Logo of Peer Recognized

Peer Recognized

Make a name in academia

How to Write a Research Paper: the LEAP approach (+cheat sheet)

In this article I will show you how to write a research paper using the four LEAP writing steps. The LEAP academic writing approach is a step-by-step method for turning research results into a published paper .

The LEAP writing approach has been the cornerstone of the 70 + research papers that I have authored and the 3700+ citations these paper have accumulated within 9 years since the completion of my PhD. I hope the LEAP approach will help you just as much as it has helped me to make an real, tangible impact with my research.

What is the LEAP research paper writing approach?

I designed the LEAP writing approach not only for merely writing the papers. My goal with the writing system was to show young scientists how to first think about research results and then how to efficiently write each section of the research paper.

In other words, you will see how to write a research paper by first analyzing the results and then building a logical, persuasive arguments. In this way, instead of being afraid of writing research paper, you will be able to rely on the paper writing process to help you with what is the most demanding task in getting published – thinking.

The four research paper writing steps according to the LEAP approach:

LEAP research paper writing step 1: L

I will show each of these steps in detail. And you will be able to download the LEAP cheat sheet for using with every paper you write.

But before I tell you how to efficiently write a research paper, I want to show you what is the problem with the way scientists typically write a research paper and why the LEAP approach is more efficient.

How scientists typically write a research paper (and why it isn’t efficient)

Writing a research paper can be tough, especially for a young scientist. Your reasoning needs to be persuasive and thorough enough to convince readers of your arguments. The description has to be derived from research evidence, from prior art, and from your own judgment. This is a tough feat to accomplish.

The figure below shows the sequence of the different parts of a typical research paper. Depending on the scientific journal, some sections might be merged or nonexistent, but the general outline of a research paper will remain very similar.

Outline of a research paper, including Title, Abstract, Keywords, Introduction, Objective, Methods, Results, Discussion, Conclusions, References and Annexes

Here is the problem: Most people make the mistake of writing in this same sequence.

While the structure of scientific articles is designed to help the reader follow the research, it does little to help the scientist write the paper. This is because the layout of research articles starts with the broad (introduction) and narrows down to the specifics (results). See in the figure below how the research paper is structured in terms of the breath of information that each section entails.

How to write a research paper according to the LEAP approach

For a scientist, it is much easier to start writing a research paper with laying out the facts in the narrow sections (i.e. results), step back to describe them (i.e. write the discussion), and step back again to explain the broader picture in the introduction.

For example, it might feel intimidating to start writing a research paper by explaining your research’s global significance in the introduction, while it is easy to plot the figures in the results. When plotting the results, there is not much room for wiggle: the results are what they are.

Starting to write a research papers from the results is also more fun because you finally get to see and understand the complete picture of the research that you have worked on.

Most importantly, following the LEAP approach will help you first make sense of the results yourself and then clearly communicate them to the readers. That is because the sequence of writing allows you to slowly understand the meaning of the results and then develop arguments for presenting to your readers.

I have personally been able to write and submit a research article in three short days using this method.

Step 1: Lay Out the Facts

LEAP research paper writing step 1: Prepare charts and graphics, and describe what you see

You have worked long hours on a research project that has produced results and are no doubt curious to determine what they exactly mean. There is no better way to do this than by preparing figures, graphics and tables. This is what the first LEAP step is focused on – diving into the results.

How to p repare charts and tables for a research paper

Your first task is to try out different ways of visually demonstrating the research results. In many fields, the central items of a journal paper will be charts that are based on the data generated during research. In other fields, these might be conceptual diagrams, microscopy images, schematics and a number of other types of scientific graphics which should visually communicate the research study and its results to the readers. If you have reasonably small number of data points, data tables might be useful as well.

Tips for preparing charts and tables

  • Try multiple chart types but in the finished paper only use the one that best conveys the message you want to present to the readers
  • Follow the eight chart design progressions for selecting and refining a data chart for your paper: https://peerrecognized.com/chart-progressions
  • Prepare scientific graphics and visualizations for your paper using the scientific graphic design cheat sheet: https://peerrecognized.com/tools-for-creating-scientific-illustrations/

How to describe the results of your research

Now that you have your data charts, graphics and tables laid out in front of you – describe what you see in them. Seek to answer the question: What have I found?  Your statements should progress in a logical sequence and be backed by the visual information. Since, at this point, you are simply explaining what everyone should be able to see for themselves, you can use a declarative tone: The figure X demonstrates that…

Tips for describing the research results :

  • Answer the question: “ What have I found? “
  • Use declarative tone since you are simply describing observations

Step 2: Explain the results

LEAP research paper writing step 2: Define the message, discuss the results, write conclusions, refine the objective, and describe methodology

The core aspect of your research paper is not actually the results; it is the explanation of their meaning. In the second LEAP step, you will do some heavy lifting by guiding the readers through the results using logic backed by previous scientific research.

How to define the Message of a research paper

To define the central message of your research paper, imagine how you would explain your research to a colleague in 20 seconds . If you succeed in effectively communicating your paper’s message, a reader should be able to recount your findings in a similarly concise way even a year after reading it. This clarity will increase the chances that someone uses the knowledge you generated, which in turn raises the likelihood of citations to your research paper. 

