Directional Hypothesis: Definition and 10 Examples
Chris Drew (PhD)
Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]
Learn about our Editorial Process
A directional hypothesis refers to a type of hypothesis used in statistical testing that predicts a particular direction of the expected relationship between two variables.
In simpler terms, a directional hypothesis is an educated, specific guess about the direction of an outcome—whether an increase, decrease, or a proclaimed difference in variable sets.
For example, in a study investigating the effects of sleep deprivation on cognitive performance, a directional hypothesis might state that as sleep deprivation (Independent Variable) increases, cognitive performance (Dependent Variable) decreases (Killgore, 2010). Such a hypothesis offers a clear, directional relationship whereby a specific increase or decrease is anticipated.
Global warming provides another notable example of a directional hypothesis. A researcher might hypothesize that as carbon dioxide (CO2) levels increase, global temperatures also increase (Thompson, 2010). In this instance, the hypothesis clearly articulates an upward trend for both variables.
In any given circumstance, it’s imperative that a directional hypothesis is grounded on solid evidence. For instance, the CO2 and global temperature relationship is based on substantial scientific evidence, and not on a random guess or mere speculation (Florides & Christodoulides, 2009).
Directional vs Non-Directional vs Null Hypotheses
A directional hypothesis is generally contrasted to a non-directional hypothesis. Here’s how they compare:
- Directional hypothesis: A directional hypothesis provides a perspective of the expected relationship between variables, predicting the direction of that relationship (either positive, negative, or a specific difference).
- Non-directional hypothesis: A non-directional hypothesis denotes the possibility of a relationship between two variables ( the independent and dependent variables ), although this hypothesis does not venture a prediction as to the direction of this relationship (Ali & Bhaskar, 2016). For example, a non-directional hypothesis might state that there exists a relationship between a person’s diet (independent variable) and their mood (dependent variable), without indicating whether improvement in diet enhances mood positively or negatively. Overall, the choice between a directional or non-directional hypothesis depends on the known or anticipated link between the variables under consideration in research studies.
Another very important type of hypothesis that we need to know about is a null hypothesis :
- Null hypothesis : The null hypothesis stands as a universality—the hypothesis that there is no observed effect in the population under study, meaning there is no association between variables (or that the differences are down to chance). For instance, a null hypothesis could be constructed around the idea that changing diet (independent variable) has no discernible effect on a person’s mood (dependent variable) (Yan & Su, 2016). This proposition is the one that we aim to disprove in an experiment.
While directional and non-directional hypotheses involve some integrated expectations about the outcomes (either distinct direction or a vague relationship), a null hypothesis operates on the premise of negating such relationships or effects.
The null hypotheses is typically proposed to be negated or disproved by statistical tests, paving way for the acceptance of an alternate hypothesis (either directional or non-directional).
Directional Hypothesis Examples
1. exercise and heart health.
Research suggests that as regular physical exercise (independent variable) increases, the risk of heart disease (dependent variable) decreases (Jakicic, Davis, Rogers, King, Marcus, Helsel, Rickman, Wahed, Belle, 2016). In this example, a directional hypothesis anticipates that the more individuals maintain routine workouts, the lesser would be their odds of developing heart-related disorders. This assumption is based on the underlying fact that routine exercise can help reduce harmful cholesterol levels, regulate blood pressure, and bring about overall health benefits. Thus, a direction – a decrease in heart disease – is expected in relation with an increase in exercise.
2. Screen Time and Sleep Quality
Another classic instance of a directional hypothesis can be seen in the relationship between the independent variable, screen time (especially before bed), and the dependent variable, sleep quality. This hypothesis predicts that as screen time before bed increases, sleep quality decreases (Chang, Aeschbach, Duffy, Czeisler, 2015). The reasoning behind this hypothesis is the disruptive effect of artificial light (especially blue light from screens) on melatonin production, a hormone needed to regulate sleep. As individuals spend more time exposed to screens before bed, it is predictably hypothesized that their sleep quality worsens.
3. Job Satisfaction and Employee Turnover
A typical scenario in organizational behavior research posits that as job satisfaction (independent variable) increases, the rate of employee turnover (dependent variable) decreases (Cheng, Jiang, & Riley, 2017). This directional hypothesis emphasizes that an increased level of job satisfaction would lead to a reduced rate of employees leaving the company. The theoretical basis for this hypothesis is that satisfied employees often tend to be more committed to the organization and are less likely to seek employment elsewhere, thus reducing turnover rates.
4. Healthy Eating and Body Weight
Healthy eating, as the independent variable, is commonly thought to influence body weight, the dependent variable, in a positive way. For example, the hypothesis might state that as consumption of healthy foods increases, an individual’s body weight decreases (Framson, Kristal, Schenk, Littman, Zeliadt, & Benitez, 2009). This projection is based on the premise that healthier foods, such as fruits and vegetables, are generally lower in calories than junk food, assisting in weight management.
5. Sun Exposure and Skin Health
The association between sun exposure (independent variable) and skin health (dependent variable) allows for a definitive hypothesis declaring that as sun exposure increases, the risk of skin damage or skin cancer increases (Whiteman, Whiteman, & Green, 2001). The premise aligns with the understanding that overexposure to the sun’s ultraviolet rays can deteriorate skin health, leading to conditions like sunburn or, in extreme cases, skin cancer.
6. Study Hours and Academic Performance
A regularly assessed relationship in academia suggests that as the number of study hours (independent variable) rises, so too does academic performance (dependent variable) (Nonis, Hudson, Logan, Ford, 2013). The hypothesis proposes a positive correlation , with an increase in study time expected to contribute to enhanced academic outcomes.
7. Screen Time and Eye Strain
It’s commonly hypothesized that as screen time (independent variable) increases, the likelihood of experiencing eye strain (dependent variable) also increases (Sheppard & Wolffsohn, 2018). This is based on the idea that prolonged engagement with digital screens—computers, tablets, or mobile phones—can cause discomfort or fatigue in the eyes, attributing to symptoms of eye strain.
8. Physical Activity and Stress Levels
In the sphere of mental health, it’s often proposed that as physical activity (independent variable) increases, levels of stress (dependent variable) decrease (Stonerock, Hoffman, Smith, Blumenthal, 2015). Regular exercise is known to stimulate the production of endorphins, the body’s natural mood elevators, helping to alleviate stress.
9. Water Consumption and Kidney Health
A common health-related hypothesis might predict that as water consumption (independent variable) increases, the risk of kidney stones (dependent variable) decreases (Curhan, Willett, Knight, & Stampfer, 2004). Here, an increase in water intake is inferred to reduce the risk of kidney stones by diluting the substances that lead to stone formation.
10. Traffic Noise and Sleep Quality
In urban planning research, it’s often supposed that as traffic noise (independent variable) increases, sleep quality (dependent variable) decreases (Muzet, 2007). Increased noise levels, particularly during the night, can result in sleep disruptions, thus, leading to poor sleep quality.
11. Sugar Consumption and Dental Health
In the field of dental health, an example might be stating as one’s sugar consumption (independent variable) increases, dental health (dependent variable) decreases (Sheiham, & James, 2014). This stems from the fact that sugar is a major factor in tooth decay, and increased consumption of sugary foods or drinks leads to a decline in dental health due to the high likelihood of cavities.
See 15 More Examples of Hypotheses Here
A directional hypothesis plays a critical role in research, paving the way for specific predicted outcomes based on the relationship between two variables. These hypotheses clearly illuminate the expected direction—the increase or decrease—of an effect. From predicting the impacts of healthy eating on body weight to forecasting the influence of screen time on sleep quality, directional hypotheses allow for targeted and strategic examination of phenomena. In essence, directional hypotheses provide the crucial path for inquiry, shaping the trajectory of research studies and ultimately aiding in the generation of insightful, relevant findings.
Ali, S., & Bhaskar, S. (2016). Basic statistical tools in research and data analysis. Indian Journal of Anaesthesia, 60 (9), 662-669. doi: https://doi.org/10.4103%2F0019-5049.190623
Chang, A. M., Aeschbach, D., Duffy, J. F., & Czeisler, C. A. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proceeding of the National Academy of Sciences, 112 (4), 1232-1237. doi: https://doi.org/10.1073/pnas.1418490112
Cheng, G. H. L., Jiang, D., & Riley, J. H. (2017). Organizational commitment and intrinsic motivation of regular and contractual primary school teachers in China. New Psychology, 19 (3), 316-326. Doi: https://doi.org/10.4103%2F2249-4863.184631
Curhan, G. C., Willett, W. C., Knight, E. L., & Stampfer, M. J. (2004). Dietary factors and the risk of incident kidney stones in younger women: Nurses’ Health Study II. Archives of Internal Medicine, 164 (8), 885–891.
Florides, G. A., & Christodoulides, P. (2009). Global warming and carbon dioxide through sciences. Environment international , 35 (2), 390-401. doi: https://doi.org/10.1016/j.envint.2008.07.007
Framson, C., Kristal, A. R., Schenk, J. M., Littman, A. J., Zeliadt, S., & Benitez, D. (2009). Development and validation of the mindful eating questionnaire. Journal of the American Dietetic Association, 109 (8), 1439-1444. doi: https://doi.org/10.1016/j.jada.2009.05.006
Jakicic, J. M., Davis, K. K., Rogers, R. J., King, W. C., Marcus, M. D., Helsel, D., … & Belle, S. H. (2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: The IDEA randomized clinical trial. JAMA, 316 (11), 1161-1171.
Khan, S., & Iqbal, N. (2013). Study of the relationship between study habits and academic achievement of students: A case of SPSS model. Higher Education Studies, 3 (1), 14-26.
Killgore, W. D. (2010). Effects of sleep deprivation on cognition. Progress in brain research , 185 , 105-129. doi: https://doi.org/10.1016/B978-0-444-53702-7.00007-5
Marczinski, C. A., & Fillmore, M. T. (2014). Dissociative antagonistic effects of caffeine on alcohol-induced impairment of behavioral control. Experimental and Clinical Psychopharmacology, 22 (4), 298–311. doi: https://psycnet.apa.org/doi/10.1037/1064-1297.11.3.228
Muzet, A. (2007). Environmental Noise, Sleep and Health. Sleep Medicine Reviews, 11 (2), 135-142. doi: https://doi.org/10.1016/j.smrv.2006.09.001
Nonis, S. A., Hudson, G. I., Logan, L. B., & Ford, C. W. (2013). Influence of perceived control over time on college students’ stress and stress-related outcomes. Research in Higher Education, 54 (5), 536-552. doi: https://doi.org/10.1023/A:1018753706925
Sheiham, A., & James, W. P. (2014). A new understanding of the relationship between sugars, dental caries and fluoride use: implications for limits on sugars consumption. Public health nutrition, 17 (10), 2176-2184. Doi: https://doi.org/10.1017/S136898001400113X
Sheppard, A. L., & Wolffsohn, J. S. (2018). Digital eye strain: prevalence, measurement and amelioration. BMJ open ophthalmology , 3 (1), e000146. doi: http://dx.doi.org/10.1136/bmjophth-2018-000146
Stonerock, G. L., Hoffman, B. M., Smith, P. J., & Blumenthal, J. A. (2015). Exercise as Treatment for Anxiety: Systematic Review and Analysis. Annals of Behavioral Medicine, 49 (4), 542–556. doi: https://doi.org/10.1007/s12160-014-9685-9
Thompson, L. G. (2010). Climate change: The evidence and our options. The Behavior Analyst , 33 , 153-170. Doi: https://doi.org/10.1007/BF03392211
Whiteman, D. C., Whiteman, C. A., & Green, A. C. (2001). Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes & Control, 12 (1), 69-82. doi: https://doi.org/10.1023/A:1008980919928
Yan, X., & Su, X. (2009). Linear regression analysis: theory and computing . New Jersey: World Scientific.
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Green Flags in a Relationship
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Signs you're Burnt Out, Not Lazy
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Toxic Things Parents Say to their Children
Leave a Comment Cancel Reply
Your email address will not be published. Required fields are marked *
What is a Directional Hypothesis? (Definition & Examples)
A statistical hypothesis is an assumption about a population parameter . For example, we may assume that the mean height of a male in the U.S. is 70 inches.
The assumption about the height is the statistical hypothesis and the true mean height of a male in the U.S. is the population parameter .
To test whether a statistical hypothesis about a population parameter is true, we obtain a random sample from the population and perform a hypothesis test on the sample data.
Whenever we perform a hypothesis test, we always write down a null and alternative hypothesis:
- Null Hypothesis (H 0 ): The sample data occurs purely from chance.
- Alternative Hypothesis (H A ): The sample data is influenced by some non-random cause.
A hypothesis test can either contain a directional hypothesis or a non-directional hypothesis:
- Directional hypothesis: The alternative hypothesis contains the less than (“”) sign. This indicates that we’re testing whether or not there is a positive or negative effect.
- Non-directional hypothesis: The alternative hypothesis contains the not equal (“≠”) sign. This indicates that we’re testing whether or not there is some effect, without specifying the direction of the effect.
Note that directional hypothesis tests are also called “one-tailed” tests and non-directional hypothesis tests are also called “two-tailed” tests.
Check out the following examples to gain a better understanding of directional vs. non-directional hypothesis tests.
Example 1: Baseball Programs
A baseball coach believes a certain 4-week program will increase the mean hitting percentage of his players, which is currently 0.285.
To test this, he measures the hitting percentage of each of his players before and after participating in the program.
He then performs a hypothesis test using the following hypotheses:
- H 0 : μ = .285 (the program will have no effect on the mean hitting percentage)
- H A : μ > .285 (the program will cause mean hitting percentage to increase)
This is an example of a directional hypothesis because the alternative hypothesis contains the greater than “>” sign. The coach believes that the program will influence the mean hitting percentage of his players in a positive direction.
Example 2: Plant Growth
A biologist believes that a certain pesticide will cause plants to grow less during a one-month period than they normally do, which is currently 10 inches.
To test this, she applies the pesticide to each of the plants in her laboratory for one month.
She then performs a hypothesis test using the following hypotheses:
- H 0 : μ = 10 inches (the pesticide will have no effect on the mean plant growth)
This is also an example of a directional hypothesis because the alternative hypothesis contains the less than “negative direction.
Example 3: Studying Technique
A professor believes that a certain studying technique will influence the mean score that her students receive on a certain exam, but she’s unsure if it will increase or decrease the mean score, which is currently 82.
To test this, she lets each student use the studying technique for one month leading up to the exam and then administers the same exam to each of the students.
- H 0 : μ = 82 (the studying technique will have no effect on the mean exam score)
- H A : μ ≠ 82 (the studying technique will cause the mean exam score to be different than 82)
This is an example of a non-directional hypothesis because the alternative hypothesis contains the not equal “≠” sign. The professor believes that the studying technique will influence the mean exam score, but doesn’t specify whether it will cause the mean score to increase or decrease.
Additional Resources
Introduction to Hypothesis Testing Introduction to the One Sample t-test Introduction to the Two Sample t-test Introduction to the Paired Samples t-test
How to Perform a Partial F-Test in Excel
4 examples of confidence intervals in real life, related posts, how to normalize data between -1 and 1, how to interpret f-values in a two-way anova, how to create a vector of ones in..., vba: how to check if string contains another..., how to determine if a probability distribution is..., what is a symmetric histogram (definition & examples), how to find the mode of a histogram..., how to find quartiles in even and odd..., how to calculate sxy in statistics (with example), how to calculate sxx in statistics (with example).
Directional and non-directional hypothesis: A Comprehensive Guide
Karolina Konopka
Customer support manager
Want to talk with us?
In the world of research and statistical analysis, hypotheses play a crucial role in formulating and testing scientific claims. Understanding the differences between directional and non-directional hypothesis is essential for designing sound experiments and drawing accurate conclusions. Whether you’re a student, researcher, or simply curious about the foundations of hypothesis testing, this guide will equip you with the knowledge and tools to navigate this fundamental aspect of scientific inquiry.
Understanding Directional Hypothesis
Understanding directional hypotheses is crucial for conducting hypothesis-driven research, as they guide the selection of appropriate statistical tests and aid in the interpretation of results. By incorporating directional hypotheses, researchers can make more precise predictions, contribute to scientific knowledge, and advance their fields of study.
Definition of directional hypothesis
Directional hypotheses, also known as one-tailed hypotheses, are statements in research that make specific predictions about the direction of a relationship or difference between variables. Unlike non-directional hypotheses, which simply state that there is a relationship or difference without specifying its direction, directional hypotheses provide a focused and precise expectation.
A directional hypothesis predicts either a positive or negative relationship between variables or predicts that one group will perform better than another. It asserts a specific direction of effect or outcome. For example, a directional hypothesis could state that “increased exposure to sunlight will lead to an improvement in mood” or “participants who receive the experimental treatment will exhibit higher levels of cognitive performance compared to the control group.”
Directional hypotheses are formulated based on existing theory, prior research, or logical reasoning, and they guide the researcher’s expectations and analysis. They allow for more targeted predictions and enable researchers to test specific hypotheses using appropriate statistical tests.
The role of directional hypothesis in research
Directional hypotheses also play a significant role in research surveys. Let’s explore their role specifically in the context of survey research:
- Objective-driven surveys : Directional hypotheses help align survey research with specific objectives. By formulating directional hypotheses, researchers can focus on gathering data that directly addresses the predicted relationship or difference between variables of interest.
- Question design and measurement : Directional hypotheses guide the design of survey question types and the selection of appropriate measurement scales. They ensure that the questions are tailored to capture the specific aspects related to the predicted direction, enabling researchers to obtain more targeted and relevant data from survey respondents.
- Data analysis and interpretation : Directional hypotheses assist in data analysis by directing researchers towards appropriate statistical tests and methods. Researchers can analyze the survey data to specifically test the predicted relationship or difference, enhancing the accuracy and reliability of their findings. The results can then be interpreted within the context of the directional hypothesis, providing more meaningful insights.
- Practical implications and decision-making : Directional hypotheses in surveys often have practical implications. When the predicted relationship or difference is confirmed, it informs decision-making processes, program development, or interventions. The survey findings based on directional hypotheses can guide organizations, policymakers, or practitioners in making informed choices to achieve desired outcomes.
- Replication and further research : Directional hypotheses in survey research contribute to the replication and extension of studies. Researchers can replicate the survey with different populations or contexts to assess the generalizability of the predicted relationships. Furthermore, if the directional hypothesis is supported, it encourages further research to explore underlying mechanisms or boundary conditions.
By incorporating directional hypotheses in survey research, researchers can align their objectives, design effective surveys, conduct focused data analysis, and derive practical insights. They provide a framework for organizing survey research and contribute to the accumulation of knowledge in the field.
Examples of research questions for directional hypothesis
Here are some examples of research questions that lend themselves to directional hypotheses:
- Does increased daily exercise lead to a decrease in body weight among sedentary adults?
- Is there a positive relationship between study hours and academic performance among college students?
- Does exposure to violent video games result in an increase in aggressive behavior among adolescents?
- Does the implementation of a mindfulness-based intervention lead to a reduction in stress levels among working professionals?
- Is there a difference in customer satisfaction between Product A and Product B, with Product A expected to have higher satisfaction ratings?
- Does the use of social media influence self-esteem levels, with higher social media usage associated with lower self-esteem?
- Is there a negative relationship between job satisfaction and employee turnover, indicating that lower job satisfaction leads to higher turnover rates?
- Does the administration of a specific medication result in a decrease in symptoms among individuals with a particular medical condition?
- Does increased access to early childhood education lead to improved cognitive development in preschool-aged children?
- Is there a difference in purchase intention between advertisements with celebrity endorsements and advertisements without, with celebrity endorsements expected to have a higher impact?
These research questions generate specific predictions about the direction of the relationship or difference between variables and can be tested using appropriate research methods and statistical analyses.
Definition of non-directional hypothesis
Non-directional hypotheses, also known as two-tailed hypotheses, are statements in research that indicate the presence of a relationship or difference between variables without specifying the direction of the effect. Instead of making predictions about the specific direction of the relationship or difference, non-directional hypotheses simply state that there is an association or distinction between the variables of interest.
Non-directional hypotheses are often used when there is no prior theoretical basis or clear expectation about the direction of the relationship. They leave the possibility open for either a positive or negative relationship, or for both groups to differ in some way without specifying which group will perform better or worse.
Advantages and utility of non-directional hypothesis
Non-directional hypotheses in survey s offer several advantages and utilities, providing flexibility and comprehensive analysis of survey data. Here are some of the key advantages and utilities of using non-directional hypotheses in surveys:
- Exploration of Relationships : Non-directional hypotheses allow researchers to explore and examine relationships between variables without assuming a specific direction. This is particularly useful in surveys where the relationship between variables may not be well-known or there may be conflicting evidence regarding the direction of the effect.
