bandpei A, Majlesi M, Rafiee M, Nojavan S, Nowrouz P, Zolfagharpour H. Polycyclic aromatic hydrocarbons (PAHs) formation during the fast pyrolysis of hazardous health-care waste. Chemosphere. 2019;227:277–88.

Article   PubMed   CAS   Google Scholar  

Pandey A, Ahuja S, Madan M, Asthana AK. Bio-Medical Waste Managment in a Tertiary Care Hospital: An Overview. J Clin Diagn Res. 2016;10(11):DC01-DC3.

Doylo T, Alemayehu T, Baraki N. Knowledge and Practice of Health Workers about Healthcare Waste Management in Public Health Facilities in Eastern Ethiopia. J Community Health. 2019;44(2):284–91.

Article   PubMed   Google Scholar  

Hosny G, Samir S, Sharkawy R. An intervention significantly improve medical waste handling and management: A consequence of raising knowledge and practical skills of health care workers. Int J Health Sci.2018;12(4).

Khan EA, Sabeeh SM, Chaudhry MA, Yaqoob A, Kumar R. et al. Health care waste management in Pakistan: A situational analisis and way forward. Pak J Public Health. 2016;6(3).

Khan BA, Cheng L, Khan AA, Ahmed H. Healthcare waste management in Asian developing countries: A mini review. Waste Manag Res. 2019;37(9):863–75.

Debalkie D, Kumie A. Healthcare Waste Management: The Current Issue in Menellik II Referral Hospital. Ethiopia Current World Environment. 2017;12(1):42–52.

Banstola D, Banstola R, Nepal D, Baral P. Management of hospital solid wastes: A study in Pokhara sub metropolitan city. J Institute Med. 2017;31(1):68–74.

Debere MK, Gelaye KA, Alamdo AG, Trifa, ZM. Assessment of the HCW generation rates and its management system in hospitals of Addis Ababa, Ethiopia. BMC Public Health. 2014;13(28):1–9.

Deress T, Hassen F, Adane K, Tsegaye A. Assessment of Knowledge, Attitude, and Practice about Biomedical Waste Management and Associated Factors among the Healthcare Professionals at Debre Markos Town Healthcare Facilities. Northwest Ethiopia J Environ Public Health. 2018;2018:7672981.

PubMed   Google Scholar  

Pullishery F, Panchmal GS, Siddique S, Abraham A. Awareness, knowledge, and practices on bio-medical waste management among health care professionals in Mangalore- A cross sectional study. Integr Med. 2016;3(1):29–35.

Google Scholar  

Ream PS, Tipple AF, Salgado TA, Souza AC, Souza SM, Galdino-Junior H, et al. Hospital housekeepers: Victims of ineffective hospital waste management. Arch Environ Occup Health. 2016;71(5):273–80.

Ngwa CH, Ngoh EA, Cumber SN. Assessment of the knowledge, attitude and practice of health care workers in Fako division on post exposure prophylaxis to blood borne viruses: a hospital based cross-sectional study. Pan Afr Med J. 2018;31.

Health care waste managemnt in pakistan. a situation analysis and way forward. Pakistan Journal of Public Health. 2016;6(3):35–45.

Qadir DM, Murad DR, Faraz DN. Hospital Waste Management; Tertiary Care Hospitals. The Professional Medical Journal. 2016;23(07):802–6.

Saha A, Bhattacharjya H. Health-Care Waste Management in Public Sector of Tripura, North-East India: An Observational Study. Indian J Community Med. 2019;44(4):368–72.

Pullishery F, Panchmal G, Siddique S, Abraham A. Awareness, knowledge, and practices on bio-medical waste management among health care professionals in Mangalore- A cross sectional study. Integr Med. 2016;3(1):29–35.

Veilla EM, Samwel VM. Assessment of sharps waste management practices in a referral hospital. Afr J Environ Sci Technol. 2016;10(3):86–95.

Tadesse ML, Kumie A. Healthcare waste generation and management practice in government health centers of Addis Ababa. Ethiopia BMC Public Health. 2014;14:1221.