Tips for defining the paper’s central message :

  • Write the paper’s core message in a single sentence or two bullet points
  • Write the core message in the header of the research paper manuscript

How to write the Discussion section of a research paper

In the discussion section you have to demonstrate why your research paper is worthy of publishing. In other words, you must now answer the all-important So what? question . How well you do so will ultimately define the success of your research paper.

Here are three steps to get started with writing the discussion section:

  • Write bullet points of the things that convey the central message of the research article (these may evolve into subheadings later on).
  • Make a list with the arguments or observations that support each idea.
  • Finally, expand on each point to make full sentences and paragraphs.

Tips for writing the discussion section:

  • What is the meaning of the results?
  • Was the hypothesis confirmed?
  • Write bullet points that support the core message
  • List logical arguments for each bullet point, group them into sections
  • Instead of repeating research timeline, use a presentation sequence that best supports your logic
  • Convert arguments to full paragraphs; be confident but do not overhype
  • Refer to both supportive and contradicting research papers for maximum credibility

How to write the Conclusions of a research paper

Since some readers might just skim through your research paper and turn directly to the conclusions, it is a good idea to make conclusion a standalone piece. In the first few sentences of the conclusions, briefly summarize the methodology and try to avoid using abbreviations (if you do, explain what they mean).

After this introduction, summarize the findings from the discussion section. Either paragraph style or bullet-point style conclusions can be used. I prefer the bullet-point style because it clearly separates the different conclusions and provides an easy-to-digest overview for the casual browser. It also forces me to be more succinct.

Tips for writing the conclusion section :

  • Summarize the key findings, starting with the most important one
  • Make conclusions standalone (short summary, avoid abbreviations)
  • Add an optional take-home message and suggest future research in the last paragraph

How to refine the Objective of a research paper

The objective is a short, clear statement defining the paper’s research goals. It can be included either in the final paragraph of the introduction, or as a separate subsection after the introduction. Avoid writing long paragraphs with in-depth reasoning, references, and explanation of methodology since these belong in other sections. The paper’s objective can often be written in a single crisp sentence.

Tips for writing the objective section :

  • The objective should ask the question that is answered by the central message of the research paper
  • The research objective should be clear long before writing a paper. At this point, you are simply refining it to make sure it is addressed in the body of the paper.

How to write the Methodology section of your research paper

When writing the methodology section, aim for a depth of explanation that will allow readers to reproduce the study . This means that if you are using a novel method, you will have to describe it thoroughly. If, on the other hand, you applied a standardized method, or used an approach from another paper, it will be enough to briefly describe it with reference to the detailed original source.

Remember to also detail the research population, mention how you ensured representative sampling, and elaborate on what statistical methods you used to analyze the results.

Tips for writing the methodology section :

  • Include enough detail to allow reproducing the research
  • Provide references if the methods are known
  • Create a methodology flow chart to add clarity
  • Describe the research population, sampling methodology, statistical methods for result analysis
  • Describe what methodology, test methods, materials, and sample groups were used in the research.

Step 3: Advertize the research

Step 3 of the LEAP writing approach is designed to entice the casual browser into reading your research paper. This advertising can be done with an informative title, an intriguing abstract, as well as a thorough explanation of the underlying need for doing the research within the introduction.

LEAP research paper writing step 3: Write introduction, prepare the abstract, compose title, and prepare highlights and graphical abstract

How to write the Introduction of a research paper

The introduction section should leave no doubt in the mind of the reader that what you are doing is important and that this work could push scientific knowledge forward. To do this convincingly, you will need to have a good knowledge of what is state-of-the-art in your field. You also need be able to see the bigger picture in order to demonstrate the potential impacts of your research work.

Think of the introduction as a funnel, going from wide to narrow, as shown in the figure below:

  • Start with a brief context to explain what do we already know,
  • Follow with the motivation for the research study and explain why should we care about it,
  • Explain the research gap you are going to bridge within this research paper,
  • Describe the approach you will take to solve the problem.

Context - Motivation - Research gap - Approach funnel for writing the introduction

Tips for writing the introduction section :

  • Follow the Context – Motivation – Research gap – Approach funnel for writing the introduction
  • Explain how others tried and how you plan to solve the research problem
  • Do a thorough literature review before writing the introduction
  • Start writing the introduction by using your own words, then add references from the literature

How to prepare the Abstract of a research paper

The abstract acts as your paper’s elevator pitch and is therefore best written only after the main text is finished. In this one short paragraph you must convince someone to take on the time-consuming task of reading your whole research article. So, make the paper easy to read, intriguing, and self-explanatory; avoid jargon and abbreviations.

How to structure the abstract of a research paper:

  • The abstract is a single paragraph that follows this structure:
  • Problem: why did we research this
  • Methodology: typically starts with the words “Here we…” that signal the start of own contribution.
  • Results: what we found from the research.
  • Conclusions: show why are the findings important

How to compose a research paper Title

The title is the ultimate summary of a research paper. It must therefore entice someone looking for information to click on a link to it and continue reading the article. A title is also used for indexing purposes in scientific databases, so a representative and optimized title will play large role in determining if your research paper appears in search results at all.

Tips for coming up with a research paper title:

  • Capture curiosity of potential readers using a clear and descriptive title
  • Include broad terms that are often searched
  • Add details that uniquely identify the researched subject of your research paper
  • Avoid jargon and abbreviations
  • Use keywords as title extension (instead of duplicating the words) to increase the chance of appearing in search results

How to prepare Highlights and Graphical Abstract

Highlights are three to five short bullet-point style statements that convey the core findings of the research paper. Notice that the focus is on the findings, not on the process of getting there.