- Flexibility in Question Design : With non-directional hypotheses, survey questions can be designed to measure the relationship between variables without being biased towards a particular outcome. This flexibility allows researchers to collect data and analyze the results more objectively.
- Open to Unexpected Findings : Non-directional hypotheses enable researchers to be open to unexpected or surprising findings in survey data. By not committing to a specific direction of the effect, researchers can identify and explore relationships that may not have been initially anticipated, leading to new insights and discoveries.
- Comprehensive Analysis : Non-directional hypotheses promote comprehensive analysis of survey data by considering the possibility of an effect in either direction. Researchers can assess the magnitude and significance of relationships without limiting their analysis to only one possible outcome.
- S tatistical Validity : Non-directional hypotheses in surveys allow for the use of two-tailed statistical tests, which provide a more conservative and robust assessment of significance. Two-tailed tests consider both positive and negative deviations from the null hypothesis, ensuring accurate and reliable statistical analysis of survey data.
- Exploratory Research : Non-directional hypotheses are particularly useful in exploratory research, where the goal is to gather initial insights and generate hypotheses. Surveys with non-directional hypotheses can help researchers explore various relationships and identify patterns that can guide further research or hypothesis development.
It is worth noting that the choice between directional and non-directional hypotheses in surveys depends on the research objectives, existing knowledge, and the specific variables being investigated. Researchers should carefully consider the advantages and limitations of each approach and select the one that aligns best with their research goals and survey design.
- Share with others
- Twitter Twitter Icon
- LinkedIn LinkedIn Icon
Related posts
Microsurveys: complete guide, recurring surveys: the ultimate guide, close-ended questions: definition, types, and examples, top 10 typeform alternatives and competitors, 15 best google forms alternatives and competitors, top 10 qualtrics alternatives and competitors, get answers today.
- No credit card required
- No time limit on Free plan
You can modify this template in every possible way.
All templates work great on every device.
- Skip to secondary menu
- Skip to main content
- Skip to primary sidebar
Statistics By Jim
Making statistics intuitive
One-Tailed and Two-Tailed Hypothesis Tests Explained
By Jim Frost 61 Comments
Choosing whether to perform a one-tailed or a two-tailed hypothesis test is one of the methodology decisions you might need to make for your statistical analysis. This choice can have critical implications for the types of effects it can detect, the statistical power of the test, and potential errors.
In this post, you’ll learn about the differences between one-tailed and two-tailed hypothesis tests and their advantages and disadvantages. I include examples of both types of statistical tests. In my next post, I cover the decision between one and two-tailed tests in more detail.
What Are Tails in a Hypothesis Test?
First, we need to cover some background material to understand the tails in a test. Typically, hypothesis tests take all of the sample data and convert it to a single value, which is known as a test statistic. You’re probably already familiar with some test statistics. For example, t-tests calculate t-values . F-tests, such as ANOVA, generate F-values . The chi-square test of independence and some distribution tests produce chi-square values. All of these values are test statistics. For more information, read my post about Test Statistics .
These test statistics follow a sampling distribution. Probability distribution plots display the probabilities of obtaining test statistic values when the null hypothesis is correct. On a probability distribution plot, the portion of the shaded area under the curve represents the probability that a value will fall within that range.
The graph below displays a sampling distribution for t-values. The two shaded regions cover the two-tails of the distribution.
Keep in mind that this t-distribution assumes that the null hypothesis is correct for the population. Consequently, the peak (most likely value) of the distribution occurs at t=0, which represents the null hypothesis in a t-test. Typically, the null hypothesis states that there is no effect. As t-values move further away from zero, it represents larger effect sizes. When the null hypothesis is true for the population, obtaining samples that exhibit a large apparent effect becomes less likely, which is why the probabilities taper off for t-values further from zero.
Related posts : How t-Tests Work and Understanding Probability Distributions
Critical Regions in a Hypothesis Test
In hypothesis tests, critical regions are ranges of the distributions where the values represent statistically significant results. Analysts define the size and location of the critical regions by specifying both the significance level (alpha) and whether the test is one-tailed or two-tailed.
Consider the following two facts:
- The significance level is the probability of rejecting a null hypothesis that is correct.
- The sampling distribution for a test statistic assumes that the null hypothesis is correct.
Consequently, to represent the critical regions on the distribution for a test statistic, you merely shade the appropriate percentage of the distribution. For the common significance level of 0.05, you shade 5% of the distribution.
Related posts : Significance Levels and P-values and T-Distribution Table of Critical Values
Two-Tailed Hypothesis Tests
Two-tailed hypothesis tests are also known as nondirectional and two-sided tests because you can test for effects in both directions. When you perform a two-tailed test, you split the significance level percentage between both tails of the distribution. In the example below, I use an alpha of 5% and the distribution has two shaded regions of 2.5% (2 * 2.5% = 5%).
When a test statistic falls in either critical region, your sample data are sufficiently incompatible with the null hypothesis that you can reject it for the population.
In a two-tailed test, the generic null and alternative hypotheses are the following:
- Null : The effect equals zero.
- Alternative : The effect does not equal zero.
The specifics of the hypotheses depend on the type of test you perform because you might be assessing means, proportions, or rates.
Example of a two-tailed 1-sample t-test
Suppose we perform a two-sided 1-sample t-test where we compare the mean strength (4.1) of parts from a supplier to a target value (5). We use a two-tailed test because we care whether the mean is greater than or less than the target value.
To interpret the results, simply compare the p-value to your significance level. If the p-value is less than the significance level, you know that the test statistic fell into one of the critical regions, but which one? Just look at the estimated effect. In the output below, the t-value is negative, so we know that the test statistic fell in the critical region in the left tail of the distribution, indicating the mean is less than the target value. Now we know this difference is statistically significant.
We can conclude that the population mean for part strength is less than the target value. However, the test had the capacity to detect a positive difference as well. You can also assess the confidence interval. With a two-tailed hypothesis test, you’ll obtain a two-sided confidence interval. The confidence interval tells us that the population mean is likely to fall between 3.372 and 4.828. This range excludes the target value (5), which is another indicator of significance.
Advantages of two-tailed hypothesis tests
You can detect both positive and negative effects. Two-tailed tests are standard in scientific research where discovering any type of effect is usually of interest to researchers.
One-Tailed Hypothesis Tests
One-tailed hypothesis tests are also known as directional and one-sided tests because you can test for effects in only one direction. When you perform a one-tailed test, the entire significance level percentage goes into the extreme end of one tail of the distribution.
In the examples below, I use an alpha of 5%. Each distribution has one shaded region of 5%. When you perform a one-tailed test, you must determine whether the critical region is in the left tail or the right tail. The test can detect an effect only in the direction that has the critical region. It has absolutely no capacity to detect an effect in the other direction.
In a one-tailed test, you have two options for the null and alternative hypotheses, which corresponds to where you place the critical region.
You can choose either of the following sets of generic hypotheses:
- Null : The effect is less than or equal to zero.
- Alternative : The effect is greater than zero.
- Null : The effect is greater than or equal to zero.
- Alternative : The effect is less than zero.
Again, the specifics of the hypotheses depend on the type of test you perform.
Notice how for both possible null hypotheses the tests can’t distinguish between zero and an effect in a particular direction. For example, in the example directly above, the null combines “the effect is greater than or equal to zero” into a single category. That test can’t differentiate between zero and greater than zero.
Example of a one-tailed 1-sample t-test
Suppose we perform a one-tailed 1-sample t-test. We’ll use a similar scenario as before where we compare the mean strength of parts from a supplier (102) to a target value (100). Imagine that we are considering a new parts supplier. We will use them only if the mean strength of their parts is greater than our target value. There is no need for us to differentiate between whether their parts are equally strong or less strong than the target value—either way we’d just stick with our current supplier.
Consequently, we’ll choose the alternative hypothesis that states the mean difference is greater than zero (Population mean – Target value > 0). The null hypothesis states that the difference between the population mean and target value is less than or equal to zero.
To interpret the results, compare the p-value to your significance level. If the p-value is less than the significance level, you know that the test statistic fell into the critical region. For this study, the statistically significant result supports the notion that the population mean is greater than the target value of 100.
Confidence intervals for a one-tailed test are similarly one-sided. You’ll obtain either an upper bound or a lower bound. In this case, we get a lower bound, which indicates that the population mean is likely to be greater than or equal to 100.631. There is no upper limit to this range.
A lower-bound matches our goal of determining whether the new parts are stronger than our target value. The fact that the lower bound (100.631) is higher than the target value (100) indicates that these results are statistically significant.
This test is unable to detect a negative difference even when the sample mean represents a very negative effect.
Advantages and disadvantages of one-tailed hypothesis tests
One-tailed tests have more statistical power to detect an effect in one direction than a two-tailed test with the same design and significance level. One-tailed tests occur most frequently for studies where one of the following is true:
- Effects can exist in only one direction.
- Effects can exist in both directions but the researchers only care about an effect in one direction. There is no drawback to failing to detect an effect in the other direction. (Not recommended.)
The disadvantage of one-tailed tests is that they have no statistical power to detect an effect in the other direction.
As part of your pre-study planning process, determine whether you’ll use the one- or two-tailed version of a hypothesis test. To learn more about this planning process, read 5 Steps for Conducting Scientific Studies with Statistical Analyses .
This post explains the differences between one-tailed and two-tailed statistical hypothesis tests. How these forms of hypothesis tests function is clear and based on mathematics. However, there is some debate about when you can use one-tailed tests. My next post explores this decision in much more depth and explains the different schools of thought and my opinion on the matter— When Can I Use One-Tailed Hypothesis Tests .
If you’re learning about hypothesis testing and like the approach I use in my blog, check out my Hypothesis Testing book! You can find it at Amazon and other retailers.
Share this:
Reader Interactions
August 23, 2024 at 1:28 pm
Thank so much. This is very helpfull
June 26, 2022 at 12:14 pm
Hi, Can help me with figuring out the null and alternative hypothesis of the following statement? Some claimed that the real average expenditure on beverage by general people is at least $10.
February 19, 2022 at 6:02 am
thank you for the thoroughly explanation, I’m still strugling to wrap my mind around the t-table and the relation between the alpha values for one or two tail probability and the confidence levels on the bottom (I’m understanding it so wrongly that for me it should be the oposite, like one tail 0,05 should correspond 95% CI and two tailed 0,025 should correspond to 95% because then you got the 2,5% on each side). In my mind if I picture the one tail diagram with an alpha of 0,05 I see the rest 95% inside the diagram, but for a one tail I only see 90% CI paired with a 5% alpha… where did the other 5% go? I tried to understand when you said we should just double the alpha for a one tail probability in order to find the CI but I still cant picture it. I have been trying to understand this. Like if you only have one tail and there is 0,05, shouldn’t the rest be on the other side? why is it then 90%… I know I’m missing a point and I can’t figure it out and it’s so frustrating…
February 23, 2022 at 10:01 pm
The alpha is the total shaded area. So, if the alpha = 0.05, you know that 5% of the distribution is shaded. The number of tails tells you how to divide the shaded areas. Is it all in one region (1-tailed) or do you split the shaded regions in two (2-tailed)?
So, for a one-tailed test with an alpha of 0.05, the 5% shading is all in one tail. If alpha = 0.10, then it’s 10% on one side. If it’s two-tailed, then you need to split that 10% into two–5% in both tails. Hence, the 5% in a one-tailed test is the same as a two-tailed test with an alpha of 0.10 because that test has the same 5% on one side (but there’s another 5% in the other tail).
It’s similar for CIs. However, for CIs, you shade the middle rather than the extremities. I write about that in one my articles about hypothesis testing and confidence intervals .
I’m not sure if I’m answering your question or not.
February 17, 2022 at 1:46 pm
I ran a post hoc Dunnett’s test alpha=0.05 after a significant Anova test in Proc Mixed using SAS. I want to determine if the means for treatment (t1, t2, t3) is significantly less than the means for control (p=pathogen). The code for the dunnett’s test is – LSmeans trt / diff=controll (‘P’) adjust=dunnett CL plot=control; I think the lower bound one tailed test is the correct test to run but I’m not 100% sure. I’m finding conflicting information online. In the output table for the dunnett’s test the mean difference between the control and the treatments is t1=9.8, t2=64.2, and t3=56.5. The control mean estimate is 90.5. The adjusted p-value by treatment is t1(p=0.5734), t2 (p=.0154) and t3(p=.0245). The adjusted lower bound confidence limit in order from t1-t3 is -38.8, 13.4, and 7.9. The adjusted upper bound for all test is infinity. The graphical output for the dunnett’s test in SAS is difficult to understand for those of us who are beginner SAS users. All treatments appear as a vertical line below the the horizontal line for control at 90.5 with t2 and t3 in the shaded area. For treatment 1 the shaded area is above the line for control. Looking at just the output table I would say that t2 and t3 are significantly lower than the control. I guess I would like to know if my interpretation of the outputs is correct that treatments 2 and 3 are statistically significantly lower than the control? Should I have used an upper bound one tailed test instead?
November 10, 2021 at 1:00 am
Thanks Jim. Please help me understand how a two tailed testing can be used to minimize errors in research
July 1, 2021 at 9:19 am
Hi Jim, Thanks for posting such a thorough and well-written explanation. It was extremely useful to clear up some doubts.
May 7, 2021 at 4:27 pm
Hi Jim, I followed your instructions for the Excel add-in. Thank you. I am very new to statistics and sort of enjoy it as I enter week number two in my class. I am to select if three scenarios call for a one or two-tailed test is required and why. The problem is stated:
30% of mole biopsies are unnecessary. Last month at his clinic, 210 out of 634 had benign biopsy results. Is there enough evidence to reject the dermatologist’s claim?
Part two, the wording changes to “more than of 30% of biopsies,” and part three, the wording changes to “less than 30% of biopsies…”
I am not asking for the problem to be solved for me, but I cannot seem to find direction needed. I know the elements i am dealing with are =30%, greater than 30%, and less than 30%. 210 and 634. I just don’t know what to with the information. I can’t seem to find an example of a similar problem to work with.
May 9, 2021 at 9:22 pm
As I detail in this post, a two-tailed test tells you whether an effect exists in either direction. Or, is it different from the null value in either direction. For the first example, the wording suggests you’d need a two-tailed test to determine whether the population proportion is ≠ 30%. Whenever you just need to know ≠, it suggests a two-tailed test because you’re covering both directions.
For part two, because it’s in one direction (greater than), you need a one-tailed test. Same for part three but it’s less than. Look in this blog post to see how you’d construct the null and alternative hypotheses for these cases. Note that you’re working with a proportion rather than the mean, but the principles are the same! Just plug your scenario and the concept of proportion into the wording I use for the hypotheses.
I hope that helps!
April 11, 2021 at 9:30 am
Hello Jim, great website! I am using a statistics program (SPSS) that does NOT compute one-tailed t-tests. I am trying to compare two independent groups and have justifiable reasons why I only care about one direction. Can I do the following? Use SPSS for two-tailed tests to calculate the t & p values. Then report the p-value as p/2 when it is in the predicted direction (e.g , SPSS says p = .04, so I report p = .02), and report the p-value as 1 – (p/2) when it is in the opposite direction (e.g., SPSS says p = .04, so I report p = .98)? If that is incorrect, what do you suggest (hopefully besides changing statistics programs)? Also, if I want to report confidence intervals, I realize that I would only have an upper or lower bound, but can I use the CI’s from SPSS to compute that? Thank you very much!
April 11, 2021 at 5:42 pm
Yes, for p-values, that’s absolutely correct for both cases.
For confidence intervals, if you take one endpoint of a two-side CI, it becomes a one-side bound with half the confidence level.
Consequently, to obtain a one-sided bound with your desired confidence level, you need to take your desired significance level (e.g., 0.05) and double it. Then subtract it from 1. So, if you’re using a significance level of 0.05, double that to 0.10 and then subtract from 1 (1 – 0.10 = 0.90). 90% is the confidence level you want to use for a two-sided test. After obtaining the two-sided CI, use one of the endpoints depending on the direction of your hypothesis (i.e., upper or lower bound). That’s produces the one-sided the bound with the confidence level that you want. For our example, we calculated a 95% one-sided bound.
March 3, 2021 at 8:27 am
Hi Jim. I used the one-tailed(right) statistical test to determine an anomaly in the below problem statement: On a daily basis, I calculate the (mapped_%) in a common field between two tables.
The way I used the t-test is: On any particular day, I calculate the sample_mean, S.D and sample_count (n=30) for the last 30 days including the current day. My null hypothesis, H0 (pop. mean)=95 and H1>95 (alternate hypothesis). So, I calculate the t-stat based on the sample_mean, pop.mean, sample S.D and n. I then choose the t-crit value for 0.05 from my t-ditribution table for dof(n-1). On the current day if my abs.(t-stat)>t-crit, then I reject the null hypothesis and I say the mapped_pct on that day has passed the t-test.
I get some weird results here, where if my mapped_pct is as low as 6%-8% in all the past 30 days, the t-test still gets a “pass” result. Could you help on this? If my hypothesis needs to be changed.
I would basically look for the mapped_pct >95, if it worked on a static trigger. How can I use the t-test effectively in this problem statement?
December 18, 2020 at 8:23 pm
Hello Dr. Jim, I am wondering if there is evidence in one of your books or other source you could provide, which supports that it is OK not to divide alpha level by 2 in one-tailed hypotheses. I need the source for supporting evidence in a Portfolio exercise and couldn’t find one.
I am grateful for your reply and for your statistics knowledge sharing!
November 27, 2020 at 10:31 pm
If I did a one directional F test ANOVA(one tail ) and wanted to calculate a confidence interval for each individual groups (3) mean . Would I use a one tailed or two tailed t , within my confidence interval .
November 29, 2020 at 2:36 am
Hi Bashiru,
F-tests for ANOVA will always be one-tailed for the reasons I discuss in this post. To learn more about, read my post about F-tests in ANOVA .
For the differences between my groups, I would not use t-tests because the family-wise error rate quickly grows out of hand. To learn more about how to compare group means while controlling the familywise error rate, read my post about using post hoc tests with ANOVA . Typically, these are two-side intervals but you’d be able to use one-sided.
November 26, 2020 at 10:51 am
Hi Jim, I had a question about the formulation of the hypotheses. When you want to test if a beta = 1 or a beta = 0. What will be the null hypotheses? I’m having trouble with finding out. Because in most cases beta = 0 is the null hypotheses but in this case you want to test if beta = 0. so i’m having my doubts can it in this case be the alternative hypotheses or is it still the null hypotheses?
Kind regards, Noa
November 27, 2020 at 1:21 am
Typically, the null hypothesis represents no effect or no relationship. As an analyst, you’re hoping that your data have enough evidence to reject the null and favor the alternative.
Assuming you’re referring to beta as in regression coefficients, zero represents no relationship. Consequently, beta = 0 is the null hypothesis.
You might hope that beta = 1, but you don’t usually include that in your alternative hypotheses. The alternative hypothesis usually states that it does not equal no effect. In other words, there is an effect but it doesn’t state what it is.
There are some exceptions to the above but I’m writing about the standard case.
November 22, 2020 at 8:46 am
Your articles are a help to intro to econometrics students. Keep up the good work! More power to you!
November 6, 2020 at 11:25 pm
Hello Jim. Can you help me with these please?
Write the null and alternative hypothesis using a 1-tailed and 2-tailed test for each problem. (In paragraph and symbols)
A teacher wants to know if there is a significant difference in the performance in MAT C313 between her morning and afternoon classes.
It is known that in our university canteen, the average waiting time for a customer to receive and pay for his/her order is 20 minutes. Additional personnel has been added and now the management wants to know if the average waiting time had been reduced.
November 8, 2020 at 12:29 am
I cover how to write the hypotheses for the different types of tests in this post. So, you just need to figure which type of test you need to use. In your case, you want to determine whether the mean waiting time is less than the target value of 20 minutes. That’s a 1-sample t-test because you’re comparing a mean to a target value (20 minutes). You specifically want to determine whether the mean is less than the target value. So, that’s a one-tailed test. And, you’re looking for a mean that is “less than” the target.
So, go to the one-tailed section in the post and look for the hypotheses for the effect being less than. That’s the one with the critical region on the left side of the curve.
Now, you need include your own information. In your case, you’re comparing the sample estimate to a population mean of 20. The 20 minutes is your null hypothesis value. Use the symbol mu μ to represent the population mean.