Download references

Acknowledgements

The authors are grateful to the health facility leaders and ethical committees of the hospitals for their permission. The authors acknowledge the cooperation of the health facility workers who participated in this study.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and affiliations.

Wachemo University College of Medicine and public health, Hossana, Ethiopia

Yeshanew Ayele Tiruneh

Department of Public Health, University of South Africa, College of Human Science, Pretoria, South Africa

L. M. Modiba & S. M. Zuma

You can also search for this author in PubMed   Google Scholar

Contributions

Dr. Yeshanew Ayele Tiruneh is a researcher of this study; the principal investigator does all the proposal preparation, methodology, data collection, result and discussion, and manuscript writing. Professor LM Modiba and Dr. SM Zuma are supervisors for this study. They participated in the topic selection and modification to the final manuscript preparation by commenting on and correcting the study. Finally, the three authors read and approved the final version of the manuscript and agreed to submit the manuscript for publication.

Corresponding author

Correspondence to Yeshanew Ayele Tiruneh .

Ethics declarations

Ethics approval and consent to participate.

what are the benefits of case study research

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Tiruneh, Y.A., Modiba, L.M. & Zuma, S.M. Solid health care waste management practice in Ethiopia, a convergent mixed method study. BMC Health Serv Res 24 , 985 (2024). https://doi.org/10.1186/s12913-024-11444-8

Download citation

Received : 05 March 2023

Accepted : 14 August 2024

Published : 26 August 2024

DOI : https://doi.org/10.1186/s12913-024-11444-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Health care waste
  • Waste management
  • Private health facilities

BMC Health Services Research

ISSN: 1472-6963

what are the benefits of case study research

IMAGES

  1. Case Study Method 18 Advantages And Disadvantages Gre

    what are the benefits of case study research

  2. Three most important advantages of multiple case study and survey

    what are the benefits of case study research

  3. 6 Types of Case Studies to Inspire Your Research and Analysis

    what are the benefits of case study research

  4. Step by step guide for conducting case study research Archives

    what are the benefits of case study research

  5. Discover the Advantages and Disadvantages of a Case Study

    what are the benefits of case study research

  6. advantages of a case study research

    what are the benefits of case study research

VIDEO

  1. Research Profile 1: Why is it so important?

  2. Understanding Research Methods in Education

  3. Research Approaches and Strategies (@HamzaFarooqui-hf )

  4. Case Study Research

  5. Qualitative Approach

  6. Case Study Research

COMMENTS

  1. 10 Case Study Advantages and Disadvantages (2024)

    Advantages. 1. In-depth analysis of complex phenomena. Case study design allows researchers to delve deeply into intricate issues and situations. By focusing on a specific instance or event, researchers can uncover nuanced details and layers of understanding that might be missed with other research methods, especially large-scale survey studies.

  2. What are the benefits and drawbacks of case study research?

    Benefits. Their flexibility: case studies are popular for a number of reasons, one being that they can be conducted at various points in the research process. Researchers are known to favour them as a way to develop ideas for more extensive research in the future - pilot studies often take the form of case studies.

  3. Case Study

    Defnition: A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  4. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  5. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  6. 5 Benefits of the Case Study Method

    Through the case method, you can "try on" roles you may not have considered and feel more prepared to change or advance your career. 5. Build Your Self-Confidence. Finally, learning through the case study method can build your confidence. Each time you assume a business leader's perspective, aim to solve a new challenge, and express and ...

  7. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  8. Case Study: Definition, Types, Examples and Benefits

    Researchers, economists, and others frequently use case studies to answer questions across a wide spectrum of disciplines, from analyzing decades of climate data for conservation efforts to developing new theoretical frameworks in psychology. Learn about the different types of case studies, their benefits, and examples of successful case studies.

  9. What is a Case Study?

    Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data. Analysis of qualitative data from case study research can contribute to knowledge development.