A graphical abstract placed next to the textual abstract visually summarizes the entire research paper in a single, easy-to-follow figure. I show how to create a graphical abstract in my book Research Data Visualization and Scientific Graphics.

Tips for preparing highlights and graphical abstract:

  • In highlights show core findings of the research paper (instead of what you did in the study).
  • In graphical abstract show take-home message or methodology of the research paper. Learn more about creating a graphical abstract in this article.

Step 4: Prepare for submission

LEAP research paper writing step 4: Select the journal, fulfill journal requirements, write a cover letter, suggest reviewers, take a break and edit, address review comments.

Sometimes it seems that nuclear fusion will stop on the star closest to us (read: the sun will stop to shine) before a submitted manuscript is published in a scientific journal. The publication process routinely takes a long time, and after submitting the manuscript you have very little control over what happens. To increase the chances of a quick publication, you must do your homework before submitting the manuscript. In the fourth LEAP step, you make sure that your research paper is published in the most appropriate journal as quickly and painlessly as possible.

How to select a scientific Journal for your research paper

The best way to find a journal for your research paper is it to review which journals you used while preparing your manuscript. This source listing should provide some assurance that your own research paper, once published, will be among similar articles and, thus, among your field’s trusted sources.

how to make scientific research paper

After this initial selection of hand-full of scientific journals, consider the following six parameters for selecting the most appropriate journal for your research paper (read this article to review each step in detail):

  • Scope and publishing history
  • Ranking and Recognition
  • Publishing time
  • Acceptance rate
  • Content requirements
  • Access and Fees

How to select a journal for your research paper:

  • Use the six parameters to select the most appropriate scientific journal for your research paper
  • Use the following tools for journal selection: https://peerrecognized.com/journals
  • Follow the journal’s “Authors guide” formatting requirements

How to Edit you manuscript

No one can write a finished research paper on their first attempt. Before submitting, make sure to take a break from your work for a couple of days, or even weeks. Try not to think about the manuscript during this time. Once it has faded from your memory, it is time to return and edit. The pause will allow you to read the manuscript from a fresh perspective and make edits as necessary.

I have summarized the most useful research paper editing tools in this article.

Tips for editing a research paper:

  • Take time away from the research paper to forget about it; then returning to edit,
  • Start by editing the content: structure, headings, paragraphs, logic, figures
  • Continue by editing the grammar and language; perform a thorough language check using academic writing tools
  • Read the entire paper out loud and correct what sounds weird

How to write a compelling Cover Letter for your paper

Begin the cover letter by stating the paper’s title and the type of paper you are submitting (review paper, research paper, short communication). Next, concisely explain why your study was performed, what was done, and what the key findings are. State why the results are important and what impact they might have in the field. Make sure you mention how your approach and findings relate to the scope of the journal in order to show why the article would be of interest to the journal’s readers.

I wrote a separate article that explains what to include in a cover letter here. You can also download a cover letter template from the article.

Tips for writing a cover letter:

  • Explain how the findings of your research relate to journal’s scope
  • Tell what impact the research results will have
  • Show why the research paper will interest the journal’s audience
  • Add any legal statements as required in journal’s guide for authors

How to Answer the Reviewers

Reviewers will often ask for new experiments, extended discussion, additional details on the experimental setup, and so forth. In principle, your primary winning tactic will be to agree with the reviewers and follow their suggestions whenever possible. After all, you must earn their blessing in order to get your paper published.

Be sure to answer each review query and stick to the point. In the response to the reviewers document write exactly where in the paper you have made any changes. In the paper itself, highlight the changes using a different color. This way the reviewers are less likely to re-read the entire article and suggest new edits.

In cases when you don’t agree with the reviewers, it makes sense to answer more thoroughly. Reviewers are scientifically minded people and so, with enough logical and supported argument, they will eventually be willing to see things your way.

Tips for answering the reviewers:

  • Agree with most review comments, but if you don’t, thoroughly explain why
  • Highlight changes in the manuscript
  • Do not take the comments personally and cool down before answering

The LEAP research paper writing cheat sheet

Imagine that you are back in grad school and preparing to take an exam on the topic: “How to write a research paper”. As an exemplary student, you would, most naturally, create a cheat sheet summarizing the subject… Well, I did it for you.

This one-page summary of the LEAP research paper writing technique will remind you of the key research paper writing steps. Print it out and stick it to a wall in your office so that you can review it whenever you are writing a new research paper.

The LEAP research paper writing cheat sheet

Now that we have gone through the four LEAP research paper writing steps, I hope you have a good idea of how to write a research paper. It can be an enjoyable process and once you get the hang of it, the four LEAP writing steps should even help you think about and interpret the research results. This process should enable you to write a well-structured, concise, and compelling research paper.

Have fund with writing your next research paper. I hope it will turn out great!

Learn writing papers that get cited

The LEAP writing approach is a blueprint for writing research papers. But to be efficient and write papers that get cited, you need more than that.

My name is Martins Zaumanis and in my interactive course Research Paper Writing Masterclass I will show you how to  visualize  your research results,  frame a message  that convinces your readers, and write  each section  of the paper. Step-by-step.

And of course – you will learn to respond the infamous  Reviewer No.2.