You put all that together and you get the following:
Null: μ ≥ 20 Alternative: μ 0 to denote the null hypothesis and H 1 or H A to denote the alternative hypothesis if that’s what you been using in class.
October 17, 2020 at 12:11 pm
I was just wondering if you could please help with clarifying what the hypothesises would be for say income for gamblers and, age of gamblers. I am struggling to find which means would be compared.
October 17, 2020 at 7:05 pm
Those are both continuous variables, so you’d use either correlation or regression for them. For both of those analyses, the hypotheses are the following:
Null : The correlation or regression coefficient equals zero (i.e., there is no relationship between the variables) Alternative : The coefficient does not equal zero (i.e., there is a relationship between the variables.)
When the p-value is less than your significance level, you reject the null and conclude that a relationship exists.
October 17, 2020 at 3:05 am
I was ask to choose and justify the reason between a one tailed and two tailed test for dummy variables, how do I do that and what does it mean?
October 17, 2020 at 7:11 pm
I don’t have enough information to answer your question. A dummy variable is also known as an indicator variable, which is a binary variable that indicates the presence or absence of a condition or characteristic. If you’re using this variable in a hypothesis test, I’d presume that you’re using a proportions test, which is based on the binomial distribution for binary data.
Choosing between a one-tailed or two-tailed test depends on subject area issues and, possibly, your research objectives. Typically, use a two-tailed test unless you have a very good reason to use a one-tailed test. To understand when you might use a one-tailed test, read my post about when to use a one-tailed hypothesis test .
October 16, 2020 at 2:07 pm
In your one-tailed example, Minitab describes the hypotheses as “Test of mu = 100 vs > 100”. Any idea why Minitab says the null is “=” rather than “= or less than”? No ASCII character for it?
October 16, 2020 at 4:20 pm
I’m not entirely sure even though I used to work there! I know we had some discussions about how to represent that hypothesis but I don’t recall the exact reasoning. I suspect that it has to do with the conclusions that you can draw. Let’s focus on the failing to reject the null hypothesis. If the test statistic falls in that region (i.e., it is not significant), you fail to reject the null. In this case, all you know is that you have insufficient evidence to say it is different than 100. I’m pretty sure that’s why they use the equal sign because it might as well be one.
Mathematically, I think using ≤ is more accurate, which you can really see when you look at the distribution plots. That’s why I phrase the hypotheses using ≤ or ≥ as needed. However, in terms of the interpretation, the “less than” portion doesn’t really add anything of importance. You can conclude that its equal to 100 or greater than 100, but not less than 100.
October 15, 2020 at 5:46 am
Thank you so much for your timely feedback. It helps a lot
October 14, 2020 at 10:47 am
How can i use one tailed test at 5% alpha on this problem?
A manufacturer of cellular phone batteries claims that when fully charged, the mean life of his product lasts for 26 hours with a standard deviation of 5 hours. Mr X, a regular distributor, randomly picked and tested 35 of the batteries. His test showed that the average life of his sample is 25.5 hours. Is there a significant difference between the average life of all the manufacturer’s batteries and the average battery life of his sample?
October 14, 2020 at 8:22 pm
I don’t think you’d want to use a one-tailed test. The goal is to determine whether the sample is significantly different than the manufacturer’s population average. You’re not saying significantly greater than or less than, which would be a one-tailed test. As phrased, you want a two-tailed test because it can detect a difference in either direct.
It sounds like you need to use a 1-sample t-test to test the mean. During this test, enter 26 as the test mean. The procedure will tell you if the sample mean of 25.5 hours is a significantly different from that test mean. Similarly, you’d need a one variance test to determine whether the sample standard deviation is significantly different from the test value of 5 hours.
For both of these tests, compare the p-value to your alpha of 0.05. If the p-value is less than this value, your results are statistically significant.
September 22, 2020 at 4:16 am
Hi Jim, I didn’t get an idea that when to use two tail test and one tail test. Will you please explain?
September 22, 2020 at 10:05 pm
I have a complete article dedicated to that: When Can I Use One-Tailed Tests .
Basically, start with the assumption that you’ll use a two-tailed test but then consider scenarios where a one-tailed test can be appropriate. I talk about all of that in the article.
If you have questions after reading that, please don’t hesitate to ask!
July 31, 2020 at 12:33 pm
Thank you so so much for this webpage.
I have two scenarios that I need some clarification. I will really appreciate it if you can take a look:
So I have several of materials that I know when they are tested after production. My hypothesis is that the earlier they are tested after production, the higher the mean value I should expect. At the same time, the later they are tested after production, the lower the mean value. Since this is more like a “greater or lesser” situation, I should use one tail. Is that the correct approach?
On the other hand, I have several mix of materials that I don’t know when they are tested after production. I only know the mean values of the test. And I only want to know whether one mean value is truly higher or lower than the other, I guess I want to know if they are only significantly different. Should I use two tail for this? If they are not significantly different, I can judge based on the mean values of test alone. And if they are significantly different, then I will need to do other type of analysis. Also, when I get my P-value for two tail, should I compare it to 0.025 or 0.05 if my confidence level is 0.05?
Thank you so much again.
July 31, 2020 at 11:19 pm
For your first, if you absolutely know that the mean must be lower the later the material is tested, that it cannot be higher, that would be a situation where you can use a one-tailed test. However, if that’s not a certainty, you’re just guessing, use a two-tail test. If you’re measuring different items at the different times, use the independent 2-sample t-test. However, if you’re measuring the same items at two time points, use the paired t-test. If it’s appropriate, using the paired t-test will give you more statistical power because it accounts for the variability between items. For more information, see my post about when it’s ok to use a one-tailed test .
For the mix of materials, use a two-tailed test because the effect truly can go either direction.
Always compare the p-value to your full significance level regardless of whether it’s a one or two-tailed test. Don’t divide the significance level in half.
June 17, 2020 at 2:56 pm
Is it possible that we reach to opposite conclusions if we use a critical value method and p value method Secondly if we perform one tail test and use p vale method to conclude our Ho, then do we need to convert sig value of 2 tail into sig value of one tail. That can be done just by dividing it with 2
June 18, 2020 at 5:17 pm
The p-value method and critical value method will always agree as long as you’re not changing anything about how the methodology.
If you’re using statistical software, you don’t need to make any adjustments. The software will do that for you.
However, if you calculating it by hand, you’ll need to take your significance level and then look in the table for your test statistic for a one-tailed test. For example, you’ll want to look up 5% for a one-tailed test rather than a two-tailed test. That’s not as simple as dividing by two. In this article, I show examples of one-tailed and two-tailed tests for the same degrees of freedom. The t critical value for the two-tailed test is +/- 2.086 while for the one-sided test it is 1.725. It is true that probability associated with those critical values doubles for the one-tailed test (2.5% -> 5%), but the critical value itself is not half (2.086 -> 1.725). Study the first several graphs in this article to see why that is true.
For the p-value, you can take a two-tailed p-value and divide by 2 to determine the one-sided p-value. However, if you’re using statistical software, it does that for you.
June 11, 2020 at 3:46 pm
Hello Jim, if you have the time I’d be grateful if you could shed some clarity on this scenario:
“A researcher believes that aromatherapy can relieve stress but wants to determine whether it can also enhance focus. To test this, the researcher selected a random sample of students to take an exam in which the average score in the general population is 77. Prior to the exam, these students studied individually in a small library room where a lavender scent was present. If students in this group scored significantly above the average score in general population [is this one-tailed or two-tailed hypothesis?], then this was taken as evidence that the lavender scent enhanced focus.”
Thank you for your time if you do decide to respond.
June 11, 2020 at 4:00 pm
It’s unclear from the information provided whether the researchers used a one-tailed or two-tailed test. It could be either. A two-tailed test can detect effects in both directions, so it could definitely detect an average group score above the population score. However, you could also detect that effect using a one-tailed test if it was set up correctly. So, there’s not enough information in what you provided to know for sure. It could be either.
However, that’s irrelevant to answering the question. The tricky part, as I see it, is that you’re not entirely sure about why the scores are higher. Are they higher because the lavender scent increased concentration or are they higher because the subjects have lower stress from the lavender? Or, maybe it’s not even related to the scent but some other characteristic of the room or testing conditions in which they took the test. You just know the scores are higher but not necessarily why they’re higher.
I’d say that, no, it’s not necessarily evidence that the lavender scent enhanced focus. There are competing explanations for why the scores are higher. Also, it would be best do this as an experiment with a control and treatment group where subjects are randomly assigned to either group. That process helps establish causality rather than just correlation and helps rules out competing explanations for why the scores are higher.
By the way, I spend a lot of time on these issues in my Introduction to Statistics ebook .
June 9, 2020 at 1:47 pm
If a left tail test has an alpha value of 0.05 how will you find the value in the table
April 19, 2020 at 10:35 am
Hi Jim, My question is in regards to the results in the table in your example of the one-sample T (Two-Tailed) test. above. What about the P-value? The P-value listed is .018. I assuming that is compared to and alpha of 0.025, correct?
In regression analysis, when I get a test statistic for the predictive variable of -2.099 and a p-value of 0.039. Am I comparing the p-value to an alpha of 0.025 or 0.05? Now if I run a Bootstrap for coefficients analysis, the results say the sig (2-tail) is 0.098. What are the critical values and alpha in this case? I’m trying to reconcile what I am seeing in both tables.
Thanks for your help.
April 20, 2020 at 3:24 am
Hi Marvalisa,
For one-tailed tests, you don’t need to divide alpha in half. If you can tell your software to perform a one-tailed test, it’ll do all the calculations necessary so you don’t need to adjust anything. So, if you’re using an alpha of 0.05 for a one-tailed test and your p-value is 0.04, it is significant. The procedures adjust the p-values automatically and it all works out. So, whether you’re using a one-tailed or two-tailed test, you always compare the p-value to the alpha with no need to adjust anything. The procedure does that for you!
The exception would be if for some reason your software doesn’t allow you to specify that you want to use a one-tailed test instead of a two-tailed test. Then, you divide the p-value from a two-tailed test in half to get the p-value for a one tailed test. You’d still compare it to your original alpha.
For regression, the same thing applies. If you want to use a one-tailed test for a cofficient, just divide the p-value in half if you can’t tell the software that you want a one-tailed test. The default is two-tailed. If your software has the option for one-tailed tests for any procedure, including regression, it’ll adjust the p-value for you. So, in the normal course of things, you won’t need to adjust anything.
March 26, 2020 at 12:00 pm
Hey Jim, for a one-tailed hypothesis test with a .05 confidence level, should I use a 95% confidence interval or a 90% confidence interval? Thanks
March 26, 2020 at 5:05 pm
You should use a one-sided 95% confidence interval. One-sided CIs have either an upper OR lower bound but remains unbounded on the other side.
March 16, 2020 at 4:30 pm
This is not applicable to the subject but… When performing tests of equivalence, we look at the confidence interval of the difference between two groups, and we perform two one-sided t-tests for equivalence..
March 15, 2020 at 7:51 am
Thanks for this illustrative blogpost. I had a question on one of your points though.
By definition of H1 and H0, a two-sided alternate hypothesis is that there is a difference in means between the test and control. Not that anything is ‘better’ or ‘worse’.
Just because we observed a negative result in your example, does not mean we can conclude it’s necessarily worse, but instead just ‘different’.
Therefore while it enables us to spot the fact that there may be differences between test and control, we cannot make claims about directional effects. So I struggle to see why they actually need to be used instead of one-sided tests.
What’s your take on this?
March 16, 2020 at 3:02 am
Hi Dominic,
If you’ll notice, I carefully avoid stating better or worse because in a general sense you’re right. However, given the context of a specific experiment, you can conclude whether a negative value is better or worse. As always in statistics, you have to use your subject-area knowledge to help interpret the results. In some cases, a negative value is a bad result. In other cases, it’s not. Use your subject-area knowledge!
I’m not sure why you think that you can’t make claims about directional effects? Of course you can!
As for why you shouldn’t use one-tailed tests for most cases, read my post When Can I Use One-Tailed Tests . That should answer your questions.
May 10, 2019 at 12:36 pm
Your website is absolutely amazing Jim, you seem like the nicest guy for doing this and I like how there’s no ulterior motive, (I wasn’t automatically signed up for emails or anything when leaving this comment). I study economics and found econometrics really difficult at first, but your website explains it so clearly its been a big asset to my studies, keep up the good work!
May 10, 2019 at 2:12 pm
Thank you so much, Jack. Your kind words mean a lot!
April 26, 2019 at 5:05 am
Hy Jim I really need your help now pls
One-tailed and two- tailed hypothesis, is it the same or twice, half or unrelated pls
April 26, 2019 at 11:41 am
Hi Anthony,
I describe how the hypotheses are different in this post. You’ll find your answers.
February 8, 2019 at 8:00 am
Thank you for your blog Jim, I have a Statistics exam soon and your articles let me understand a lot!
February 8, 2019 at 10:52 am
You’re very welcome! I’m happy to hear that it’s been helpful. Best of luck on your exam!
January 12, 2019 at 7:06 am
Hi Jim, When you say target value is 5. Do you mean to say the population mean is 5 and we are trying to validate it with the help of sample mean 4.1 using Hypo tests ?.. If it is so.. How can we measure a population parameter as 5 when it is almost impossible o measure a population parameter. Please clarify
January 12, 2019 at 6:57 pm
When you set a target for a one-sample test, it’s based on a value that is important to you. It’s not a population parameter or anything like that. The example in this post uses a case where we need parts that are stronger on average than a value of 5. We derive the value of 5 by using our subject area knowledge about what is required for a situation. Given our product knowledge for the hypothetical example, we know it should be 5 or higher. So, we use that in the hypothesis test and determine whether the population mean is greater than that target value.
When you perform a one-sample test, a target value is optional. If you don’t supply a target value, you simply obtain a confidence interval for the range of values that the parameter is likely to fall within. But, sometimes there is meaningful number that you want to test for specifically.
I hope that clarifies the rational behind the target value!
November 15, 2018 at 8:08 am
I understand that in Psychology a one tailed hypothesis is preferred. Is that so
November 15, 2018 at 11:30 am
No, there’s no overall preference for one-tailed hypothesis tests in statistics. That would be a study-by-study decision based on the types of possible effects. For more information about this decision, read my post: When Can I Use One-Tailed Tests?
November 6, 2018 at 1:14 am
I’m grateful to you for the explanations on One tail and Two tail hypothesis test. This opens my knowledge horizon beyond what an average statistics textbook can offer. Please include more examples in future posts. Thanks
November 5, 2018 at 10:20 am
Thank you. I will search it as well.
Stan Alekman
November 4, 2018 at 8:48 pm
Jim, what is the difference between the central and non-central t-distributions w/respect to hypothesis testing?
November 5, 2018 at 10:12 am
Hi Stan, this is something I will need to look into. I know central t-distribution is the common Student t-distribution, but I don’t have experience using non-central t-distributions. There might well be a blog post in that–after I learn more!
November 4, 2018 at 7:42 pm
this is awesome.
Comments and Questions Cancel reply
The What, Why and How of Directional Hypotheses
In the world of research and science, hypotheses serve as the starting blocks, setting the pace for the entire study. One such hypothesis type is the directional hypothesis. Here, we delve into what exactly a directional hypothesis is, its significance, and the nitty-gritty of formulating one, followed by pitfalls to avoid and how to apply it in practical situations.
The What: Understanding the Concept of a Directional Hypothesis
A directional hypothesis, often referred to as a one-tailed hypothesis, is an essential part of research that predicts the expected outcomes and their directions. The intriguing aspect here is that it goes beyond merely predicting a difference or connection, it actually suggests the direction that this difference or connection will take.
Let's break it down a bit. If the directional hypothesis is positive, this suggests that the variables being studied are expected to either increase or decrease in unison. On the other hand, if the hypothesis is negative, it implies that the variables will move in opposite directions - as one variable ascends, the other will descend, and vice versa.
This intricacy gives the directional hypothesis its unique value in research and offers a fascinating aspect of study predictions. With a clearer understanding of what a directional hypothesis is, we can now delve into why it holds such significance in research and how to construct one effectively.
The Why: The Significance of a Directional Hypothesis in Research
Ever wondered why the directional hypothesis is held in such high regard? The secret lies in its unique blend of precision and specificity. It provides an edge by paving the way for a more concentrated and focused investigation. Essentially, it helps scientists to have an informed prediction of the correlation between variables, underpinned by prior research, theoretical assumptions, or logical reasoning. This isn't just a game of guesswork but a highly credible route to more definitive and dependable results. As they say, the devil is in the detail. By using a directional hypothesis, we are able to dive into the intricate and exciting world of research, adding a robust foundation to our endeavours, ultimately boosting the credibility and reliability of our findings. By standing firmly on the shoulders of the directional hypothesis, we allow our research to gaze further and see clearer.
The How: Constructing a Strong Directional Hypothesis
Crafting a robust directional hypothesis is indeed a craft that requires a blend of art and science. This process starts with a comprehensive exploration of related literature, immersing oneself in the reservoir of knowledge that already exists around your subject of interest. This immersion enables you to soak up invaluable insights, creating a well-informed base from which to make educated predictions about the directionality between your variables of interest.
The process doesn't stop at a literature review. It's also imperative to fully comprehend your subject. Dive deeper into the layers of your topic, unpick the threads, and question the status quo. Understand what drives your variables, how they may interact, and why you anticipate they'll behave in a certain way.
Then, it's time to define your variables clearly and precisely. This might sound simple, but it's crucial to be as accurate as possible. By doing so, you not only ensure a clear understanding of what you are measuring, but you also set clear parameters for your research.
Following that, comes the exciting part - predicting the direction of the relationship between your variables. This prediction should not be a wild guess, but an informed forecast grounded in your literature review, understanding of the subject, and clear definition of variables.
Finally, remember that a directional hypothesis is not set in stone. It is, by definition, a hypothesis - a proposed explanation or prediction that is subject to testing and verification. So, don’t be disheartened if your directional hypothesis doesn’t pan out as expected. Instead, see it as an opportunity to delve further, learn more and further the boundaries of knowledge in your field. After all, research is not just about confirming hypotheses, but also about the thrill of exploration, discovery, and ultimately, growth.
Pitfalls to Avoid When Formulating a Directional Hypothesis
Crafting a directional hypothesis isn't a walk in the park. A few common missteps can muddy the waters and limit the effectiveness of your hypothesis. The first stumbling block that researchers should watch out for is making baseless presumptions. Although predicting the course of the relationship between variables is integral to a directional hypothesis, this prediction should be firmly rooted in evidence, not just whims or gut feelings.
Secondly, steer clear of being excessively rigid with your hypothesis. Remember, it's a guide, not gospel truth. Science is about exploration, about finding out, about being open to unexpected outcomes. If your hypothesis does not match the results, that's not failure; it's a chance to learn and expand your understanding.
Avoid creating an overly complex hypothesis. Simplicity is the name of the game. You want your hypothesis to be clear, concise, and comprehensible, not wrapped in jargon and unnecessary complexities.
Lastly, ensure that your directional hypothesis is testable. It's not enough to merely state a prediction; it needs to be something you can verify empirically. If it can't be tested, it's not a viable hypothesis. So, when creating your directional hypothesis, be mindful to keep it within the realm of testable claims.
Remember, falling into these traps can derail your research and limit the value of your findings. By keeping these pitfalls at bay, you are better equipped to navigate the fascinating labyrinth of research, while contributing to a deeper understanding of your field. Happy hypothesising!
Putting it All Together: Applying a Directional Hypothesis in Practice
When it comes to applying a directional hypothesis, the real fun begins as you put your prediction to the test using appropriate research methodologies and statistical techniques. Let's put this into perspective using an example. Suppose you're exploring the effect of physical activity on people's mood. Your directional hypothesis might suggest that engaging in exercise would result in an improvement in mood ratings.
To test this hypothesis, you could employ a repeated-measures design. Here, you measure the moods of your participants before they start the exercise routine and then again after they've completed it. If the data reveals an uplift in positive mood ratings post-exercise, you would have empirical evidence to support your directional hypothesis.
However, bear in mind that your findings might not always corroborate your prediction. And that's the beauty of research! Contradictory findings don't necessarily signify failure. Instead, they open up new avenues of inquiry, challenging us to refine our understanding and fuel our intellectual curiosity. Therefore, whether your directional hypothesis is proven correct or not, it still serves a valuable purpose by guiding your exploration and contributing to the ever-evolving body of knowledge in your field. So, go ahead and plunge into the exciting world of research with your well-crafted directional hypothesis, ready to embrace whatever comes your way with open arms. Happy researching!
psychologyrocks
Hypotheses; directional and non-directional, what is the difference between an experimental and an alternative hypothesis.