  10. Case Study Method: A Step-by-Step Guide for Business Researchers

    Although case studies have been discussed extensively in the literature, little has been written about the specific steps one may use to conduct case study research effectively (Gagnon, 2010; Hancock & Algozzine, 2016).Baskarada (2014) also emphasized the need to have a succinct guideline that can be practically followed as it is actually tough to execute a case study well in practice.

  11. What is a Case Study in Research? Definition, Methods & Examples

    Definition, Methods, and Examples. Case study methodology offers researchers an exciting opportunity to explore intricate phenomena within specific contexts using a wide range of data sources and collection methods. It is highly pertinent in health and social sciences, environmental studies, social work, education, and business studies.

  12. What the Case Study Method Really Teaches

    Beyond teaching specific subject matter, the case study method excels in instilling meta-skills in students. This article explains the importance of seven such skills: preparation, discernment ...

  13. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the ...

  14. Case Study Method

    The benefits found in these efforts led the approach to transition to other industries, allowing for the examination of results through proposed decisions, processes, or outcomes. ... The case study method of research makes it easier to identify deviant cases that occur in each social group. These incidents are units (people) that behave in ...

  15. (PDF) The case study as a type of qualitative research

    Abstract. This article presents the case study as a type of qualitative research. Its aim is to give a detailed description of a case study - its definition, some classifications, and several ...

  16. Case study research for better evaluations of complex interventions

    Case study research, as an overall approach, is based on in-depth explorations of complex phenomena in their natural, or real-life, settings. ... At present, there are significant challenges in exploiting the benefits of case study research in evaluative health research, which relate to status, definition and reporting. ...

  17. Case Study Design

    Case study research is a type of qualitative research because it typically does not rely on numerical data and statistics to answer a research question. Case study research has both advantages and ...

  18. What is a case study?

    Case study is a research methodology, typically seen in social and life sciences. There is no one definition of case study research.1 However, very simply… 'a case study can be defined as an intensive study about a person, a group of people or a unit, which is aimed to generalize over several units'.1 A case study has also been described as an intensive, systematic investigation of a ...

  19. Doing Case Study Research Collaboratively: The Benefits for Researchers

    Research collaborations have the potential to increase research capacity for both individuals and the team alike. The purpose of the study was to explore the experiences and perceptions of a team of seven Australasian nurse academics undertaking a longitudinal multi-site case study.

  20. Undergraduate students engaging in hands-on gerontology research: a

    This case study uses a participatory research approach. As a case study, it focuses deeply on the experience of a single group in one setting (Creswell & Poth, Citation 2018) - undergraduate students assisting in data collection for TRAiLS. Though we collected both quantitative and qualitative data, our interpretation largely drew on ...

  21. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the ...

  22. Case Study Research Method

    A case study is a type of qualitative research that examines one particular case (or several cases) in-depth. It is often used for exploring a single phenomenon or event, such as a successful marketing campaign, a product, or a service. Case study researchers collect data through a variety of methods, such as interviews, document analysis, and ...

  23. Integrated Assessment of Health Benefits and Burdens of Urban ...

    Urban greening is a major goal in policies for sustainable cities, and spatial planners are nowadays strongly interested in the benefits of greenspace for the well-being of urban residents. We present a novel, model-based approach to support the development of effective greening strategies. The approach is quantitative and spatially explicit and accounts for multiple health benefits as well as ...

  24. Solid health care waste management practice in Ethiopia, a convergent

    Using essential personal protective equipment (PPEs) based on the risk (if the risk is a splash of blood or body fluid, use a mask and goggles; if the risk is on foot, use appropriate shoes) is recommended by the World Health Organization [].The mean availability of gloves in health facilities was 343 (63.5% (95% CI: 59.3-67.4).

  25. Toward Developing a Framework for Conducting Case Study Research

    This article reviews the use of case study research for both practical and theoretical issues especially in management field with the emphasis on management of technology and innovation. Many researchers commented on the methodological issues of the case study research from their point of view thus, presenting a comprehensive framework was missing.