Research Paper Writing Masterclass by Martins Zaumanis

Hey! My name is Martins Zaumanis and I am a materials scientist in Switzerland ( Google Scholar ). As the first person in my family with a PhD, I have first-hand experience of the challenges starting scientists face in academia. With this blog, I want to help young researchers succeed in academia. I call the blog “Peer Recognized”, because peer recognition is what lifts academic careers and pushes science forward.

Besides this blog, I have written the Peer Recognized book series and created the Peer Recognized Academy offering interactive online courses.

Related articles:

Six journal selection steps

One comment

  • Pingback: Research Paper Outline with Key Sentence Skeleton (+Paper Template)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

I want to join the Peer Recognized newsletter!

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Privacy Overview

CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Copyright © 2024 Martins Zaumanis

Contacts:  [email protected]  

Privacy Policy 

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Research paper

How to Create a Structured Research Paper Outline | Example

Published on August 7, 2022 by Courtney Gahan . Revised on August 15, 2023.

How to Create a Structured Research Paper Outline

A research paper outline is a useful tool to aid in the writing process , providing a structure to follow with all information to be included in the paper clearly organized.

A quality outline can make writing your research paper more efficient by helping to:

  • Organize your thoughts
  • Understand the flow of information and how ideas are related
  • Ensure nothing is forgotten

A research paper outline can also give your teacher an early idea of the final product.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Research paper outline example, how to write a research paper outline, formatting your research paper outline, language in research paper outlines.

  • Definition of measles
  • Rise in cases in recent years in places the disease was previously eliminated or had very low rates of infection
  • Figures: Number of cases per year on average, number in recent years. Relate to immunization
  • Symptoms and timeframes of disease
  • Risk of fatality, including statistics
  • How measles is spread
  • Immunization procedures in different regions
  • Different regions, focusing on the arguments from those against immunization
  • Immunization figures in affected regions
  • High number of cases in non-immunizing regions
  • Illnesses that can result from measles virus
  • Fatal cases of other illnesses after patient contracted measles
  • Summary of arguments of different groups
  • Summary of figures and relationship with recent immunization debate
  • Which side of the argument appears to be correct?

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

how to make scientific research paper

Follow these steps to start your research paper outline:

  • Decide on the subject of the paper
  • Write down all the ideas you want to include or discuss
  • Organize related ideas into sub-groups
  • Arrange your ideas into a hierarchy: What should the reader learn first? What is most important? Which idea will help end your paper most effectively?
  • Create headings and subheadings that are effective
  • Format the outline in either alphanumeric, full-sentence or decimal format

There are three different kinds of research paper outline: alphanumeric, full-sentence and decimal outlines. The differences relate to formatting and style of writing.

  • Alphanumeric
  • Full-sentence

An alphanumeric outline is most commonly used. It uses Roman numerals, capitalized letters, arabic numerals, lowercase letters to organize the flow of information. Text is written with short notes rather than full sentences.

  • Sub-point of sub-point 1

Essentially the same as the alphanumeric outline, but with the text written in full sentences rather than short points.

  • Additional sub-point to conclude discussion of point of evidence introduced in point A

A decimal outline is similar in format to the alphanumeric outline, but with a different numbering system: 1, 1.1, 1.2, etc. Text is written as short notes rather than full sentences.

  • 1.1.1 Sub-point of first point
  • 1.1.2 Sub-point of first point
  • 1.2 Second point

To write an effective research paper outline, it is important to pay attention to language. This is especially important if it is one you will show to your teacher or be assessed on.

There are four main considerations: parallelism, coordination, subordination and division.

Parallelism: Be consistent with grammatical form

Parallel structure or parallelism is the repetition of a particular grammatical form within a sentence, or in this case, between points and sub-points. This simply means that if the first point is a verb , the sub-point should also be a verb.

Example of parallelism:

  • Include different regions, focusing on the different arguments from those against immunization

Coordination: Be aware of each point’s weight

Your chosen subheadings should hold the same significance as each other, as should all first sub-points, secondary sub-points, and so on.

Example of coordination:

  • Include immunization figures in affected regions
  • Illnesses that can result from the measles virus

Subordination: Work from general to specific

Subordination refers to the separation of general points from specific. Your main headings should be quite general, and each level of sub-point should become more specific.

Example of subordination:

Division: break information into sub-points.

Your headings should be divided into two or more subsections. There is no limit to how many subsections you can include under each heading, but keep in mind that the information will be structured into a paragraph during the writing stage, so you should not go overboard with the number of sub-points.

Ready to start writing or looking for guidance on a different step in the process? Read our step-by-step guide on how to write a research paper .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Gahan, C. (2023, August 15). How to Create a Structured Research Paper Outline | Example. Scribbr. Retrieved September 18, 2024, from https://www.scribbr.com/research-paper/outline/

Is this article helpful?

Courtney Gahan

Courtney Gahan

Other students also liked, research paper format | apa, mla, & chicago templates, writing a research paper introduction | step-by-step guide, writing a research paper conclusion | step-by-step guide, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

How to Write and Publish a Research Paper for a Peer-Reviewed Journal

  • Open access
  • Published: 30 April 2020
  • Volume 36 , pages 909–913, ( 2021 )

Cite this article

You have full access to this open access article

how to make scientific research paper

  • Clara Busse   ORCID: orcid.org/0000-0002-0178-1000 1 &
  • Ella August   ORCID: orcid.org/0000-0001-5151-1036 1 , 2  

286k Accesses

17 Citations

711 Altmetric

Explore all metrics

Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common pitfalls for each section and recommend strategies to avoid them. Further, we give advice about target journal selection and authorship. In the online resource 1 , we provide an example of a high-quality scientific paper, with annotations identifying the elements we describe in this article.