Nothing much! If the study is a true experiment then we can call the hypothesis “an experimental hypothesis”, a prediction is made about how the IV causes an effect on the DV. In a study which does not involve the direct manipulation of an IV, i.e. a natural or quasi-experiment or any other quantitative research method (e.g. survey) has been used, then we call it an “alternative hypothesis”, it is the alternative to the null.
Directional hypothesis: A directional (or one-tailed hypothesis) states which way you think the results are going to go, for example in an experimental study we might say…”Participants who have been deprived of sleep for 24 hours will have more cold symptoms the week after exposure to a virus than participants who have not been sleep deprived”; the hypothesis compares the two groups/conditions and states which one will ….have more/less, be quicker/slower, etc.
If we had a correlational study, the directional hypothesis would state whether we expect a positive or a negative correlation, we are stating how the two variables will be related to each other, e.g. there will be a positive correlation between the number of stressful life events experienced in the last year and the number of coughs and colds suffered, whereby the more life events you have suffered the more coughs and cold you will have had”. The directional hypothesis can also state a negative correlation, e.g. the higher the number of face-book friends, the lower the life satisfaction score “
Non-directional hypothesis: A non-directional (or two tailed hypothesis) simply states that there will be a difference between the two groups/conditions but does not say which will be greater/smaller, quicker/slower etc. Using our example above we would say “There will be a difference between the number of cold symptoms experienced in the following week after exposure to a virus for those participants who have been sleep deprived for 24 hours compared with those who have not been sleep deprived for 24 hours.”
When the study is correlational, we simply state that variables will be correlated but do not state whether the relationship will be positive or negative, e.g. there will be a significant correlation between variable A and variable B.
Null hypothesis The null hypothesis states that the alternative or experimental hypothesis is NOT the case, if your experimental hypothesis was directional you would say…
Participants who have been deprived of sleep for 24 hours will NOT have more cold symptoms in the following week after exposure to a virus than participants who have not been sleep deprived and any difference that does arise will be due to chance alone.
or with a directional correlational hypothesis….
There will NOT be a positive correlation between the number of stress life events experienced in the last year and the number of coughs and colds suffered, whereby the more life events you have suffered the more coughs and cold you will have had”
With a non-directional or two tailed hypothesis…
There will be NO difference between the number of cold symptoms experienced in the following week after exposure to a virus for those participants who have been sleep deprived for 24 hours compared with those who have not been sleep deprived for 24 hours.
or for a correlational …
there will be NO correlation between variable A and variable B.
When it comes to conducting an inferential stats test, if you have a directional hypothesis , you must do a one tailed test to find out whether your observed value is significant. If you have a non-directional hypothesis , you must do a two tailed test .
Exam Techniques/Advice
- Remember, a decent hypothesis will contain two variables, in the case of an experimental hypothesis there will be an IV and a DV; in a correlational hypothesis there will be two co-variables
- both variables need to be fully operationalised to score the marks, that is you need to be very clear and specific about what you mean by your IV and your DV; if someone wanted to repeat your study, they should be able to look at your hypothesis and know exactly what to change between the two groups/conditions and exactly what to measure (including any units/explanation of rating scales etc, e.g. “where 1 is low and 7 is high”)
- double check the question, did it ask for a directional or non-directional hypothesis?
- if you were asked for a null hypothesis, make sure you always include the phrase “and any difference/correlation (is your study experimental or correlational?) that does arise will be due to chance alone”
Practice Questions:
- Mr Faraz wants to compare the levels of attendance between his psychology group and those of Mr Simon, who teaches a different psychology group. Which of the following is a suitable directional (one tailed) hypothesis for Mr Faraz’s investigation?
A There will be a difference in the levels of attendance between the two psychology groups.
B Students’ level of attendance will be higher in Mr Faraz’s group than Mr Simon’s group.
C Any difference in the levels of attendance between the two psychology groups is due to chance.
D The level of attendance of the students will depend upon who is teaching the groups.
2. Tracy works for the local council. The council is thinking about reducing the number of people it employs to pick up litter from the street. Tracy has been asked to carry out a study to see if having the streets cleaned at less regular intervals will affect the amount of litter the public will drop. She studies a street to compare how much litter is dropped at two different times, once when it has just been cleaned and once after it has not been cleaned for a month.
Write a fully operationalised non-directional (two-tailed) hypothesis for Tracy’s study. (2)
3. Jamila is conducting a practical investigation to look at gender differences in carrying out visuo-spatial tasks. She decides to give males and females a jigsaw puzzle and will time them to see who completes it the fastest. She uses a random sample of pupils from a local school to get her participants.
(a) Write a fully operationalised directional (one tailed) hypothesis for Jamila’s study. (2) (b) Outline one strength and one weakness of the random sampling method. You may refer to Jamila’s use of this type of sampling in your answer. (4)
4. Which of the following is a non-directional (two tailed) hypothesis?
A There is a difference in driving ability with men being better drivers than women
B Women are better at concentrating on more than one thing at a time than men
C Women spend more time doing the cooking and cleaning than men
D There is a difference in the number of men and women who participate in sports
Revision Activities
writing-hypotheses-revision-sheet
Quizizz link for teachers: https://quizizz.com/admin/quiz/5bf03f51add785001bc5a09e
By Psychstix by Mandy wood
Share this:
- Already have a WordPress.com account? Log in now.
- Subscribe Subscribed
- Copy shortlink
- Report this content
- View post in Reader
- Manage subscriptions
- Collapse this bar
Directional vs Non-Directional Hypothesis: Key Difference
In statistics, a directional hypothesis, also known as a one-tailed hypothesis, is a type of hypothesis that predicts the direction of the relationship between variables or the direction of the difference between groups.
The introduction of a directional hypothesis in a research study provides an overview of the specific prediction being made about the relationship between variables or the difference between groups. It sets the stage for the research question and outlines the expected direction of the findings. The introduction typically includes the following elements:
Research Context: Begin by introducing the general topic or research area that the study is focused on. Provide background information and highlight the significance of the research question.
Research Question: Clearly state the specific research question that the study aims to answer. This question should be directly related to the variables being investigated.
Previous Research: Summarize relevant literature or previous studies that have explored similar or related topics. This helps establish the existing knowledge base and provides a rationale for the hypothesis.
Hypothesis Statement: Present the directional hypothesis clearly and concisely. State the predicted relationship between variables or the expected difference between groups. For example, if studying the impact of a new teaching method on student performance, a directional hypothesis could be, “Students who receive the new teaching method will demonstrate higher test scores compared to students who receive the traditional teaching method.”
Justification: Provide a logical explanation for the directional hypothesis based on the existing literature or theoretical framework . Discuss any previous findings, theories, or empirical evidence that support the predicted direction of the relationship or difference.
Objectives: Outline the specific objectives or aims of the study, which should align with the research question and hypothesis. These objectives help guide the research process and provide a clear focus for the study.
By including these elements in the introduction of a research study, the directional hypothesis is introduced effectively, providing a clear and justified prediction about the expected outcome of the research.
When formulating a directional hypothesis, researchers make a specific prediction about the expected relationship or difference between variables. They specify whether they expect an increase or decrease in the dependent variable, or whether one group will score higher or lower than another group
What is Directional Hypothesis?
With a correlational study, a directional hypothesis states that there is a positive (or negative) correlation between two variables. When a hypothesis states the direction of the results, it is referred to as a directional (one-tailed) hypothesis; this is because it states that the results go in one direction.
Definition:
A directional hypothesis is a one-tailed hypothesis that states the direction of the difference or relationship (e.g. boys are more helpful than girls).
Research Question: Does exercise have a positive impact on mood?
Directional Hypothesis: Engaging in regular exercise will result in an increase in positive mood compared to a sedentary lifestyle.
In this example, the directional hypothesis predicts that regular exercise will have a specific effect on mood, specifically leading to an increase in positive mood. The researcher expects that individuals who engage in regular exercise will experience improvements in their overall mood compared to individuals who lead a sedentary lifestyle.
It’s important to note that this is just one example, and directional hypotheses can be formulated in various research areas and contexts. The key is to make a specific prediction about the direction of the relationship or difference between variables based on prior knowledge or theoretical considerations.
Advantages of Directional Hypothesis
There are several advantages to using a directional hypothesis in research studies. Here are a few key benefits:
Specific Prediction:
A directional hypothesis allows researchers to make a specific prediction about the expected relationship or difference between variables. This provides a clear focus for the study and helps guide the research process. It also allows for more precise interpretation of the results.
Testable and Refutable:
Directional hypotheses can be tested and either supported or refuted by empirical evidence. Researchers can design their study and select appropriate statistical tests to specifically examine the predicted direction of the relationship or difference. This enhances the rigor and validity of the research.
Efficiency and Resource Allocation:
By making a specific prediction, researchers can allocate their resources more efficiently. They can focus on collecting data and conducting analyses that directly test the directional hypothesis, rather than exploring all possible directions or relationships. This can save time, effort, and resources.
Theory Development:
Directional hypotheses contribute to the development of theories and scientific knowledge. When a directional hypothesis is supported by empirical evidence, it provides support for existing theories or helps generate new theories. This advancement in knowledge can guide future research and understanding in the field.
Practical Applications:
Directional hypotheses can have practical implications and applications. If a hypothesis predicts a specific direction of change, such as the effectiveness of a treatment or intervention, it can inform decision-making and guide practical applications in fields such as medicine, psychology, or education.
Enhanced Communication:
Directional hypotheses facilitate clearer communication of research findings. When researchers have made specific predictions about the direction of the relationship or difference, they can effectively communicate their results to both academic and non-academic audiences. This promotes better understanding and application of the research outcomes.
It’s important to note that while directional hypotheses offer advantages, they also require stronger evidence to support them compared to non-directional hypotheses. Researchers should carefully consider the research context, existing literature, and theoretical considerations before formulating a directional hypothesis.
Disadvantages of Directional Hypothesis
While directional hypotheses have their advantages, there are also some potential disadvantages to consider:
Risk of Type I Error:
Directional hypotheses increase the risk of committing a Type I error , also known as a false positive. By focusing on a specific predicted direction, researchers may overlook the possibility of an opposite or null effect. If the actual relationship or difference does not align with the predicted direction, researchers may incorrectly conclude that there is no effect when, in fact, there may be.
Narrow Focus:
Directional hypotheses restrict the scope of investigation to a specific predicted direction. This narrow focus may overlook other potential relationships, nuances, or alternative explanations. Researchers may miss valuable insights or unexpected findings by excluding other possibilities from consideration.
Limited Generalizability:
Directional hypotheses may limit the generalizability of findings. If the study supports the predicted direction, the results may only apply to the specific context and conditions outlined in the hypothesis. Generalizing the findings to different populations, settings, or variables may require further research.
Biased Interpretation:
Directional hypotheses can introduce bias in the interpretation of results. Researchers may be inclined to selectively focus on evidence that supports the predicted direction while downplaying or ignoring contradictory evidence. This can hinder objectivity and lead to biased conclusions.
Increased Sample Size Requirements:
Directional hypotheses often require larger sample sizes compared to non-directional hypotheses. This is because statistical power needs to be sufficient to detect the predicted direction with a reasonable level of confidence. Larger samples can be more time-consuming and resource-intensive to obtain.
Reduced Flexibility:
Directional hypotheses limit flexibility in data analysis and statistical testing. Researchers may feel compelled to use specific statistical tests or analytical approaches that align with the predicted direction, potentially overlooking alternative methods that may be more appropriate or informative.
It’s important to weigh these disadvantages against the specific research context and objectives when deciding whether to use a directional hypothesis. In some cases, a non-directional hypothesis may be more suitable, allowing for a more exploratory and comprehensive investigation of the research question.
Non-Directional Hypothesis:
A non-directional hypothesis, also known as a two-tailed hypothesis, is a type of hypothesis that does not specify the direction of the relationship between variables or the difference between groups. Instead of predicting a specific direction, a non-directional hypothesis suggests that there will be a significant relationship or difference, without indicating whether it will be positive or negative, higher or lower, etc.
The introduction of a non-directional hypothesis in a research study provides an overview of the general prediction being made about the relationship between variables or the difference between groups, without specifying the direction. It sets the stage for the research question and outlines the expectation of a significant relationship or difference. The introduction typically includes the following elements:
Research Context:
Begin by introducing the general topic or research area that the study is focused on. Provide background information and highlight the significance of the research question.
Research Question:
Clearly state the specific research question that the study aims to answer. This question should be directly related to the variables being investigated.
Previous Research:
Summarize relevant literature or previous studies that have explored similar or related topics. This helps establish the existing knowledge base and provides a rationale for the hypothesis.
Hypothesis Statement:
Present the non-directional hypothesis clearly and concisely. State that there is an expected relationship or difference between variables or groups without specifying the direction. For example, if studying the relationship between socioeconomic status and academic achievement, a non-directional hypothesis could be, “There is a significant relationship between socioeconomic status and academic achievement.”
Justification:
Provide a logical explanation for the non-directional hypothesis based on the existing literature or theoretical framework. Discuss any previous findings, theories, or empirical evidence that support the notion of a relationship or difference between the variables or groups.
Objectives:
Outline the specific objectives or aims of the study, which should align with the research question and hypothesis. These objectives help guide the research process and provide a clear focus for the study.
By including these elements in the introduction of a research study, the non-directional hypothesis is introduced effectively, indicating the expectation of a significant relationship or difference without specifying the direction
What is Non-directional hypothesis?
In a non-directional hypothesis, researchers acknowledge that there may be an effect or relationship between variables but do not make a specific prediction about the direction of that effect. This allows for a more exploratory approach to data analysis and interpretation
If a hypothesis does not state a direction but simply says that one factor affects another, or that there is an association or correlation between two variables then it is called a non-directional (two-tailed) hypothesis.
Research Question: Is there a relationship between social media usage and self-esteem ?
Non-Directional Hypothesis: There is a significant relationship between social media usage and self-esteem.
In this example, the non-directional hypothesis suggests that there is a relationship between social media usage and self-esteem without specifying whether higher social media usage is associated with higher or lower self-esteem. The hypothesis acknowledges the possibility of an effect but does not make a specific prediction about the direction of that effect.
It’s important to note that this is just one example, and non-directional hypotheses can be formulated in various research areas and contexts. The key is to indicate the expectation of a significant relationship or difference without specifying the direction, allowing for a more exploratory approach to data analysis and interpretation.
Advantages of Non-directional hypothesis
Non-directional hypotheses, also known as two-tailed hypotheses, offer several advantages in research studies. Here are some of the key advantages:
Flexibility in Data Analysis:
Non-directional hypotheses allow for flexibility in data analysis. Researchers are not constrained by a specific predicted direction and can explore the relationship or difference in various ways. This flexibility enables a more comprehensive examination of the data, considering both positive and negative associations or differences.
Objective and Open-Minded Approach:
Non-directional hypotheses promote an objective and open-minded approach to research. Researchers do not have preconceived notions about the direction of the relationship or difference, which helps mitigate biases in data interpretation. They can objectively analyze the data without being influenced by their initial expectations.
Comprehensive Understanding:
By not specifying the direction, non-directional hypotheses facilitate a comprehensive understanding of the relationship or difference being investigated. Researchers can explore and consider all possible outcomes, leading to a more nuanced interpretation of the findings. This broader perspective can provide deeper insights into the research question.
Greater Sensitivity:
Non-directional hypotheses can be more sensitive to detecting unexpected or surprising relationships or differences. Researchers are not solely focused on confirming a specific predicted direction, but rather on uncovering any significant association or difference. This increased sensitivity allows for the identification of novel patterns and relationships that may have been overlooked with a directional hypothesis.
Replication and Generalizability:
Non-directional hypotheses support replication studies and enhance the generalizability of findings. By not restricting the investigation to a specific predicted direction, the results can be more applicable to different populations, contexts, or conditions. This broader applicability strengthens the validity and reliability of the research.
Hypothesis Generation:
Non-directional hypotheses can serve as a foundation for generating new hypotheses and research questions. Significant findings without a specific predicted direction can lead to further investigations and the formulation of more focused directional hypotheses in subsequent studies.
It’s important to consider the specific research context and objectives when deciding between a directional or non-directional hypothesis. Non-directional hypotheses are particularly useful when researchers are exploring new areas or when there is limited existing knowledge about the relationship or difference being studied.
Disadvantages of Non-directional hypothesis
Non-directional hypotheses have their advantages, there are also some potential disadvantages to consider:
Lack of Specificity: Non-directional hypotheses do not provide a specific prediction about the direction of the relationship or difference between variables. This lack of specificity may limit the interpretability and practical implications of the findings. Stakeholders may desire clear guidance on the expected direction of the effect.
Non-directional hypotheses often require larger sample sizes compared to directional hypotheses. This is because statistical power needs to be sufficient to detect any significant relationship or difference, regardless of the direction. Obtaining larger samples can be more time-consuming, resource-intensive, and costly.
Reduced Precision:
By not specifying the direction, non-directional hypotheses may result in less precise findings. Researchers may obtain statistically significant results indicating a relationship or difference, but the lack of direction may hinder their ability to understand the practical implications or mechanism behind the effect.
Potential for Post-hoc Interpretation:
Non-directional hypotheses can increase the risk of post-hoc interpretation of results. Researchers may be tempted to selectively interpret and highlight only the significant findings that support their preconceived notions or expectations, leading to biased interpretations.
Limited Theoretical Guidance:
Non-directional hypotheses may lack theoretical guidance in terms of understanding the underlying mechanisms or causal pathways. Without a specific predicted direction, it can be challenging to develop a comprehensive theoretical framework to explain the relationship or difference being studied.
Potential Missed Opportunities:
Non-directional hypotheses may limit the exploration of specific directions or subgroups within the data. By not focusing on a specific direction, researchers may miss important nuances or interactions that could contribute to a deeper understanding of the phenomenon under investigation.
It’s important to carefully consider the research question, available literature, and research objectives when deciding whether to use a non-directional hypothesis. Depending on the context and goals of the study, a non-directional hypothesis may be appropriate, but researchers should also be aware of the potential limitations and address them accordingly in their research design and interpretation of results.
Difference between directional and non-directional hypothesis
the main difference between a directional hypothesis and a non-directional hypothesis lies in the specificity of the prediction made about the relationship between variables or the difference between groups.
Directional Hypothesis:
A directional hypothesis, also known as a one-tailed hypothesis, makes a specific prediction about the direction of the relationship or difference. It states the expected outcome, whether it is a positive or negative relationship, a higher or lower value, an increase or decrease, etc. The directional hypothesis guides the research in a focused manner, specifying the direction to be tested.
Example: “Students who receive tutoring will demonstrate higher test scores compared to students who do not receive tutoring.”
A non-directional hypothesis, also known as a two-tailed hypothesis, does not specify the direction of the relationship or difference. It acknowledges the possibility of a relationship or difference between variables without predicting a specific direction. The non-directional hypothesis allows for exploration and analysis of both positive and negative associations or differences.
Example: “There is a significant relationship between sleep quality and academic performance.”
In summary, a directional hypothesis makes a specific prediction about the direction of the relationship or difference, while a non-directional hypothesis suggests a relationship or difference without specifying the direction. The choice between the two depends on the research question, existing literature, and the researcher’s objectives. Directional hypotheses provide a focused prediction, while non-directional hypotheses allow for more exploratory analysis .
When to use Directional Hypothesis?
A directional hypothesis is appropriate to use in specific situations where researchers have a clear theoretical or empirical basis for predicting the direction of the relationship or difference between variables. Here are some scenarios where a directional hypothesis is commonly employed:
Prior Research and Theoretical Framework: When previous studies, existing theories, or established empirical evidence strongly suggest a specific direction of the relationship or difference, a directional hypothesis can be formulated. Researchers can build upon the existing knowledge base and make a focused prediction based on this prior information.
Cause-and-Effect Relationships: In studies aiming to establish cause-and-effect relationships, directional hypotheses are often used. When there is a clear theoretical understanding of the causal relationship between variables, researchers can predict the expected direction of the effect based on the proposed mechanism.
Specific Research Objectives: If the research study has specific objectives that require a clear prediction about the direction, a directional hypothesis can be appropriate. For instance, if the aim is to test the effectiveness of a particular intervention or treatment, a directional hypothesis can guide the evaluation by predicting the expected positive or negative outcome.
Practical Applications: Directional hypotheses are useful when the research findings have direct practical implications. For example, in fields such as medicine, psychology, or education, researchers may formulate directional hypotheses to predict the effects of certain interventions or treatments on patient outcomes or educational achievement.
Hypothesis-Testing Approach: Researchers who adopt a hypothesis-testing approach, where they aim to confirm or disconfirm specific predictions, often use directional hypotheses. This approach involves formulating a specific hypothesis and conducting statistical tests to determine whether the data support or refute the predicted direction of the relationship or difference.
When to use non directional hypothesis?
A non-directional hypothesis, also known as a two-tailed hypothesis, is appropriate to use in several situations where researchers do not have a specific prediction about the direction of the relationship or difference between variables. Here are some scenarios where a non-directional hypothesis is commonly employed:
Exploratory Research:
When the research aims to explore a new area or investigate a relationship that has limited prior research or theoretical guidance, a non-directional hypothesis is often used. It allows researchers to gather initial data and insights without being constrained by a specific predicted direction.
Preliminary Studies:
Non-directional hypotheses are useful in preliminary or pilot studies that seek to gather preliminary evidence and generate hypotheses for further investigation. By using a non-directional hypothesis, researchers can gather initial data to inform the development of more specific hypotheses in subsequent studies.
Neutral Expectations:
If researchers have no theoretical or empirical basis to predict the direction of the relationship or difference, a non-directional hypothesis is appropriate. This may occur in situations where there is a lack of prior research, conflicting findings, or inconclusive evidence to support a specific direction.
Comparative Studies:
In studies where the objective is to compare two or more groups or conditions, a non-directional hypothesis is commonly used. The focus is on determining whether a significant difference exists, without making specific predictions about which group or condition will have higher or lower values.
Data-Driven Approach:
When researchers adopt a data-driven or exploratory approach to analysis, non-directional hypotheses are preferred. Instead of testing specific predictions, the aim is to explore the data, identify patterns, and generate hypotheses based on the observed relationships or differences.
Hypothesis-Generating Studies:
Non-directional hypotheses are often used in studies aimed at generating new hypotheses and research questions. By exploring associations or differences without specifying the direction, researchers can identify potential relationships or factors that can serve as a basis for future research.
Strategies to improve directional and non-directional hypothesis
To improve the quality of both directional and non-directional hypotheses, researchers can employ various strategies. Here are some strategies to enhance the formulation of hypotheses:
Strategies to Improve Directional Hypotheses:
Review existing literature:.
Conduct a thorough review of relevant literature to identify previous research findings, theories, and empirical evidence related to the variables of interest. This will help inform and support the formulation of a specific directional hypothesis based on existing knowledge.
Develop a Theoretical Framework:
Build a theoretical framework that outlines the expected causal relationship between variables. The theoretical framework should provide a clear rationale for predicting the direction of the relationship based on established theories or concepts.
Conduct Pilot Studies:
Conducting pilot studies or preliminary research can provide valuable insights and data to inform the formulation of a directional hypothesis. Initial findings can help researchers identify patterns or relationships that support a specific predicted direction.
Seek Expert Input:
Seek input from experts or colleagues in the field who have expertise in the area of study. Discuss the research question and hypothesis with them to obtain valuable insights, perspectives, and feedback that can help refine and improve the directional hypothesis.
Clearly Define Variables:
Clearly define and operationalize the variables in the hypothesis to ensure precision and clarity. This will help avoid ambiguity and ensure that the hypothesis is testable and measurable.
Strategies to Improve Non-Directional Hypotheses:
Preliminary exploration:.
Conduct initial exploratory research to gather preliminary data and insights on the relationship or difference between variables. This can provide a foundation for formulating a non-directional hypothesis based on observed patterns or trends.
Analyze Existing Data:
Analyze existing datasets to identify potential relationships or differences. Exploratory data analysis techniques such as data visualization, descriptive statistics, and correlation analysis can help uncover initial insights that can guide the formulation of a non-directional hypothesis.
Use Exploratory Research Designs:
Employ exploratory research designs such as qualitative studies, case studies, or grounded theory approaches. These designs allow researchers to gather rich data and explore relationships or differences without preconceived notions about the direction.
Consider Alternative Explanations:
When formulating a non-directional hypothesis, consider alternative explanations or potential factors that may influence the relationship or difference between variables. This can help ensure a comprehensive and nuanced understanding of the phenomenon under investigation.
Refine Based on Initial Findings:
Refine the non-directional hypothesis based on initial findings and observations from exploratory analyses. These findings can guide the formulation of more specific hypotheses in subsequent studies or inform the direction of further research.
In conclusion, both directional and non-directional hypotheses have their merits and are valuable in different research contexts.
Here’s a summary of the key points regarding directional and non-directional hypotheses:
- A directional hypothesis makes a specific prediction about the direction of the relationship or difference between variables.
- It is appropriate when there is a clear theoretical or empirical basis for predicting the direction.
- Directional hypotheses provide a focused approach, guiding the research towards confirming or refuting a specific predicted direction.
- They are useful in studies where cause-and-effect relationships are being examined or when specific practical implications are desired.
- Directional hypotheses require careful consideration of prior research, theoretical frameworks, and available evidence.
- A non-directional hypothesis does not specify the direction of the relationship or difference between variables.
- It is employed when there is limited prior knowledge, conflicting findings, or a desire for exploratory analysis.
- Non-directional hypotheses allow for flexibility and open-mindedness in exploring the data, considering both positive and negative associations or differences.
- They are suitable for preliminary studies, exploratory research, or when the research question does not have a clear predicted direction.
- Non-directional hypotheses are beneficial for generating new hypotheses, replication studies, and enhancing generalizability.
In both cases, it is essential to ensure that hypotheses are clear, testable, and aligned with the research objectives. Researchers should also be open to revising and refining hypotheses based on the findings and feedback obtained during the research process. The choice between a directional and non-directional hypothesis depends on factors such as the research question, available literature, theoretical frameworks, and the specific objectives of the study. Researchers should carefully consider these factors to determine the most appropriate type of hypothesis to use in their research
How to Write a Directional Hypothesis: A Step-by-Step Guide
In research, hypotheses play a crucial role in guiding investigations and making predictions about relationships between variables.
In this blog post, we’ll explore what a directional hypothesis is, why it’s important, and provide a step-by-step guide on how to write one effectively.
What is a Directional Hypothesis?
Examples of directional hypotheses, why to write a directional hypothesis.
Directional hypotheses offer several advantages in research. They provide researchers with a more focused prediction, allowing them to test specific hypotheses rather than exploring all possible relationships between variables.
Step 1: Identify the Variables
Step 2: predict the direction.
Based on your understanding of the relationship between the variables, predict the direction of the effect.
Step 3: Use Clear Language
Write your directional hypothesis using clear and concise language. Avoid technical jargon or terms that may be difficult for readers to understand. Your hypothesis should be easily understood by both researchers and non-experts.
Step 4: Ensure Testability
Step 5: revise and refine.
Writing a directional hypothesis is an essential skill for researchers conducting experiments and investigations.
Whether you’re a researcher or just starting out in the field, mastering the art of writing directional hypotheses will enhance the quality and rigor of your research endeavors.
Related Posts
Types of research questions, 8 types of validity in research | examples, operationalization of variables in research | examples | benefits, 10 types of variables in research: definitions and examples, what is a theoretical framework examples, types of reliability in research | example | ppt, independent vs. dependent variable, 4 research proposal examples | proposal sample, how to write a literature review in research: a step-by-step guide, how to write an abstract for a research paper.
Directional Test (Directional Hypothesis)
Hypothesis Testing >
A directional test is a hypothesis test where a direction is specified (e.g. above or below a certain threshold). For example you might be interested in whether a hypothesized mean is greater than a certain number (you’re testing in the positive direction on the number line), or you might want to know if the mean is less than that number (you’re testing towards the negative direction). Directional tests are appropriate in situations where you expect a change that is either positive or negative, not both.
A directional hypothesis states not only that a null hypothesis is false, but also that the actual value of the parameter we’re interested in is either greater than or less than the value given in the null hypothesis.
Strong and Weak Points of a Directional Test
Directional tests are more powerful than non-directional tests. Their targeted nature also makes them more conclusive: since the entire critical region is concentrated in one tail, data whose test statistic may fall in the region of rejection in a one tailed test may fall outside it in a two tailed test. Therefore, they are a good choice whenever you are certain, before analysis, that the possibility of change is in only one direction. Where there is any doubt, a two-tailed test should be used instead.
Bliwise, Nancy. Directional Test. Introductory Statistical Tutorials, Emory University. Retrieved March 16, 2019 from: from http://www.psychology.emory.edu/clinical/bliwise/Tutorials/SPOWER/spowttail.htm
McNeil, Keith. Directional and Non-directional Hypothesis Testing: A Survey of Members, Journals, and Textboks. March 97. Paper presented at the annual meeting of the American Educational Research Association (Chicago, IL, March 24-28, 1997). Retrieved from https://files.eric.ed.gov/fulltext/ED409374.pdf on March 16, 2019.
Directional Hypothesis
Definition:
A directional hypothesis is a specific type of hypothesis statement in which the researcher predicts the direction or effect of the relationship between two variables.
Key Features
1. Predicts direction:
Unlike a non-directional hypothesis, which simply states that there is a relationship between two variables, a directional hypothesis specifies the expected direction of the relationship.
2. Involves one-tailed test:
Directional hypotheses typically require a one-tailed statistical test, as they are concerned with whether the relationship is positive or negative, rather than simply whether a relationship exists.
3. Example:
An example of a directional hypothesis would be: “Increasing levels of exercise will result in greater weight loss.”
4. Researcher’s prior belief:
A directional hypothesis is often formed based on the researcher’s prior knowledge, theoretical understanding, or previous empirical evidence relating to the variables under investigation.
5. Confirmatory nature:
Directional hypotheses are considered confirmatory, as they provide a specific prediction that can be tested statistically, allowing researchers to either support or reject the hypothesis.
6. Advantages and disadvantages:
Directional hypotheses help focus the research by explicitly stating the expected relationship, but they can also limit exploration of alternative explanations or unexpected findings.
- Privacy Policy
Home » What is a Hypothesis – Types, Examples and Writing Guide
What is a Hypothesis – Types, Examples and Writing Guide
Table of Contents
Definition:
Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.
Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.
Types of Hypothesis
Types of Hypothesis are as follows:
Research Hypothesis
A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.
Null Hypothesis
The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.
Alternative Hypothesis
An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.
Directional Hypothesis
A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.
Non-directional Hypothesis
A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.
Statistical Hypothesis
A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.
Composite Hypothesis
A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.
Empirical Hypothesis
An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.
Simple Hypothesis
A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.
Complex Hypothesis
A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.
Applications of Hypothesis
Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:
- Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
- Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
- Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
- Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
- Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
- Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.
How to write a Hypothesis
Here are the steps to follow when writing a hypothesis:
Identify the Research Question
The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.
Conduct a Literature Review
Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.
Determine the Variables
The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.
Formulate the Hypothesis
Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.
Write the Null Hypothesis
The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.
Refine the Hypothesis
After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.
Examples of Hypothesis
Here are a few examples of hypotheses in different fields:
- Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
- Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
- Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
- Education : “Implementing a new teaching method will result in higher student achievement scores.”
- Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
- Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
- Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”
Purpose of Hypothesis
The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.
The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.
In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.
When to use Hypothesis
Here are some common situations in which hypotheses are used:
- In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
- In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
- I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.
Characteristics of Hypothesis
Here are some common characteristics of a hypothesis:
- Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
- Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
- Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
- Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
- Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
- Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
- Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.
Advantages of Hypothesis
Hypotheses have several advantages in scientific research and experimentation:
- Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
- Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
- Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
- Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
- Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
- Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.
Limitations of Hypothesis
Some Limitations of the Hypothesis are as follows:
- Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
- May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
- May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
- Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
- Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
- May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
You may also like
Research Paper – Structure, Examples and Writing...
Problem Statement – Writing Guide, Examples and...
Data Verification – Process, Types and Examples
Figures in Research Paper – Examples and Guide
Research Gap – Types, Examples and How to...
Research Methodology – Types, Examples and...
Directional vs Non-Directional Hypothesis – Collect Feedback More Effectively
To conduct a perfect survey, you should know the basics of good research . That’s why in Startquestion we would like to share with you our knowledge about basic terms connected to online surveys and feedback gathering . Knowing the basis you can create surveys and conduct research in more effective ways and thanks to this get meaningful feedback from your customers, employees, and users. That’s enough for the introduction – let’s get to work. This time we will tell you about the hypothesis .
What is a Hypothesis?
A Hypothesis can be described as a theoretical statement built upon some evidence so that it can be tested as if it is true or false. In other words, a hypothesis is a speculation or an idea, based on insufficient evidence that allows it further analysis and experimentation.
The purpose of a hypothetical statement is to work like a prediction based on studied research and to provide some estimated results before it ha happens in a real position. There can be more than one hypothesis statement involved in a research study, where you need to question and explore different aspects of a proposed research topic. Before putting your research into directional vs non-directional hypotheses, let’s have some basic knowledge.
Most often, a hypothesis describes a relation between two or more variables. It includes:
An Independent variable – One that is controlled by the researcher
Dependent Variable – The variable that the researcher observes in association with the Independent variable.
Try one of the best survey tools for free!
Start trial period without any credit card or subscription. Easily conduct your research and gather feedback via link, social media, email, and more.
Create first survey
No credit card required · Cancel any time · GDRP Compilant
How to write an effective Hypothesis?
To write an effective hypothesis follow these essential steps.
- Inquire a Question
The very first step in writing an effective hypothesis is raising a question. Outline the research question very carefully keeping your research purpose in mind. Build it in a precise and targeted way. Here you must be clear about the research question vs hypothesis. A research question is the very beginning point of writing an effective hypothesis.
Do Literature Review
Once you are done with constructing your research question, you can start the literature review. A literature review is a collection of preliminary research studies done on the same or relevant topics. There is a diversified range of literature reviews. The most common ones are academic journals but it is not confined to that. It can be anything including your research, data collection, and observation.
At this point, you can build a conceptual framework. It can be defined as a visual representation of the estimated relationship between two variables subjected to research.
Frame an Answer
After a collection of literature reviews, you can find ways how to answer the question. Expect this stage as a point where you will be able to make a stand upon what you believe might have the exact outcome of your research. You must formulate this answer statement clearly and concisely.
Build a Hypothesis
At this point, you can firmly build your hypothesis. By now, you knew the answer to your question so make a hypothesis that includes:
- Applicable Variables
- Particular Group being Studied (Who/What)
- Probable Outcome of the Experiment
Remember, your hypothesis is a calculated assumption, it has to be constructed as a sentence, not a question. This is where research question vs hypothesis starts making sense.
Refine a Hypothesis
Make necessary amendments to the constructed hypothesis keeping in mind that it has to be targeted and provable. Moreover, you might encounter certain circumstances where you will be studying the difference between one or more groups. It can be correlational research. In such instances, you must have to testify the relationships that you believe you will find in the subject variables and through this research.
Build Null Hypothesis
Certain research studies require some statistical investigation to perform a data collection. Whenever applying any scientific method to construct a hypothesis, you must have adequate knowledge of the Null Hypothesis and an Alternative hypothesis.
Null Hypothesis:
A null Hypothesis denotes that there is no statistical relationship between the subject variables. It is applicable for a single group of variables or two groups of variables. A Null Hypothesis is denoted as an H0. This is the type of hypothesis that the researcher tries to invalidate. Some of the examples of null hypotheses are:
– Hyperactivity is not associated with eating sugar.
– All roses have an equal amount of petals.
– A person’s preference for a dress is not linked to its color.
Alternative Hypothesis:
An alternative hypothesis is a statement that is simply inverse or opposite of the null hypothesis and denoted as H1. Simply saying, it is an alternative statement for the null hypothesis. The same examples will go this way as an alternative hypothesis:
– Hyperactivity is associated with eating sugar.
– All roses do not have an equal amount of petals.
– A person’s preference for a dress is linked to its color.
Start your research right now: use professional survey templates
- Brand Awareness Survey
- Survey for the thesis
- Website Evaluation Survey
See more templates
Types of Hypothesis
Apart from null and alternative hypotheses, research hypotheses can be categorized into different types. Let’s have a look at them:
Simple Hypothesis:
This type of hypothesis is used to state a relationship between a particular independent variable and only a dependent variable.
Complex Hypothesis:
A statement that states the relationship between two or more independent variables and two or more dependent variables, is termed a complex hypothesis.
Associative and Causal Hypothesis:
This type of hypothesis involves predicting that there is a point of interdependency between two variables. It says that any kind of change in one variable will cause a change in the other one. Similarly, a casual hypothesis says that a change in the dependent variable is due to some variations in the independent variable.
Directional vs non-directional hypothesis
Directional hypothesis:.
A hypothesis that is built upon a certain directional relationship between two variables and constructed upon an already existing theory, is called a directional hypothesis. To understand more about what is directional hypothesis here is an example, Girls perform better than boys (‘better than’ shows the direction predicted)
Non-directional Hypothesis:
It involves an open-ended non-directional hypothesis that predicts that the independent variable will influence the dependent variable; however, the nature or direction of a relationship between two subject variables is not defined or clear.
For Example, there will be a difference in the performance of girls & boys (Not defining what kind of difference)
As a professional, we suggest you apply a non-directional alternative hypothesis when you are not sure of the direction of the relationship. Maybe you’re observing potential gender differences on some psychological test, but you don’t know whether men or women would have the higher ratio. Normally, this would say that you are lacking practical knowledge about the proposed variables. A directional test should be more common for tests.
Author: Ula Kamburov-Niepewna
Updated: 18 November 2022
How to Build a Successful Closed-Loop Feedback System
A successful closed-loop system enhances the customer experience, drives innovation, strengthens brand loyalty, and boosts the bottom line. Learn how to harness the power of feedback, close the loop, and unlock your business's full potential.
Customer Journey Map: How to Create Them Easily?
Understanding your customers' experiences can elevate your business from good to great. Customer journey mapping, a powerful visual tool, uncovers every interaction customers have with your brand, highlighting pain points and opportunities for improvement.
Importance and Methodology of the Voice of the Customer
Voice of the Customer (VoC) is more than just collecting feedback—it's the foundation of a client-focused strategy that can drive innovation, improve customer satisfaction, and gain a competitive advantage.
User Preferences
Content preview.
Arcu felis bibendum ut tristique et egestas quis:
- Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
- Duis aute irure dolor in reprehenderit in voluptate
- Excepteur sint occaecat cupidatat non proident
Keyboard Shortcuts
5.2 - writing hypotheses.
The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis (\(H_0\)) and an alternative hypothesis (\(H_a\)).
When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the direction of the test (non-directional, right-tailed or left-tailed), and (3) the value of the hypothesized parameter.
- At this point we can write hypotheses for a single mean (\(\mu\)), paired means(\(\mu_d\)), a single proportion (\(p\)), the difference between two independent means (\(\mu_1-\mu_2\)), the difference between two proportions (\(p_1-p_2\)), a simple linear regression slope (\(\beta\)), and a correlation (\(\rho\)).
- The research question will give us the information necessary to determine if the test is two-tailed (e.g., "different from," "not equal to"), right-tailed (e.g., "greater than," "more than"), or left-tailed (e.g., "less than," "fewer than").
- The research question will also give us the hypothesized parameter value. This is the number that goes in the hypothesis statements (i.e., \(\mu_0\) and \(p_0\)). For the difference between two groups, regression, and correlation, this value is typically 0.
Hypotheses are always written in terms of population parameters (e.g., \(p\) and \(\mu\)). The tables below display all of the possible hypotheses for the parameters that we have learned thus far. Note that the null hypothesis always includes the equality (i.e., =).