Similar content being viewed by others

how to make scientific research paper

How to Choose the Right Journal

how to make scientific research paper

The Point Is…to Publish?

how to make scientific research paper

Writing and publishing a scientific paper

Explore related subjects.

  • Artificial Intelligence

Avoid common mistakes on your manuscript.

Introduction

Writing a scientific paper is an important component of the research process, yet researchers often receive little formal training in scientific writing. This is especially true in low-resource settings. In this article, we explain why choosing a target journal is important, give advice about authorship, provide a basic structure for writing each section of a scientific paper, and describe common pitfalls and recommendations for each section. In the online resource 1 , we also include an annotated journal article that identifies the key elements and writing approaches that we detail here. Before you begin your research, make sure you have ethical clearance from all relevant ethical review boards.

Select a Target Journal Early in the Writing Process

We recommend that you select a “target journal” early in the writing process; a “target journal” is the journal to which you plan to submit your paper. Each journal has a set of core readers and you should tailor your writing to this readership. For example, if you plan to submit a manuscript about vaping during pregnancy to a pregnancy-focused journal, you will need to explain what vaping is because readers of this journal may not have a background in this topic. However, if you were to submit that same article to a tobacco journal, you would not need to provide as much background information about vaping.

Information about a journal’s core readership can be found on its website, usually in a section called “About this journal” or something similar. For example, the Journal of Cancer Education presents such information on the “Aims and Scope” page of its website, which can be found here: https://www.springer.com/journal/13187/aims-and-scope .

Peer reviewer guidelines from your target journal are an additional resource that can help you tailor your writing to the journal and provide additional advice about crafting an effective article [ 1 ]. These are not always available, but it is worth a quick web search to find out.

Identify Author Roles Early in the Process

Early in the writing process, identify authors, determine the order of authors, and discuss the responsibilities of each author. Standard author responsibilities have been identified by The International Committee of Medical Journal Editors (ICMJE) [ 2 ]. To set clear expectations about each team member’s responsibilities and prevent errors in communication, we also suggest outlining more detailed roles, such as who will draft each section of the manuscript, write the abstract, submit the paper electronically, serve as corresponding author, and write the cover letter. It is best to formalize this agreement in writing after discussing it, circulating the document to the author team for approval. We suggest creating a title page on which all authors are listed in the agreed-upon order. It may be necessary to adjust authorship roles and order during the development of the paper. If a new author order is agreed upon, be sure to update the title page in the manuscript draft.

In the case where multiple papers will result from a single study, authors should discuss who will author each paper. Additionally, authors should agree on a deadline for each paper and the lead author should take responsibility for producing an initial draft by this deadline.

Structure of the Introduction Section

The introduction section should be approximately three to five paragraphs in length. Look at examples from your target journal to decide the appropriate length. This section should include the elements shown in Fig.  1 . Begin with a general context, narrowing to the specific focus of the paper. Include five main elements: why your research is important, what is already known about the topic, the “gap” or what is not yet known about the topic, why it is important to learn the new information that your research adds, and the specific research aim(s) that your paper addresses. Your research aim should address the gap you identified. Be sure to add enough background information to enable readers to understand your study. Table 1 provides common introduction section pitfalls and recommendations for addressing them.

figure 1

The main elements of the introduction section of an original research article. Often, the elements overlap

Methods Section

The purpose of the methods section is twofold: to explain how the study was done in enough detail to enable its replication and to provide enough contextual detail to enable readers to understand and interpret the results. In general, the essential elements of a methods section are the following: a description of the setting and participants, the study design and timing, the recruitment and sampling, the data collection process, the dataset, the dependent and independent variables, the covariates, the analytic approach for each research objective, and the ethical approval. The hallmark of an exemplary methods section is the justification of why each method was used. Table 2 provides common methods section pitfalls and recommendations for addressing them.

Results Section

The focus of the results section should be associations, or lack thereof, rather than statistical tests. Two considerations should guide your writing here. First, the results should present answers to each part of the research aim. Second, return to the methods section to ensure that the analysis and variables for each result have been explained.

Begin the results section by describing the number of participants in the final sample and details such as the number who were approached to participate, the proportion who were eligible and who enrolled, and the number of participants who dropped out. The next part of the results should describe the participant characteristics. After that, you may organize your results by the aim or by putting the most exciting results first. Do not forget to report your non-significant associations. These are still findings.

Tables and figures capture the reader’s attention and efficiently communicate your main findings [ 3 ]. Each table and figure should have a clear message and should complement, rather than repeat, the text. Tables and figures should communicate all salient details necessary for a reader to understand the findings without consulting the text. Include information on comparisons and tests, as well as information about the sample and timing of the study in the title, legend, or in a footnote. Note that figures are often more visually interesting than tables, so if it is feasible to make a figure, make a figure. To avoid confusing the reader, either avoid abbreviations in tables and figures, or define them in a footnote. Note that there should not be citations in the results section and you should not interpret results here. Table 3 provides common results section pitfalls and recommendations for addressing them.