Research Question | Is the population mean different from \( \mu_{0} \)? | Is the population mean greater than \(\mu_{0}\)? | Is the population mean less than \(\mu_{0}\)? |
---|---|---|---|
Null Hypothesis, \(H_{0}\) | \(\mu=\mu_{0} \) | \(\mu=\mu_{0} \) | \(\mu=\mu_{0} \) |
Alternative Hypothesis, \(H_{a}\) | \(\mu\neq \mu_{0} \) | \(\mu> \mu_{0} \) | \(\mu<\mu_{0} \) |
Type of Hypothesis Test | Two-tailed, non-directional | Right-tailed, directional | Left-tailed, directional |
Research Question | Is there a difference in the population? | Is there a mean increase in the population? | Is there a mean decrease in the population? |
---|---|---|---|
Null Hypothesis, \(H_{0}\) | \(\mu_d=0 \) | \(\mu_d =0 \) | \(\mu_d=0 \) |
Alternative Hypothesis, \(H_{a}\) | \(\mu_d \neq 0 \) | \(\mu_d> 0 \) | \(\mu_d<0 \) |
Type of Hypothesis Test | Two-tailed, non-directional | Right-tailed, directional | Left-tailed, directional |
Research Question | Is the population proportion different from \(p_0\)? | Is the population proportion greater than \(p_0\)? | Is the population proportion less than \(p_0\)? |
---|---|---|---|
Null Hypothesis, \(H_{0}\) | \(p=p_0\) | \(p= p_0\) | \(p= p_0\) |
Alternative Hypothesis, \(H_{a}\) | \(p\neq p_0\) | \(p> p_0\) | \(p< p_0\) |
Type of Hypothesis Test | Two-tailed, non-directional | Right-tailed, directional | Left-tailed, directional |
Research Question | Are the population means different? | Is the population mean in group 1 greater than the population mean in group 2? | Is the population mean in group 1 less than the population mean in groups 2? |
---|---|---|---|
Null Hypothesis, \(H_{0}\) | \(\mu_1=\mu_2\) | \(\mu_1 = \mu_2 \) | \(\mu_1 = \mu_2 \) |
Alternative Hypothesis, \(H_{a}\) | \(\mu_1 \ne \mu_2 \) | \(\mu_1 \gt \mu_2 \) | \(\mu_1 \lt \mu_2\) |
Type of Hypothesis Test | Two-tailed, non-directional | Right-tailed, directional | Left-tailed, directional |
Research Question | Are the population proportions different? | Is the population proportion in group 1 greater than the population proportion in groups 2? | Is the population proportion in group 1 less than the population proportion in group 2? |
---|---|---|---|
Null Hypothesis, \(H_{0}\) | \(p_1 = p_2 \) | \(p_1 = p_2 \) | \(p_1 = p_2 \) |
Alternative Hypothesis, \(H_{a}\) | \(p_1 \ne p_2\) | \(p_1 \gt p_2 \) | \(p_1 \lt p_2\) |
Type of Hypothesis Test | Two-tailed, non-directional | Right-tailed, directional | Left-tailed, directional |
Research Question | Is the slope in the population different from 0? | Is the slope in the population positive? | Is the slope in the population negative? |
---|---|---|---|
Null Hypothesis, \(H_{0}\) | \(\beta =0\) | \(\beta= 0\) | \(\beta = 0\) |
Alternative Hypothesis, \(H_{a}\) | \(\beta\neq 0\) | \(\beta> 0\) | \(\beta< 0\) |
Type of Hypothesis Test | Two-tailed, non-directional | Right-tailed, directional | Left-tailed, directional |
Research Question | Is the correlation in the population different from 0? | Is the correlation in the population positive? | Is the correlation in the population negative? |
---|---|---|---|
Null Hypothesis, \(H_{0}\) | \(\rho=0\) | \(\rho= 0\) | \(\rho = 0\) |
Alternative Hypothesis, \(H_{a}\) | \(\rho \neq 0\) | \(\rho > 0\) | \(\rho< 0\) |
Type of Hypothesis Test | Two-tailed, non-directional | Right-tailed, directional | Left-tailed, directional |
Aims And Hypotheses, Directional And Non-Directional
March 7, 2021 - paper 2 psychology in context | research methods.
In Psychology, hypotheses are predictions made by the researcher about the outcome of a study. The research can chose to make a specific prediction about what they feel will happen in their research (a directional hypothesis) or they can make a ‘general,’ ‘less specific’ prediction about the outcome of their research (a non-directional hypothesis). The type of prediction that a researcher makes is usually dependent on whether or not any previous research has also investigated their research aim.
Variables Recap:
The independent variable (IV) is the variable that psychologists manipulate/change to see if changing this variable has an effect on the depen dent variable (DV).
The dependent variable (DV) is the variable that the psychologists measures (to see if the IV has had an effect).
Research/Experimental Aim(S):
An aim is a clear and precise statement of the purpose of the study. It is a statement of why a research study is taking place. This should include what is being studied and what the study is trying to achieve. (e.g. “This study aims to investigate the effects of alcohol on reaction times”.
Hypotheses:
This is a testable statement that predicts what the researcher expects to happen in their research. The research study itself is therefore a means of testing whether or not the hypothesis is supported by the findings. If the findings do support the hypothesis then the hypothesis can be retained (i.e., accepted), but if not, then it must be rejected.
(1) Directional Hypothesis: states that the IV will have an effect on the DV and what that effect will be (the direction of results). For example, eating smarties will significantly improve an individual’s dancing ability. When writing a directional hypothesis, it is important that you state exactly how the IV will influence the DV.
(3) A Null Hypothesis: states that the IV will have no significant effect on the DV, for example, ‘eating smarties will have no effect in an individuals dancing ability.’
Directional Hypothesis Statement
Ai generator.
Grasping the intricacies of a directional hypothesis is a stepping stone in advanced research. It offers a clear perspective, pointing towards a specific prediction. From meticulously crafted examples to a thesis statement writing guide, and invaluable tips – this segment shines a light on the essence of formulating a precise and informed directional hypothesis. Embark on this enlightening journey and amplify the quality and clarity of your research endeavors.
What is a Directional hypothesis?
A directional hypothesis, often referred to as a one-tailed hypothesis , is a specific type of hypothesis that predicts the direction of the expected relationship between variables. This type of hypothesis is used when researchers have enough preliminary evidence or theoretical foundation to predict the direction of the relationship, rather than merely stating that a relationship exists.
For example, based on previous studies or established theories, a researcher might hypothesize that a specific intervention will lead to an increase (or decrease) in a certain outcome, rather than just hypothesizing that the intervention will have some effect without specifying the direction of that effect.
What is an example of a Directional hypothesis Statement?
“Children exposed to interactive educational software will demonstrate a higher increase in mathematical skills compared to children who receive traditional classroom instruction.” In this statement, the direction of the expected relationship is clear – the use of interactive educational software is predicted to have a positive effect on mathematical skills. You may also be interested in our non directional .
100 Directional Hypothesis Statement Examples
Size: 244 KB
Directional hypotheses are pivotal in streamlining research focus, providing a clear trajectory by anticipating a specific trend or outcome. They’re an embodiment of informed predictions, crafted based on prior knowledge or insightful observations. Discover below a plethora of examples showcasing the essence of these one-tailed, directional assertions.
- Effect of Diet on Weight: Individuals on a high-fiber diet will lose more weight over a month compared to those on a low-fiber diet.
- Physical Activity and Heart Health: Regular aerobic exercise will lead to a more significant reduction in blood pressure than anaerobic exercise.
- Learning Methods: Students taught via hands-on methods will retain information longer than those taught through lectures.
- Music and Productivity: Employees listening to classical music during work hours will demonstrate higher productivity than those listening to pop music.
- Medication Efficacy: Patients administered Drug X will show faster recovery rates from the flu than those given a placebo.
- Sleep and Memory: Individuals sleeping for 8 hours nightly will have better memory recall than those sleeping only 5 hours.
- Training Intensity and Muscle Growth: Athletes undergoing high-intensity training will exhibit more muscle growth than those in low-intensity programs.
- Organic Foods and Health: Consuming organic foods will lead to lower cholesterol levels compared to consuming non-organic foods.
- Stress and Immunity: Individuals exposed to chronic stress will have a lower immune response than those with minimal stress.
- Digital Learning Platforms: Students utilizing digital learning platforms will score higher in standardized tests than those relying solely on textbooks.
- Caffeine and Alertness: People drinking three cups of coffee daily will show higher alertness levels than non-coffee drinkers.
- Therapy Types: Patients undergoing cognitive-behavioral therapy will show greater reductions in depressive symptoms than those in talk therapy.
- E-Books and Reading Speed: Individuals reading from e-books will process content faster than those reading traditional paper books.
- Urban Living and Mental Health: Residents in urban areas will report higher stress levels than those living in rural regions.
- UV Exposure and Skin Health: Consistent exposure to UV rays will lead to faster skin aging compared to limited sun exposure.
- Yoga and Flexibility: Engaging in daily yoga practices will increase flexibility more significantly than bi-weekly practices.
- Meditation and Stress Reduction: Practicing daily meditation will lead to a more substantial decrease in cortisol levels than sporadic meditation.
- Parenting Styles and Child Independence: Children raised with authoritative parenting styles will demonstrate higher levels of independence than those raised with permissive styles.
- Economic Incentives: Workers receiving performance-based bonuses will exhibit higher job satisfaction than those with fixed salaries.
- Sugar Intake and Energy: Consuming high sugar foods will lead to a more rapid energy decline than low-sugar foods.
- Language Acquisition: Children exposed to bilingual environments before age five will develop superior linguistic skills compared to those exposed later in life.
- Herbal Teas and Sleep: Drinking chamomile tea before bedtime will result in a better sleep quality compared to drinking green tea.
- Posture and Back Pain: Individuals who practice regular posture exercises will experience less chronic back pain than those who don’t.
- Air Quality and Respiratory Issues: Residents in cities with high air pollution will report more respiratory issues than those in cities with cleaner air.
- Online Marketing and Sales: Businesses employing targeted online advertising strategies will see a higher increase in sales than those using traditional advertising methods.
- Pet Ownership and Loneliness: Seniors who own pets will report lower levels of loneliness than those who don’t have pets.
- Dietary Supplements and Immunity: Regular intake of vitamin C supplements will lead to fewer instances of common cold than a placebo.
- Technology and Social Skills: Children who spend over five hours daily on electronic devices will exhibit weaker face-to-face social skills than those who spend less than an hour.
- Remote Work and Productivity: Employees working remotely will report higher job satisfaction than those working in a traditional office setting.
- Organic Farming and Soil Health: Farms employing organic methods will have richer soil nutrient content than those using conventional methods.
- Probiotics and Digestive Health: Consuming probiotics daily will lead to improved gut health compared to not consuming any.
- Art Therapy and Trauma Recovery: Individuals undergoing art therapy will show faster emotional recovery from trauma than those using only talk therapy.
- Video Games and Reflexes: Regular gamers will demonstrate quicker reflex actions than non-gamers.
- Forest Bathing and Stress: Engaging in monthly forest bathing sessions will reduce stress levels more significantly than urban recreational activities.
- Vegan Diet and Heart Health: Individuals following a vegan diet will have a lower risk of heart diseases compared to those on omnivorous diets.
- Mindfulness and Anxiety: Practicing mindfulness meditation will result in a more significant reduction in anxiety levels than general relaxation techniques.
- Solar Energy and Cost Efficiency: Over a decade, households using solar energy will report more cost savings than those relying on traditional electricity sources.
- Active Commuting and Fitness Level: People who cycle or walk to work will have better cardiovascular health than those who commute by car.
- Online Learning and Retention: Students who engage in interactive online learning will retain subject matter better than those using passive video lectures.
- Gardening and Mental Wellbeing: Engaging in regular gardening activities will lead to improved mental well-being compared to non-gardening related hobbies.
- Music Therapy and Memory: Alzheimer’s patients exposed to regular music therapy sessions will display better memory retention than those who aren’t.
- Organic Foods and Allergies: Individuals consuming primarily organic foods will report fewer food allergies compared to those consuming non-organic foods.
- Class Size and Learning Efficiency: Students in smaller class sizes will demonstrate higher academic achievements than those in larger classes.
- Sports and Leadership Skills: Teenagers engaged in team sports will develop stronger leadership skills than those engaged in solitary activities.
- Virtual Reality and Pain Management: Patients using virtual reality as a distraction method during minor surgical procedures will report lower pain levels than those using traditional methods.
- Recycling and Environmental Awareness: Communities with mandatory recycling programs will demonstrate higher environmental awareness than those without such programs.
- Acupuncture and Migraine Relief: Migraine sufferers receiving regular acupuncture treatments will experience fewer episodes than those relying only on medication.
- Urban Green Spaces and Mental Health: Residents in cities with ample green spaces will show lower rates of depression compared to cities predominantly built-up.
- Aquatic Exercises and Joint Health: Individuals with arthritis participating in aquatic exercises will report greater joint mobility than those who do land-based exercises.
- E-books and Reading Comprehension: Students using e-books for study will demonstrate similar reading comprehension levels as those using traditional textbooks.
- Financial Literacy Programs and Debt Management: Adults who attended financial literacy programs in school will manage their debts more effectively than those who didn’t.
- Play-based Learning and Creativity: Children educated through play-based learning methods will exhibit higher creativity levels than those in a strictly academic environment.
- Caffeine Consumption and Cognitive Function: Moderate daily caffeine consumption will lead to improved cognitive function compared to high or no caffeine intake.
- Vegetable Intake and Skin Health: Individuals consuming a diet rich in colorful vegetables will have healthier skin compared to those with minimal vegetable intake.
- Physical Activity and Bone Density: Post-menopausal women engaging in weight-bearing exercises will maintain better bone density than those who don’t.
- Intermittent Fasting and Metabolism: Individuals practicing intermittent fasting will demonstrate a more efficient metabolism rate than those on regular diets.
- Public Transport and Air Quality: Cities with extensive public transport systems will have better air quality than cities primarily reliant on individual car use.
- Sleep Duration and Immunity: Adults sleeping between 7-9 hours nightly will have stronger immune responses than those sleeping less or more than this range.
- Hands-on Learning and Skill Retention: Students taught through hands-on practical methods will retain technical skills better than those taught purely theoretically.
- Nature Exposure and Concentration: Regular breaks involving nature exposure during work will result in higher concentration levels than indoor breaks.
- Yoga and Stress Reduction: Individuals practicing daily yoga sessions will experience a more significant reduction in stress levels compared to non-practitioners.
- Pet Ownership and Loneliness: People who own pets, especially dogs or cats, will report lower feelings of loneliness than those without pets.
- Bilingualism and Cognitive Flexibility: Individuals who are bilingual will exhibit higher cognitive flexibility compared to those who speak only one language.
- Green Tea and Weight Loss: Regular consumption of green tea will result in a higher rate of weight loss than those who consume other beverages.
- Plant-based Diets and Heart Health: Individuals following a plant-based diet will show a reduced risk of cardiovascular diseases compared to those on omnivorous diets.
- Forest Bathing and Mental Wellbeing: People who frequently engage in forest bathing or nature walks will demonstrate improved mental wellbeing than those who don’t.
- Online Learning and Independence: Students who predominantly learn through online platforms will develop stronger independent study habits than those in traditional classroom settings.
- Gardening and Life Satisfaction: Individuals engaged in regular gardening will report higher life satisfaction scores than non-gardeners.
- Video Games and Reflexes: People who play action video games frequently will exhibit quicker reflexes than non-gamers.
- Daily Meditation and Anxiety Levels: Individuals who practice daily meditation sessions will experience reduced anxiety levels compared to those who don’t meditate.
- Volunteering and Self-esteem: Regular volunteers will have higher self-esteem and a more positive outlook than those who don’t volunteer.
- Art Therapy and Emotional Expression: Individuals undergoing art therapy will exhibit a broader range of emotional expression than those undergoing traditional counseling.
- Morning Sunlight and Sleep Patterns: Exposure to morning sunlight will result in better nighttime sleep quality than exposure to late afternoon sunlight.
- Probiotics and Digestive Health: Regular intake of probiotics will lead to improved gut health and fewer digestive issues than those not consuming probiotics.
- Digital Detox and Social Skills: Individuals who frequently engage in digital detoxes will develop better face-to-face social skills than constant device users.
- Physical Libraries and Reading Habits: Students with access to physical libraries will exhibit more consistent reading habits than those relying solely on digital sources.
- Public Speaking Training and Confidence: Individuals who undergo public speaking training will express higher confidence levels in various social scenarios than those who don’t.
- Music Lessons and Mathematical Abilities: Children who take music lessons, especially in instruments like the piano, will show improved mathematical abilities compared to non-musical peers.
- Dance and Coordination: Engaging in dance classes will lead to better physical coordination and balance than other forms of exercise.
- Home Cooking and Nutritional Intake: Individuals who predominantly consume home-cooked meals will have a more balanced nutritional intake than those relying on take-out or restaurant meals.
- Organic Foods and Health Outcomes: Individuals consuming predominantly organic foods will exhibit fewer health issues related to preservatives and pesticides than those consuming conventionally grown foods.
- Podcast Consumption and Listening Skills: People who regularly listen to podcasts will demonstrate better active listening skills compared to those who rarely or never listen to podcasts.
- Urban Farming and Community Engagement: Urban areas with community farming initiatives will experience higher levels of community engagement and social interaction than areas without such initiatives.
- Mindfulness Practices and Emotional Regulation: Individuals practicing mindfulness techniques, like deep breathing or body scans, will manage their emotional responses better than those not practicing mindfulness.
- E-books and Reading Speed: People who primarily read e-books will exhibit a faster reading speed compared to those reading printed books.
- Aerobic Exercises and Endurance: Engaging in regular aerobic exercises will lead to higher endurance levels compared to anaerobic exercises.
- Digital Note-taking and Information Retention: Students who use digital platforms for note-taking will retain and recall information less effectively than those taking handwritten notes.
- Cycling to Work and Cardiovascular Health: Individuals who cycle to work will have better cardiovascular health than those who commute using motorized transportation.
- Active Learning Techniques and Academic Performance: Students exposed to active learning strategies will perform better academically than students in traditional lecture-based settings.
- Ergonomic Workspaces and Physical Discomfort: Workers who use ergonomic office furniture will report fewer musculoskeletal problems than those using conventional office furniture.
- Reforestation Initiatives and Air Quality: Areas with proactive reforestation initiatives will have significantly better air quality than areas without such efforts.
- Mediterranean Diet and Lifespan: People following a Mediterranean diet will generally have a longer lifespan compared to those following Western diets.
- Virtual Reality Training and Skill Acquisition: Individuals trained using virtual reality platforms will acquire new skills more rapidly than those trained using traditional methods.
- Solar Energy Adoption and Electricity Bills: Households that adopt solar energy solutions will experience lower monthly electricity bills than those relying solely on grid electricity.
- Journaling and Stress Reduction: Regular journaling will lead to a more significant reduction in perceived stress levels than non-journaling practices.
- Noise-cancelling Headphones and Productivity: Workers using noise-cancelling headphones in open office environments will show higher productivity levels than those not using such headphones.
- Early Birds and Task Efficiency: Individuals who start their day early, or “early birds”, will generally be more efficient in completing tasks than night owls.
- Coding Bootcamps and Job Placement: Graduates from coding bootcamps will find job placements more rapidly than those with only traditional computer science degrees.
- Plant-based Milks and Lactose Intolerance: Consuming plant-based milks, such as almond or oat milk, will cause fewer digestive problems for lactose-intolerant individuals than cow’s milk.
- Sensory Deprivation Tanks and Creativity: Regular sessions in sensory deprivation tanks will lead to heightened creativity levels compared to traditional relaxation methods.
Directional Hypothesis Statement Examples for Psychology
In the realm of psychology, directional psychology hypothesis are valuable as they specifically predict the nature and direction of a relationship or effect. These statements make pointed predictions about expected outcomes in psychological studies, paving the way for focused investigations.
- Emotion Regulation Techniques: Individuals trained in emotion regulation techniques will exhibit lower levels of anxiety than those untrained.
- Positive Reinforcement in Learning: Children exposed to positive reinforcement will exhibit faster learning rates than those exposed to negative reinforcement.
- Cognitive Behavioral Therapy and Depression: Patients undergoing cognitive-behavioral therapy will show more significant improvements in depressive symptoms than those using other therapeutic methods.
- Social Media Use and Self-esteem: Adolescents with higher social media usage will report lower self-esteem than their less active counterparts.
- Mindfulness Meditation and Attention Span: Regular practitioners of mindfulness meditation will have longer attention spans than non-practitioners.
- Childhood Trauma and Adult Relationships: Individuals who experienced trauma in childhood will display more attachment issues in adult romantic relationships than those without such experiences.
- Group Therapy and Social Skills: Individuals attending group therapy will demonstrate improved social skills compared to those receiving individual therapy.
- Extrinsic Motivation and Task Performance: Students driven by extrinsic motivation will have lower task persistence than those driven by intrinsic motivation.
- Visual Imagery and Memory Retention: Participants using visual imagery techniques will recall lists of items more effectively than those using rote memorization.
- Parenting Styles and Adolescent Rebellion: Adolescents raised with authoritarian parenting styles will show higher levels of rebellion than those raised with permissive styles.
Directional Hypothesis Statement Examples for Research
In research, a directional research hypothesis narrows down the prediction to a specific direction of the effect. These hypotheses can serve various fields, guiding researchers toward certain anticipated outcomes, making the study’s goal clearer.
- Online Learning Platforms and Student Engagement: Students using interactive online learning platforms will have higher engagement levels than those using traditional online formats.
- Work from Home and Employee Productivity: Employees working from home will report higher job satisfaction but slightly reduced productivity compared to office-going employees.
- Green Spaces and Urban Well-being: Urban areas with more green spaces will have residents reporting higher well-being scores than areas dominated by concrete.
- Dietary Fiber Intake and Digestive Health: Individuals consuming diets rich in fiber will have fewer digestive issues than those on low-fiber diets.
- Public Transportation and Air Quality: Cities that invest more in public transportation will experience better air quality than cities reliant on individual car usage.
- Gamification and Learning Outcomes: Educational modules that incorporate gamification will yield better learning outcomes than traditional modules.
- Open Source Software and System Security: Systems using open-source software will encounter fewer security breaches than those using proprietary software.
- Organic Farming and Soil Health: Farmlands practicing organic farming methods will have richer soil quality than conventionally farmed lands.
- Renewable Energy Sources and Power Grid Stability: Power grids utilizing a higher percentage of renewable energy sources will experience fewer outages than those predominantly using fossil fuels.
- Artificial Sweeteners and Weight Gain: Regular consumers of artificial sweeteners will not necessarily exhibit lower weight gain compared to consumers of natural sugars.
Directional Hypothesis Statement Examples for Correlation Study
Correlation studies evaluate the relationship between two or more variables. Directional hypotheses in correlation studies anticipate a specific type of association – either positive, negative, or neutral.
- Physical Activity and Mental Health: There will be a positive correlation between regular physical activity levels and self-reported mental well-being.
- Sedentary Lifestyle and Cardiovascular Issues: An increased sedentary lifestyle duration will correlate positively with cardiovascular health issues.
- Reading Habits and Vocabulary Size: There will be a positive correlation between the frequency of reading and the breadth of an individual’s vocabulary.
- Fast Food Consumption and Health Risks: A higher frequency of fast food consumption will correlate with increased health risks, such as obesity or high blood pressure.
- Financial Literacy and Debt Management: Individuals with higher financial literacy will have a negative correlation with unmanaged debts.
- Sleep Duration and Cognitive Performance: There will be a positive correlation between the optimal sleep duration (7-9 hours) and cognitive performance in adults.
- Volunteering and Life Satisfaction: Individuals who volunteer regularly will show a positive correlation with overall life satisfaction scores.
- Alcohol Consumption and Reaction Time: A higher frequency and quantity of alcohol consumption will negatively correlate with reaction times in motor tasks.
- Class Attendance and Academic Grades: There will be a positive correlation between the number of classes attended and the final academic grades of students.
- Eco-friendly Practices and Brand Loyalty: Brands adopting more eco-friendly practices will experience a positive correlation with consumer loyalty and trust.
Directional Hypothesis vs Non-Directional Hypothesis
Directional Hypothesis: A directional hypothesis , as the name implies, provides a specific direction for the expected relationship or difference between variables. It predicts which group will have higher or lower scores or how two variables will relate specifically, such as predicting that one variable will increase as the other decreases.
Advantages of a Directional Hypothesis:
- Offers clarity in predictions.
- Simplifies data interpretation, since the expected outcome is clearly stated.
- Can be based on previous research or established theories, lending more weight to its predictions.
Example of Directional Hypothesis: “Students who receive mindfulness training will have lower stress levels than those who do not receive such training.”
Non-Directional Hypothesis (Two-tailed Hypothesis): A non-directional hypothesis , on the other hand, merely states that there will be a difference between the two groups or a relationship between two variables without specifying the nature of this difference or relationship.
Advantages of a Non-Directional Hypothesis:
- Useful when research is exploratory in nature.
- Provides a broader scope for exploring unexpected results.
- Less bias as it doesn’t anticipate a specific outcome.
Example of Non-Directional Hypothesis: “Students who receive mindfulness training will have different stress levels than those who do not receive such training.”
How do you write a Directional Hypothesis Statement? – Step by Step Guide
1. Identify Your Variables: Before drafting a hypothesis, understand the dependent and independent variables in your study.
2. Review Previous Research: Consider findings from past studies or established theories to make informed predictions.
3. Be Specific: Clearly state which group or condition you expect to have higher or lower scores or how the variables will relate.
4. Keep It Simple: Ensure that the hypothesis is concise and free of jargon.
5. Make It Testable: Your hypothesis should be framed in such a way that it can be empirically tested through experiments or observations.
6. Revise and Refine: After drafting your hypothesis, review it to ensure clarity and relevance. Get feedback if possible.
7. State Confidently: Use definitive language, such as “will” rather than “might.”
Example of Writing Directional Hypothesis: Based on a study that indicates mindfulness reduces stress, and intending to research its impact on students, you might draft: “Students undergoing mindfulness practices will report lower stress levels.”
Tips for Writing a Directional Hypothesis Statement
1. Base Your Predictions on Evidence: Whenever possible, root your hypotheses in existing literature or preliminary observations.
2. Avoid Ambiguity: Be clear about the specific groups or conditions you are comparing.
3. Stay Focused: A hypothesis should address one primary question or relationship. If you find your hypothesis complicated, consider breaking it into multiple hypotheses.
4. Use Simple Language: Complex wording can muddle the clarity of your hypothesis. Ensure it’s understandable, even to those outside your field.
5. Review and Refine: After drafting, set it aside, then revisit with fresh eyes. It can also be helpful to get peers or mentors to review your hypothesis.
6. Avoid Personal Bias: Ensure your hypothesis is based on empirical evidence or theories and not personal beliefs or biases.
Remember, a directional hypothesis is just a starting point. While it provides a roadmap for your research, it’s essential to remain open to whatever results your study yields, even if they contradict your initial predictions.
Text prompt
- Instructive
- Professional
10 Examples of Public speaking
20 Examples of Gas lighting
Reference Library
Collections
- See what's new
- All Resources
- Student Resources
- Assessment Resources
- Teaching Resources
- CPD Courses
- Livestreams
Study notes, videos, interactive activities and more!
Psychology news, insights and enrichment
Currated collections of free resources
Browse resources by topic
- All Psychology Resources
Resource Selections
Currated lists of resources
Directional Hypothesis
A directional hypothesis is a one-tailed hypothesis that states the direction of the difference or relationship (e.g. boys are more helpful than girls).
- Share on Facebook
- Share on Twitter
- Share by Email
Research Methods: MCQ Revision Test 1 for AQA A Level Psychology
Topic Videos
Example Answers for Research Methods: A Level Psychology, Paper 2, June 2018 (AQA)
Exam Support
Example Answer for Question 14 Paper 2: AS Psychology, June 2017 (AQA)
Model answer for question 11 paper 2: as psychology, june 2016 (aqa), a level psychology topic quiz - research methods.
Quizzes & Activities
Our subjects
- › Criminology
- › Economics
- › Geography
- › Health & Social Care
- › Psychology
- › Sociology
- › Teaching & learning resources
- › Student revision workshops
- › Online student courses
- › CPD for teachers
- › Livestreams
- › Teaching jobs
Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885
- › Contact us
- › Terms of use
- › Privacy & cookies
© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.
Research Hypothesis In Psychology: Types, & Examples
Saul McLeod, PhD
Editor-in-Chief for Simply Psychology
BSc (Hons) Psychology, MRes, PhD, University of Manchester
Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.
Learn about our Editorial Process
Olivia Guy-Evans, MSc
Associate Editor for Simply Psychology
BSc (Hons) Psychology, MSc Psychology of Education
Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.
On This Page:
A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .
Hypotheses connect theory to data and guide the research process towards expanding scientific understanding
Some key points about hypotheses:
- A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
- It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
- A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
- Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
- For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
- Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.
Types of Research Hypotheses
Alternative hypothesis.
The research hypothesis is often called the alternative or experimental hypothesis in experimental research.
It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.
The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).
A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:
- Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.
In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.
An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.
It states that the results are not due to chance and are significant in supporting the theory being investigated.
The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.
Null Hypothesis
The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.
It states results are due to chance and are not significant in supporting the idea being investigated.
The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.
Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.
This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.
Nondirectional Hypothesis
A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.
It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.
For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.
Directional Hypothesis
A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)
It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.
For example, “Exercise increases weight loss” is a directional hypothesis.
Falsifiability
The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.
Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.
It means that there should exist some potential evidence or experiment that could prove the proposition false.
However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.
For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.
Can a Hypothesis be Proven?
Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.
All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.
In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
- Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
- However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.
We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.
If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.
Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.
How to Write a Hypothesis
- Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
- Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
- Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
- Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
- Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.
Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).
Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:
- The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
- The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.
More Examples
- Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
- Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
- Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
- Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
- Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
- Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
- Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
- Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.
10 Chapter 10: Hypothesis Testing with Z
Setting up the hypotheses.
When setting up the hypotheses with z, the parameter is associated with a sample mean (in the previous chapter examples the parameters for the null used 0). Using z is an occasion in which the null hypothesis is a value other than 0. For example, if we are working with mothers in the U.S. whose children are at risk of low birth weight, we can use 7.47 pounds, the average birth weight in the US, as our null value and test for differences against that. For now, we will focus on testing a value of a single mean against what we expect from the population.
Using birthweight as an example, our null hypothesis takes the form: H 0 : μ = 7.47 Notice that we are testing the value for μ, the population parameter, NOT the sample statistic ̅X (or M). We are referring to the data right now in raw form (we have not standardized it using z yet). Again, using inferential statistics, we are interested in understanding the population, drawing from our sample observations. For the research question, we have a mean value from the sample to use, we have specific data is – it is observed and used as a comparison for a set point.
As mentioned earlier, the alternative hypothesis is simply the reverse of the null hypothesis, and there are three options, depending on where we expect the difference to lie. We will set the criteria for rejecting the null hypothesis based on the directionality (greater than, less than, or not equal to) of the alternative.
If we expect our obtained sample mean to be above or below the null hypothesis value (knowing which direction), we set a directional hypothesis. O ur alternative hypothesis takes the form based on the research question itself. In our example with birthweight, this could be presented as H A : μ > 7.47 or H A : μ < 7.47.
Note that we should only use a directional hypothesis if we have a good reason, based on prior observations or research, to suspect a particular direction. When we do not know the direction, such as when we are entering a new area of research, we use a non-directional alternative hypothesis. In our birthweight example, this could be set as H A : μ ≠ 7.47
In working with data for this course we will need to set a critical value of the test statistic for alpha (α) for use of test statistic tables in the back of the book. This is determining the critical rejection region that has a set critical value based on α.
Determining Critical Value from α
We set alpha (α) before collecting data in order to determine whether or not we should reject the null hypothesis. We set this value beforehand to avoid biasing ourselves by viewing our results and then determining what criteria we should use.
When a research hypothesis predicts an effect but does not predict a direction for the effect, it is called a non-directional hypothesis . To test the significance of a non-directional hypothesis, we have to consider the possibility that the sample could be extreme at either tail of the comparison distribution. We call this a two-tailed test .
Figure 1. showing a 2-tail test for non-directional hypothesis for z for area C is the critical rejection region.
When a research hypothesis predicts a direction for the effect, it is called a directional hypothesis . To test the significance of a directional hypothesis, we have to consider the possibility that the sample could be extreme at one-tail of the comparison distribution. We call this a one-tailed test .
Figure 2. showing a 1-tail test for a directional hypothesis (predicting an increase) for z for area C is the critical rejection region.
Determining Cutoff Scores with Two-Tailed Tests
Typically we specify an α level before analyzing the data. If the data analysis results in a probability value below the α level, then the null hypothesis is rejected; if it is not, then the null hypothesis is not rejected. In other words, if our data produce values that meet or exceed this threshold, then we have sufficient evidence to reject the null hypothesis ; if not, we fail to reject the null (we never “accept” the null). According to this perspective, if a result is significant, then it does not matter how significant it is. Moreover, if it is not significant, then it does not matter how close to being significant it is. Therefore, if the 0.05 level is being used, then probability values of 0.049 and 0.001 are treated identically. Similarly, probability values of 0.06 and 0.34 are treated identically. Note we will discuss ways to address effect size (which is related to this challenge of NHST).
When setting the probability value, there is a special complication in a two-tailed test. We have to divide the significance percentage between the two tails. For example, with a 5% significance level, we reject the null hypothesis only if the sample is so extreme that it is in either the top 2.5% or the bottom 2.5% of the comparison distribution. This keeps the overall level of significance at a total of 5%. A one-tailed test does have such an extreme value but with a one-tailed test only one side of the distribution is considered.
Figure 3. Critical value differences in one and two-tail tests. Photo Credit
Let’s re view th e set critical values for Z.
We discussed z-scores and probability in chapter 8. If we revisit the z-score for 5% and 1%, we can identify the critical regions for the critical rejection areas from the unit standard normal table.
- A two-tailed test at the 5% level has a critical boundary Z score of +1.96 and -1.96
- A one-tailed test at the 5% level has a critical boundary Z score of +1.64 or -1.64
- A two-tailed test at the 1% level has a critical boundary Z score of +2.58 and -2.58
- A one-tailed test at the 1% level has a critical boundary Z score of +2.33 or -2.33.
Review: Critical values, p-values, and significance level
There are two criteria we use to assess whether our data meet the thresholds established by our chosen significance level, and they both have to do with our discussions of probability and distributions. Recall that probability refers to the likelihood of an event, given some situation or set of conditions. In hypothesis testing, that situation is the assumption that the null hypothesis value is the correct value, or that there is no effec t. The value laid out in H 0 is our condition under which we interpret our results. To reject this assumption, and thereby reject the null hypothesis, we need results that would be very unlikely if the null was true.
Now recall that values of z which fall in the tails of the standard normal distribution represent unlikely values. That is, the proportion of the area under the curve as or more extreme than z is very small as we get into the tails of the distribution. Our significance level corresponds to the area under the tail that is exactly equal to α: if we use our normal criterion of α = .05, then 5% of the area under the curve becomes what we call the rejection region (also called the critical region) of the distribution. This is illustrated in Figure 4.
Figure 4: The rejection region for a one-tailed test
The shaded rejection region takes us 5% of the area under the curve. Any result which falls in that region is sufficient evidence to reject the null hypothesis.
The rejection region is bounded by a specific z-value, as is any area under the curve. In hypothesis testing, the value corresponding to a specific rejection region is called the critical value, z crit (“z-crit”) or z* (hence the other name “critical region”). Finding the critical value works exactly the same as finding the z-score corresponding to any area under the curve like we did in Unit 1. If we go to the normal table, we will find that the z-score corresponding to 5% of the area under the curve is equal to 1.645 (z = 1.64 corresponds to 0.0405 and z = 1.65 corresponds to 0.0495, so .05 is exactly in between them) if we go to the right and -1.645 if we go to the left. The direction must be determined by your alternative hypothesis, and drawing then shading the distribution is helpful for keeping directionality straight.
Suppose, however, that we want to do a non-directional test. We need to put the critical region in both tails, but we don’t want to increase the overall size of the rejection region (for reasons we will see later). To do this, we simply split it in half so that an equal proportion of the area under the curve falls in each tail’s rejection region. For α = .05, this means 2.5% of the area is in each tail, which, based on the z-table, corresponds to critical values of z* = ±1.96. This is shown in Figure 5.
Figure 5: Two-tailed rejection region
Thus, any z-score falling outside ±1.96 (greater than 1.96 in absolute value) falls in the rejection region. When we use z-scores in this way, the obtained value of z (sometimes called z-obtained) is something known as a test statistic, which is simply an inferential statistic used to test a null hypothesis.
Calculate the test statistic: Z
Now that we understand setting up the hypothesis and determining the outcome, let’s examine hypothesis testing with z! The next step is to carry out the study and get the actual results for our sample. Central to hypothesis test is comparison of the population and sample means. To make our calculation and determine where the sample is in the hypothesized distribution we calculate the Z for the sample data.
Make a decision
To decide whether to reject the null hypothesis, we compare our sample’s Z score to the Z score that marks our critical boundary. If our sample Z score falls inside the rejection region of the comparison distribution (is greater than the z-score critical boundary) we reject the null hypothesis.
The formula for our z- statistic has not changed:
To formally test our hypothesis, we compare our obtained z-statistic to our critical z-value. If z obt > z crit , that means it falls in the rejection region (to see why, draw a line for z = 2.5 on Figure 1 or Figure 2) and so we reject H 0 . If z obt < z crit , we fail to reject. Remember that as z gets larger, the corresponding area under the curve beyond z gets smaller. Thus, the proportion, or p-value, will be smaller than the area for α, and if the area is smaller, the probability gets smaller. Specifically, the probability of obtaining that result, or a more extreme result, under the condition that the null hypothesis is true gets smaller.
Conversely, if we fail to reject, we know that the proportion will be larger than α because the z-statistic will not be as far into the tail. This is illustrated for a one- tailed test in Figure 6.
Figure 6. Relation between α, z obt , and p
When the null hypothesis is rejected, the effect is said to be statistically significant . Do not confuse statistical significance with practical significance. A small effect can be highly significant if the sample size is large enough.
Why does the word “significant” in the phrase “statistically significant” mean something so different from other uses of the word? Interestingly, this is because the meaning of “significant” in everyday language has changed. It turns out that when the procedures for hypothesis testing were developed, something was “significant” if it signified something. Thus, finding that an effect is statistically significant signifies that the effect is real and not due to chance. Over the years, the meaning of “significant” changed, leading to the potential misinterpretation.
Review: Steps of the Hypothesis Testing Process
The process of testing hypotheses follows a simple four-step procedure. This process will be what we use for the remained of the textbook and course, and though the hypothesis and statistics we use will change, this process will not.
Step 1: State the Hypotheses
Your hypotheses are the first thing you need to lay out. Otherwise, there is nothing to test! You have to state the null hypothesis (which is what we test) and the alternative hypothesis (which is what we expect). These should be stated mathematically as they were presented above AND in words, explaining in normal English what each one means in terms of the research question.
Step 2: Find the Critical Values
Next, we formally lay out the criteria we will use to test our hypotheses. There are two pieces of information that inform our critical values: α, which determines how much of the area under the curve composes our rejection region, and the directionality of the test, which determines where the region will be.
Step 3: Compute the Test Statistic
Once we have our hypotheses and the standards we use to test them, we can collect data and calculate our test statistic, in this case z . This step is where the vast majority of differences in future chapters will arise: different tests used for different data are calculated in different ways, but the way we use and interpret them remains the same.
Step 4: Make the Decision
Finally, once we have our obtained test statistic, we can compare it to our critical value and decide whether we should reject or fail to reject the null hypothesis. When we do this, we must interpret the decision in relation to our research question, stating what we concluded, what we based our conclusion on, and the specific statistics we obtained.
Example: Movie Popcorn
Let’s see how hypothesis testing works in action by working through an example. Say that a movie theater owner likes to keep a very close eye on how much popcorn goes into each bag sold, so he knows that the average bag has 8 cups of popcorn and that this varies a little bit, about half a cup. That is, the known population mean is μ = 8.00 and the known population standard deviation is σ =0.50. The owner wants to make sure that the newest employee is filling bags correctly, so over the course of a week he randomly assesses 25 bags filled by the employee to test for a difference (n = 25). He doesn’t want bags overfilled or under filled, so he looks for differences in both directions. This scenario has all of the information we need to begin our hypothesis testing procedure.
Our manager is looking for a difference in the mean cups of popcorn bags compared to the population mean of 8. We will need both a null and an alternative hypothesis written both mathematically and in words. We’ll always start with the null hypothesis:
H 0 : There is no difference in the cups of popcorn bags from this employee H 0 : μ = 8.00
Notice that we phrase the hypothesis in terms of the population parameter μ, which in this case would be the true average cups of bags filled by the new employee.
Our assumption of no difference, the null hypothesis, is that this mean is exactly
the same as the known population mean value we want it to match, 8.00. Now let’s do the alternative:
H A : There is a difference in the cups of popcorn bags from this employee H A : μ ≠ 8.00
In this case, we don’t know if the bags will be too full or not full enough, so we do a two-tailed alternative hypothesis that there is a difference.