Discussion Section

Opposite the introduction section, the discussion should take the form of a right-side-up triangle beginning with interpretation of your results and moving to general implications (Fig.  2 ). This section typically begins with a restatement of the main findings, which can usually be accomplished with a few carefully-crafted sentences.

figure 2

Major elements of the discussion section of an original research article. Often, the elements overlap

Next, interpret the meaning or explain the significance of your results, lifting the reader’s gaze from the study’s specific findings to more general applications. Then, compare these study findings with other research. Are these findings in agreement or disagreement with those from other studies? Does this study impart additional nuance to well-accepted theories? Situate your findings within the broader context of scientific literature, then explain the pathways or mechanisms that might give rise to, or explain, the results.

Journals vary in their approach to strengths and limitations sections: some are embedded paragraphs within the discussion section, while some mandate separate section headings. Keep in mind that every study has strengths and limitations. Candidly reporting yours helps readers to correctly interpret your research findings.

The next element of the discussion is a summary of the potential impacts and applications of the research. Should these results be used to optimally design an intervention? Does the work have implications for clinical protocols or public policy? These considerations will help the reader to further grasp the possible impacts of the presented work.

Finally, the discussion should conclude with specific suggestions for future work. Here, you have an opportunity to illuminate specific gaps in the literature that compel further study. Avoid the phrase “future research is necessary” because the recommendation is too general to be helpful to readers. Instead, provide substantive and specific recommendations for future studies. Table 4 provides common discussion section pitfalls and recommendations for addressing them.

Follow the Journal’s Author Guidelines

After you select a target journal, identify the journal’s author guidelines to guide the formatting of your manuscript and references. Author guidelines will often (but not always) include instructions for titles, cover letters, and other components of a manuscript submission. Read the guidelines carefully. If you do not follow the guidelines, your article will be sent back to you.

Finally, do not submit your paper to more than one journal at a time. Even if this is not explicitly stated in the author guidelines of your target journal, it is considered inappropriate and unprofessional.

Your title should invite readers to continue reading beyond the first page [ 4 , 5 ]. It should be informative and interesting. Consider describing the independent and dependent variables, the population and setting, the study design, the timing, and even the main result in your title. Because the focus of the paper can change as you write and revise, we recommend you wait until you have finished writing your paper before composing the title.

Be sure that the title is useful for potential readers searching for your topic. The keywords you select should complement those in your title to maximize the likelihood that a researcher will find your paper through a database search. Avoid using abbreviations in your title unless they are very well known, such as SNP, because it is more likely that someone will use a complete word rather than an abbreviation as a search term to help readers find your paper.

After you have written a complete draft, use the checklist (Fig. 3 ) below to guide your revisions and editing. Additional resources are available on writing the abstract and citing references [ 5 ]. When you feel that your work is ready, ask a trusted colleague or two to read the work and provide informal feedback. The box below provides a checklist that summarizes the key points offered in this article.

figure 3

Checklist for manuscript quality

Data Availability

Michalek AM (2014) Down the rabbit hole…advice to reviewers. J Cancer Educ 29:4–5

Article   Google Scholar  

International Committee of Medical Journal Editors. Defining the role of authors and contributors: who is an author? http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authosrs-and-contributors.html . Accessed 15 January, 2020

Vetto JT (2014) Short and sweet: a short course on concise medical writing. J Cancer Educ 29(1):194–195

Brett M, Kording K (2017) Ten simple rules for structuring papers. PLoS ComputBiol. https://doi.org/10.1371/journal.pcbi.1005619

Lang TA (2017) Writing a better research article. J Public Health Emerg. https://doi.org/10.21037/jphe.2017.11.06

Download references

Acknowledgments

Ella August is grateful to the Sustainable Sciences Institute for mentoring her in training researchers on writing and publishing their research.

Code Availability

Not applicable.

Author information

Authors and affiliations.

Department of Maternal and Child Health, University of North Carolina Gillings School of Global Public Health, 135 Dauer Dr, 27599, Chapel Hill, NC, USA

Clara Busse & Ella August

Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA

Ella August

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ella August .

Ethics declarations

Conflicts of interests.

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

(PDF 362 kb)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Busse, C., August, E. How to Write and Publish a Research Paper for a Peer-Reviewed Journal. J Canc Educ 36 , 909–913 (2021). https://doi.org/10.1007/s13187-020-01751-z

Download citation

Published : 30 April 2020

Issue Date : October 2021

DOI : https://doi.org/10.1007/s13187-020-01751-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Manuscripts
  • Scientific writing
  • Find a journal
  • Publish with us
  • Track your research
  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Results

Research Results Section – Writing Guide and...

Limitations in Research

Limitations in Research – Types, Examples and...

APA Research Paper Format

APA Research Paper Format – Example, Sample and...

Research Paper Abstract

Research Paper Abstract – Writing Guide and...

Table of Contents

Table of Contents – Types, Formats, Examples

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

how to make scientific research paper

Writing the Scientific Paper

When you write about scientific topics to specialists in a particular scientific field, we call that scientific writing. (When you write to non-specialists about scientific topics, we call that science writing.)