Our critical values are based on two things: the directionality of the test and the level of significance. We decided in step 1 that a two-tailed test is the appropriate directionality. We were given no information about the level of significance, so we assume that α = 0.05 is what we will use. As stated earlier in the chapter, the critical values for a two-tailed z-test at α = 0.05 are z* = ±1.96. This will be the criteria we use to test our hypothesis. We can now draw out our distribution so we can visualize the rejection region and make sure it makes sense
Figure 7: Rejection region for z* = ±1.96
Step 3: Calculate the Test Statistic
Now we come to our formal calculations. Let’s say that the manager collects data and finds that the average cups of this employee’s popcorn bags is ̅X = 7.75 cups. We can now plug this value, along with the values presented in the original problem, into our equation for z:
So our test statistic is z = -2.50, which we can draw onto our rejection region distribution:
Figure 8: Test statistic location
Looking at Figure 5, we can see that our obtained z-statistic falls in the rejection region. We can also directly compare it to our critical value: in terms of absolute value, -2.50 > -1.96, so we reject the null hypothesis. We can now write our conclusion:
When we write our conclusion, we write out the words to communicate what it actually means, but we also include the average sample size we calculated (the exact location doesn’t matter, just somewhere that flows naturally and makes sense) and the z-statistic and p-value. We don’t know the exact p-value, but we do know that because we rejected the null, it must be less than α.
Effect Size
When we reject the null hypothesis, we are stating that the difference we found was statistically significant, but we have mentioned several times that this tells us nothing about practical significance. To get an idea of the actual size of what we found, we can compute a new statistic called an effect size. Effect sizes give us an idea of how large, important, or meaningful a statistically significant effect is.
For mean differences like we calculated here, our effect size is Cohen’s d :
Effect sizes are incredibly useful and provide important information and clarification that overcomes some of the weakness of hypothesis testing. Whenever you find a significant result, you should always calculate an effect size
d | Interpretation |
---|---|
0.0 – 0.2 | negligible |
0.2 – 0.5 | small |
0.5 – 0.8 | medium |
0.8 – | large |
Table 1. Interpretation of Cohen’s d
Example: Office Temperature
Let’s do another example to solidify our understanding. Let’s say that the office building you work in is supposed to be kept at 74 degree Fahrenheit but is allowed
to vary by 1 degree in either direction. You suspect that, as a cost saving measure, the temperature was secretly set higher. You set up a formal way to test your hypothesis.
You start by laying out the null hypothesis:
H 0 : There is no difference in the average building temperature H 0 : μ = 74
Next you state the alternative hypothesis. You have reason to suspect a specific direction of change, so you make a one-tailed test:
H A : The average building temperature is higher than claimed H A : μ > 74
Now that you have everything set up, you spend one week collecting temperature data:
Day | Temp |
Monday | 77 |
Tuesday | 76 |
Wednesday | 74 |
Thursday | 78 |
Friday | 78 |
You calculate the average of these scores to be 𝑋̅ = 76.6 degrees. You use this to calculate the test statistic, using μ = 74 (the supposed average temperature), σ = 1.00 (how much the temperature should vary), and n = 5 (how many data points you collected):
z = 76.60 − 74.00 = 2.60 = 5.78
1.00/√5 0.45
This value falls so far into the tail that it cannot even be plotted on the distribution!
Figure 7: Obtained z-statistic
You compare your obtained z-statistic, z = 5.77, to the critical value, z* = 1.645, and find that z > z*. Therefore you reject the null hypothesis, concluding: Based on 5 observations, the average temperature (𝑋̅ = 76.6 degrees) is statistically significantly higher than it is supposed to be, z = 5.77, p < .05.
d = (76.60-74.00)/ 1= 2.60
The effect size you calculate is definitely large, meaning someone has some explaining to do!
Example: Different Significance Level
First, let’s take a look at an example phrased in generic terms, rather than in the context of a specific research question, to see the individual pieces one more time. This time, however, we will use a stricter significance level, α = 0.01, to test the hypothesis.
We will use 60 as an arbitrary null hypothesis value: H 0 : The average score does not differ from the population H 0 : μ = 50
We will assume a two-tailed test: H A : The average score does differ H A : μ ≠ 50
We have seen the critical values for z-tests at α = 0.05 levels of significance several times. To find the values for α = 0.01, we will go to the standard normal table and find the z-score cutting of 0.005 (0.01 divided by 2 for a two-tailed test) of the area in the tail, which is z crit * = ±2.575. Notice that this cutoff is much higher than it was for α = 0.05. This is because we need much less of the area in the tail, so we need to go very far out to find the cutoff. As a result, this will require a much larger effect or much larger sample size in order to reject the null hypothesis.
We can now calculate our test statistic. The average of 10 scores is M = 60.40 with a µ = 60. We will use σ = 10 as our known population standard deviation. From this information, we calculate our z-statistic as:
Our obtained z-statistic, z = 0.13, is very small. It is much less than our critical value of 2.575. Thus, this time, we fail to reject the null hypothesis. Our conclusion would look something like:
Notice two things about the end of the conclusion. First, we wrote that p is greater than instead of p is less than, like we did in the previous two examples. This is because we failed to reject the null hypothesis. We don’t know exactly what the p- value is, but we know it must be larger than the α level we used to test our hypothesis. Second, we used 0.01 instead of the usual 0.05, because this time we tested at a different level. The number you compare to the p-value should always be the significance level you test at. Because we did not detect a statistically significant effect, we do not need to calculate an effect size. Note: some statisticians will suggest to always calculate effects size as a possibility of Type II error. Although insignificant, calculating d = (60.4-60)/10 = .04 which suggests no effect (and not a possibility of Type II error).
Review Considerations in Hypothesis Testing
Errors in hypothesis testing.
Keep in mind that rejecting the null hypothesis is not an all-or-nothing decision. The Type I error rate is affected by the α level: the lower the α level the lower the Type I error rate. It might seem that α is the probability of a Type I error. However, this is not correct. Instead, α is the probability of a Type I error given that the null hypothesis is true. If the null hypothesis is false, then it is impossible to make a Type I error. The second type of error that can be made in significance testing is failing to reject a false null hypothesis. This kind of error is called a Type II error.
Statistical Power
The statistical power of a research design is the probability of rejecting the null hypothesis given the sample size and expected relationship strength. Statistical power is the complement of the probability of committing a Type II error. Clearly, researchers should be interested in the power of their research designs if they want to avoid making Type II errors. In particular, they should make sure their research design has adequate power before collecting data. A common guideline is that a power of .80 is adequate. This means that there is an 80% chance of rejecting the null hypothesis for the expected relationship strength.
Given that statistical power depends primarily on relationship strength and sample size, there are essentially two steps you can take to increase statistical power: increase the strength of the relationship or increase the sample size. Increasing the strength of the relationship can sometimes be accomplished by using a stronger manipulation or by more carefully controlling extraneous variables to reduce the amount of noise in the data (e.g., by using a within-subjects design rather than a between-subjects design). The usual strategy, however, is to increase the sample size. For any expected relationship strength, there will always be some sample large enough to achieve adequate power.
Inferential statistics uses data from a sample of individuals to reach conclusions about the whole population. The degree to which our inferences are valid depends upon how we selected the sample (sampling technique) and the characteristics (parameters) of population data. Statistical analyses assume that sample(s) and population(s) meet certain conditions called statistical assumptions.
It is easy to check assumptions when using statistical software and it is important as a researcher to check for violations; if violations of statistical assumptions are not appropriately addressed then results may be interpreted incorrectly.
Learning Objectives
Having read the chapter, students should be able to:
- Conduct a hypothesis test using a z-score statistics, locating critical region, and make a statistical decision including.
- Explain the purpose of measuring effect size and power, and be able to compute Cohen’s d.
Exercises – Ch. 10
- List the main steps for hypothesis testing with the z-statistic. When and why do you calculate an effect size?
- z = 1.99, two-tailed test at α = 0.05
- z = 1.99, two-tailed test at α = 0.01
- z = 1.99, one-tailed test at α = 0.05
- You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with μ = 78 and σ = 12. Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: 82, 74, 62, 68, 79, 94, 90, 81, 80.
- A study examines self-esteem and depression in teenagers. A sample of 25 teens with a low self-esteem are given the Beck Depression Inventory. The average score for the group is 20.9. For the general population, the average score is 18.3 with σ = 12. Use a two-tail test with α = 0.05 to examine whether teenagers with low self-esteem show significant differences in depression.
- You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about $12 (μ = 42, σ = 12). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the α = 0.05 level of significance.
Answers to Odd- Numbered Exercises – Ch. 10
1. List hypotheses. Determine critical region. Calculate z. Compare z to critical region. Draw Conclusion. We calculate an effect size when we find a statistically significant result to see if our result is practically meaningful or important
5. Step 1: H 0 : μ = 42 “My average tips does not differ from other servers”, H A : μ ≠ 42 “My average tips do differ from others”
Introduction to Statistics for Psychology Copyright © 2021 by Alisa Beyer is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.
Share This Book
- Search Search Please fill out this field.
What Is a Two-Tailed Test?
Understanding a two-tailed test, special considerations, two-tailed vs. one-tailed test.
- Two-Tailed Test FAQs
- Corporate Finance
- Financial Analysis
What Is a Two-Tailed Test? Definition and Example
Adam Hayes, Ph.D., CFA, is a financial writer with 15+ years Wall Street experience as a derivatives trader. Besides his extensive derivative trading expertise, Adam is an expert in economics and behavioral finance. Adam received his master's in economics from The New School for Social Research and his Ph.D. from the University of Wisconsin-Madison in sociology. He is a CFA charterholder as well as holding FINRA Series 7, 55 & 63 licenses. He currently researches and teaches economic sociology and the social studies of finance at the Hebrew University in Jerusalem.
Investopedia / Joules Garcia
A two-tailed test, in statistics, is a method in which the critical area of a distribution is two-sided and tests whether a sample is greater than or less than a certain range of values. It is used in null-hypothesis testing and testing for statistical significance . If the sample being tested falls into either of the critical areas, the alternative hypothesis is accepted instead of the null hypothesis.
Key Takeaways
- In statistics, a two-tailed test is a method in which the critical area of a distribution is two-sided and tests whether a sample is greater or less than a range of values.
- It is used in null-hypothesis testing and testing for statistical significance.
- If the sample being tested falls into either of the critical areas, the alternative hypothesis is accepted instead of the null hypothesis.
- By convention two-tailed tests are used to determine significance at the 5% level, meaning each side of the distribution is cut at 2.5%.
A basic concept of inferential statistics is hypothesis testing , which determines whether a claim is true or not given a population parameter. A hypothesis test that is designed to show whether the mean of a sample is significantly greater than and significantly less than the mean of a population is referred to as a two-tailed test. The two-tailed test gets its name from testing the area under both tails of a normal distribution , although the test can be used in other non-normal distributions.
A two-tailed test is designed to examine both sides of a specified data range as designated by the probability distribution involved. The probability distribution should represent the likelihood of a specified outcome based on predetermined standards. This requires the setting of a limit designating the highest (or upper) and lowest (or lower) accepted variable values included within the range. Any data point that exists above the upper limit or below the lower limit is considered out of the acceptance range and in an area referred to as the rejection range.
There is no inherent standard about the number of data points that must exist within the acceptance range. In instances where precision is required, such as in the creation of pharmaceutical drugs, a rejection rate of 0.001% or less may be instituted. In instances where precision is less critical, such as the number of food items in a product bag, a rejection rate of 5% may be appropriate.
A two-tailed test can also be used practically during certain production activities in a firm, such as with the production and packaging of candy at a particular facility. If the production facility designates 50 candies per bag as its goal, with an acceptable distribution of 45 to 55 candies, any bag found with an amount below 45 or above 55 is considered within the rejection range.
To confirm the packaging mechanisms are properly calibrated to meet the expected output, random sampling may be taken to confirm accuracy. A simple random sample takes a small, random portion of the entire population to represent the entire data set, where each member has an equal probability of being chosen.
For the packaging mechanisms to be considered accurate, an average of 50 candies per bag with an appropriate distribution is desired. Additionally, the number of bags that fall within the rejection range needs to fall within the probability distribution limit considered acceptable as an error rate. Here, the null hypothesis would be that the mean is 50 while the alternate hypothesis would be that it is not 50.
If, after conducting the two-tailed test, the z-score falls in the rejection region, meaning that the deviation is too far from the desired mean, then adjustments to the facility or associated equipment may be required to correct the error. Regular use of two-tailed testing methods can help ensure production stays within limits over the long term.
Be careful to note if a statistical test is one- or two-tailed as this will greatly influence a model's interpretation.
When a hypothesis test is set up to show that the sample mean would be only higher than the population mean, this is referred to as a one-tailed test . A formulation of this hypothesis would be, for example, that "the returns on an investment fund would be at least x%." One-tailed tests could also be set up to show that the sample mean could be only less than the population mean. The key difference from a two-tailed test is that in a two-tailed test, the sample mean could be different from the population mean by being either higher or lower than it.
If the sample being tested falls into the one-sided critical area, the alternative hypothesis will be accepted instead of the null hypothesis. A one-tailed test is also known as a directional hypothesis or directional test.
A two-tailed test, on the other hand, is designed to examine both sides of a specified data range to test whether a sample is greater than or less than the range of values.
Example of a Two-Tailed Test
As a hypothetical example, imagine that a new stockbroker , named XYZ, claims that their brokerage fees are lower than that of your current stockbroker, ABC) Data available from an independent research firm indicates that the mean and standard deviation of all ABC broker clients are $18 and $6, respectively.
A sample of 100 clients of ABC is taken, and brokerage charges are calculated with the new rates of XYZ broker. If the mean of the sample is $18.75 and the sample standard deviation is $6, can any inference be made about the difference in the average brokerage bill between ABC and XYZ broker?
- H 0 : Null Hypothesis: mean = 18
- H 1 : Alternative Hypothesis: mean <> 18 (This is what we want to prove.)
- Rejection region: Z <= - Z 2.5 and Z>=Z 2.5 (assuming 5% significance level, split 2.5 each on either side).
- Z = (sample mean – mean) / (std-dev / sqrt (no. of samples)) = (18.75 – 18) / (6/(sqrt(100)) = 1.25
This calculated Z value falls between the two limits defined by: - Z 2.5 = -1.96 and Z 2.5 = 1.96.
This concludes that there is insufficient evidence to infer that there is any difference between the rates of your existing broker and the new broker. Therefore, the null hypothesis cannot be rejected. Alternatively, the p-value = P(Z< -1.25)+P(Z >1.25) = 2 * 0.1056 = 0.2112 = 21.12%, which is greater than 0.05 or 5%, leads to the same conclusion.
How Is a Two-Tailed Test Designed?
A two-tailed test is designed to determine whether a claim is true or not given a population parameter. It examines both sides of a specified data range as designated by the probability distribution involved. As such, the probability distribution should represent the likelihood of a specified outcome based on predetermined standards.
What Is the Difference Between a Two-Tailed and One-Tailed Test?
A two-tailed hypothesis test is designed to show whether the sample mean is significantly greater than or significantly less than the mean of a population. The two-tailed test gets its name from testing the area under both tails (sides) of a normal distribution. A one-tailed hypothesis test, on the other hand, is set up to show only one test; that the sample mean would be higher than the population mean, or, in a separate test, that the sample mean would be lower than the population mean.
What Is a Z-score?
A Z-score numerically describes a value's relationship to the mean of a group of values and is measured in terms of the number of standard deviations from the mean. If a Z-score is 0, it indicates that the data point's score is identical to the mean score whereas Z-scores of 1.0 and -1.0 would indicate values one standard deviation above or below the mean. In most large data sets, 99% of values have a Z-score between -3 and 3, meaning they lie within three standard deviations above and below the mean.
San Jose State University. " 6: Introduction to Null Hypothesis Significance Testing ."
- Terms of Service
- Editorial Policy
- Privacy Policy
COMMENTS
A statistical hypothesis is an assumption about a population parameter.For example, we may assume that the mean height of a male in the U.S. is 70 inches. The assumption about the height is the statistical hypothesis and the true mean height of a male in the U.S. is the population parameter.. To test whether a statistical hypothesis about a population parameter is true, we obtain a random ...
A directional hypothesis refers to a type of hypothesis used in statistical testing that predicts a particular direction of the expected relationship between two variables. In simpler terms, a directional hypothesis is an educated, specific ... meaning there is no association between variables (or that the differences are down to chance). For ...
A statistical hypothesis is an assumption about a population parameter.For example, we may assume that the mean height of a male in the U.S. is 70 inches. The assumption about the height is the statistical hypothesis and the true mean height of a male in the U.S. is the population parameter.. To test whether a statistical hypothesis about a population parameter is true, we obtain a random ...
Directional hypotheses, also known as one-tailed hypotheses, are statements in research that make specific predictions about the direction of a relationship or difference between variables. Unlike non-directional hypotheses, which simply state that there is a relationship or difference without specifying its direction, directional hypotheses ...
One-tailed hypothesis tests are also known as directional and one-sided tests because you can test for effects in only one direction. ... My null hypothesis, H0 (pop. mean)=95 and H1>95 (alternate hypothesis). So, I calculate the t-stat based on the sample_mean, pop.mean, sample S.D and n. I then choose the t-crit value for 0.05 from my t ...
The What: Understanding the Concept of a Directional Hypothesis. A directional hypothesis, often referred to as a one-tailed hypothesis, is an essential part of research that predicts the expected outcomes and their directions. The intriguing aspect here is that it goes beyond merely predicting a difference or connection, it actually suggests ...
The directional hypothesis can also state a negative correlation, e.g. the higher the number of face-book friends, the lower the life satisfaction score ". Non-directional hypothesis: A non-directional (or two tailed hypothesis) simply states that there will be a difference between the two groups/conditions but does not say which will be ...
A non-directional hypothesis, also known as a two-tailed hypothesis, is a type of hypothesis that does not specify the direction of the relationship between variables or the difference between groups. Instead of predicting a specific direction, a non-directional hypothesis suggests that there will be a significant relationship or difference ...
A directional hypothesis is a statement that predicts the direction of the relationship between two variables. Unlike non-directional hypotheses, which simply state that there is a relationship between variables without specifying the direction, directional hypotheses make a clear prediction about the expected outcome.
Hypothesis Testing >. A directional test is a hypothesis test where a direction is specified (e.g. above or below a certain threshold). For example you might be interested in whether a hypothesized mean is greater than a certain number (you're testing in the positive direction on the number line), or you might want to know if the mean is less ...
Directional Hypothesis. Definition: A directional hypothesis is a specific type of hypothesis statement in which the researcher predicts the direction or effect of the relationship between two variables. Key Features. 1. Predicts direction: Unlike a non-directional hypothesis, which simply states that there is a relationship between two ...
Directional Hypothesis. A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight. ... This means that it must be possible to collect data that will either support or refute the ...
A Null Hypothesis is denoted as an H0. This is the type of hypothesis that the researcher tries to invalidate. Some of the examples of null hypotheses are: - Hyperactivity is not associated with eating sugar. - All roses have an equal amount of petals. - A person's preference for a dress is not linked to its color.
5.2 - Writing Hypotheses. The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis ( H 0) and an alternative hypothesis ( H a ). When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the ...
If the findings do support the hypothesis then the hypothesis can be retained (i.e., accepted), but if not, then it must be rejected. Three Different Hypotheses: (1) Directional Hypothesis: states that the IV will have an effect on the DV and what that effect will be (the direction of results). For example, eating smarties will significantly ...
Directional Hypothesis: A directional hypothesis, as the name implies, provides a specific direction for the expected relationship or difference between variables. It predicts which group will have higher or lower scores or how two variables will relate specifically, such as predicting that one variable will increase as the other decreases. ...
A directional hypothesis is one that contains the less than ("<") or greater than (">") sign. A nondirectional hypothesis contains the not equal sign ("≠"). However, a null hypothesis is neither directional nor non-directional. A null hypothesis is a prediction that there will be no change, relationship, or difference between two ...
A directional hypothesis is a one-tailed hypothesis that states the direction of the difference or relationship (e.g. boys are more helpful than girls). tutor2u Main menu
Examples. A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.
One-Tailed Test: A one-tailed test is a statistical test in which the critical area of a distribution is one-sided so that it is either greater than or less than a certain value, but not both. If ...
When we use z z -scores in this way, the obtained value of z z (sometimes called z z -obtained) is something known as a test statistic, which is simply an inferential statistic used to test a null hypothesis. The formula for our z z -statistic has not changed: z = X¯¯¯¯ − μ σ¯/ n−−√ (7.5.1) (7.5.1) z = X ¯ − μ σ ¯ / n.
When a research hypothesis predicts an effect but does not predict a direction for the effect, it is called a non-directional hypothesis. To test the significance of a non-directional hypothesis, we have to consider the possibility that the sample could be extreme at either tail of the comparison distribution. We call this a two-tailed test.
Two-Tailed Test: A two-tailed test is a statistical test in which the critical area of a distribution is two-sided and tests whether a sample is greater than or less than a certain range of values ...