The scientific paper has developed over the past three centuries into a tool to communicate the results of scientific inquiry. The main audience for scientific papers is extremely specialized. The purpose of these papers is twofold: to present information so that it is easy to retrieve, and to present enough information that the reader can duplicate the scientific study. A standard format with six main part helps readers to find expected information and analysis:

  • Title--subject and what aspect of the subject was studied.
  • Abstract--summary of paper: The main reason for the study, the primary results, the main conclusions
  • Introduction-- why the study was undertaken
  • Methods and Materials-- how the study was undertaken
  • Results-- what was found
  • Discussion-- why these results could be significant (what the reasons might be for the patterns found or not found)

There are many ways to approach the writing of a scientific paper, and no one way is right. Many people, however, find that drafting chunks in this order works best: Results, Discussion, Introduction, Materials & Methods, Abstract, and, finally, Title.

The title should be very limited and specific. Really, it should be a pithy summary of the article's main focus.

  • "Renal disease susceptibility and hypertension are under independent genetic control in the fawn hooded rat"
  • "Territory size in Lincoln's Sparrows ( Melospiza lincolnii )"
  • "Replacement of deciduous first premolars and dental eruption in archaeocete whales"
  • "The Radio-Frequency Single-Electron Transistor (RF-SET): A Fast and Ultrasensitive Electrometer"

This is a summary of your article. Generally between 50-100 words, it should state the goals, results, and the main conclusions of your study. You should list the parameters of your study (when and where was it conducted, if applicable; your sample size; the specific species, proteins, genes, etc., studied). Think of the process of writing the abstract as taking one or two sentences from each of your sections (an introductory sentence, a sentence stating the specific question addressed, a sentence listing your main techniques or procedures, two or three sentences describing your results, and one sentence describing your main conclusion).

Example One

Hypertension, diabetes and hyperlipidemia are risk factors for life-threatening complications such as end-stage renal disease, coronary artery disease and stroke. Why some patients develop complications is unclear, but only susceptibility genes may be involved. To test this notion, we studied crosses involving the fawn-hooded rat, an animal model of hypertension that develops chronic renal failure. Here, we report the localization of two genes, Rf-1 and Rf-2 , responsible for about half of the genetic variation in key indices of renal impairment. In addition, we localize a gene, Bpfh-1 , responsible for about 26% of the genetic variation in blood pressure. Rf-1 strongly affects the risk of renal impairment, but has no significant effect on blood pressure. Our results show that susceptibility to a complication of hypertension is under at least partially independent genetic control from susceptibility to hypertension itself.

Brown, Donna M, A.P. Provoost, M.J. Daly, E.S. Lander, & H.J. Jacob. 1996. "Renal disease susceptibility and hypertension are under indpendent genetic control in the faun-hooded rat." Nature Genetics , 12(1):44-51.

Example Two

We studied survival of 220 calves of radiocollared moose ( Alces alces ) from parturition to the end of July in southcentral Alaska from 1994 to 1997. Prior studies established that predation by brown bears ( Ursus arctos ) was the primary cause of mortality of moose calves in the region. Our objectives were to characterize vulnerability of moose calves to predation as influenced by age, date, snow depths, and previous reproductive success of the mother. We also tested the hypothesis that survival of twin moose calves was independent and identical to that of single calves. Survival of moose calves from parturition through July was 0.27 ± 0.03 SE, and their daily rate of mortality declined at a near constant rate with age in that period. Mean annual survival was 0.22 ± 0.03 SE. Previous winter's snow depths or survival of the mother's previous calf was not related to neonatal survival. Selection for early parturition was evidenced in the 4 years of study by a 6.3% increase in the hazard of death with each daily increase in parturition date. Although there was no significant difference in survival of twin and single moose calves, most twins that died disappeared together during the first 15 days after birth and independently thereafter, suggesting that predators usually killed both when encountered up to that age.

Key words: Alaska, Alces alces , calf survival, moose, Nelchina, parturition synchrony, predation

Testa, J.W., E.F. Becker, & G.R. Lee. 2000. "Temporal patterns in the survival of twin and single moose ( alces alces ) calves in southcentral Alaska." Journal of Mammalogy , 81(1):162-168.

Example Three

We monitored breeding phenology and population levels of Rana yavapaiensis by use of repeated egg mass censuses and visual encounter surveys at Agua Caliente Canyon near Tucson, Arizona, from 1994 to 1996. Adult counts fluctuated erratically within each year of the study but annual means remained similar. Juvenile counts peaked during the fall recruitment season and fell to near zero by early spring. Rana yavapaiensis deposited eggs in two distinct annual episodes, one in spring (March-May) and a much smaller one in fall (September-October). Larvae from the spring deposition period completed metamorphosis in earlv summer. Over the two years of study, 96.6% of egg masses successfully produced larvae. Egg masses were deposited during periods of predictable, moderate stream flow, but not during seasonal periods when flash flooding or drought were likely to affect eggs or larvae. Breeding phenology of Rana yavapaiensis is particularly well suited for life in desert streams with natural flow regimes which include frequent flash flooding and drought at predictable times. The exotic predators of R. yavapaiensis are less able to cope with fluctuating conditions. Unaltered stream flow regimes that allow natural fluctuations in stream discharge may provide refugia for this declining ranid frog from exotic predators by excluding those exotic species that are unable to cope with brief flash flooding and habitat drying.

Sartorius, Shawn S., and Philip C. Rosen. 2000. "Breeding phenology of the lowland leopard frog ( Rana yavepaiensis )." Southwestern Naturalist , 45(3): 267-273.

Introduction

The introduction is where you sketch out the background of your study, including why you have investigated the question that you have and how it relates to earlier research that has been done in the field. It may help to think of an introduction as a telescoping focus, where you begin with the broader context and gradually narrow to the specific problem addressed by the report. A typical (and very useful) construction of an introduction proceeds as follows:

"Echimyid rodents of the genus Proechimys (spiny rats) often are the most abundant and widespread lowland forest rodents throughout much of their range in the Neotropics (Eisenberg 1989). Recent studies suggested that these rodents play an important role in forest dynamics through their activities as seed predators and dispersers of seeds (Adler and Kestrell 1998; Asquith et al 1997; Forget 1991; Hoch and Adler 1997)." (Lambert and Adler, p. 70)

"Our laboratory has been involved in the analysis of the HLA class II genes and their association with autoimmune disorders such as insulin-dependent diabetes mellitus. As part of this work, the laboratory handles a large number of blood samples. In an effort to minimize the expense and urgency of transportation of frozen or liquid blood samples, we have designed a protocol that will preserve the integrity of lymphocyte DNA and enable the transport and storage of samples at ambient temperatures." (Torrance, MacLeod & Hache, p. 64)

"Despite the ubiquity and abundance of P. semispinosus , only two previous studies have assessed habitat use, with both showing a generalized habitat use. [brief summary of these studies]." (Lambert and Adler, p. 70)

"Although very good results have been obtained using polymerase chain reaction (PCR) amplification of DNA extracted from dried blood spots on filter paper (1,4,5,8,9), this preservation method yields limited amounts of DNA and is susceptible to contamination." (Torrance, MacLeod & Hache, p. 64)

"No attempt has been made to quantitatively describe microhabitat characteristics with which this species may be associated. Thus, specific structural features of secondary forests that may promote abundance of spiny rats remains unknown. Such information is essential to understand the role of spiny rats in Neotropical forests, particularly with regard to forest regeneration via interactions with seeds." (Lambert and Adler, p. 71)

"As an alternative, we have been investigating the use of lyophilization ("freeze-drying") of whole blood as a method to preserve sufficient amounts of genomic DNA to perform PCR and Southern Blot analysis." (Torrance, MacLeod & Hache, p. 64)

"We present an analysis of microhabitat use by P. semispinosus in tropical moist forests in central Panama." (Lambert and Adler, p. 71)

"In this report, we summarize our analysis of genomic DNA extracted from lyophilized whole blood." (Torrance, MacLeod & Hache, p. 64)

Methods and Materials

In this section you describe how you performed your study. You need to provide enough information here for the reader to duplicate your experiment. However, be reasonable about who the reader is. Assume that he or she is someone familiar with the basic practices of your field.

It's helpful to both writer and reader to organize this section chronologically: that is, describe each procedure in the order it was performed. For example, DNA-extraction, purification, amplification, assay, detection. Or, study area, study population, sampling technique, variables studied, analysis method.

Include in this section:

  • study design: procedures should be listed and described, or the reader should be referred to papers that have already described the used procedure
  • particular techniques used and why, if relevant
  • modifications of any techniques; be sure to describe the modification
  • specialized equipment, including brand-names
  • temporal, spatial, and historical description of study area and studied population
  • assumptions underlying the study
  • statistical methods, including software programs

Example description of activity

Chromosomal DNA was denatured for the first cycle by incubating the slides in 70% deionized formamide; 2x standard saline citrate (SSC) at 70ºC for 2 min, followed by 70% ethanol at -20ºC and then 90% and 100% ethanol at room temperature, followed by air drying. (Rouwendal et al ., p. 79)

Example description of assumptions

We considered seeds left in the petri dish to be unharvested and those scattered singly on the surface of a tile to be scattered and also unharvested. We considered seeds in cheek pouches to be harvested but not cached, those stored in the nestbox to be larderhoarded, and those buried in caching sites within the arena to be scatterhoarded. (Krupa and Geluso, p. 99)

Examples of use of specialized equipment

  • Oligonucleotide primers were prepared using the Applied Biosystems Model 318A (Foster City, CA) DNA Synthesizer according to the manufacturers' instructions. (Rouwendal et al ., p.78)
  • We first visually reviewed the complete song sample of an individual using spectrograms produced on a Princeton Applied Research Real Time Spectrum Analyzer (model 4512). (Peters et al ., p. 937)

Example of use of a certain technique

Frogs were monitored using visual encounter transects (Crump and Scott, 1994). (Sartorius and Rosen, p. 269)

Example description of statistical analysis

We used Wilcox rank-sum tests for all comparisons of pre-experimental scores and for all comparisons of hue, saturation, and brightness scores between various groups of birds ... All P -values are two-tailed unless otherwise noted. (Brawner et al ., p. 955)

This section presents the facts--what was found in the course of this investigation. Detailed data--measurements, counts, percentages, patterns--usually appear in tables, figures, and graphs, and the text of the section draws attention to the key data and relationships among data. Three rules of thumb will help you with this section:

  • present results clearly and logically
  • avoid excess verbiage
  • consider providing a one-sentence summary at the beginning of each paragraph if you think it will help your reader understand your data

Remember to use table and figures effectively. But don't expect these to stand alone.

Some examples of well-organized and easy-to-follow results:

  • Size of the aquatic habitat at Agua Caliente Canyon varied dramatically throughout the year. The site contained three rockbound tinajas (bedrock pools) that did not dry during this study. During periods of high stream discharge seven more seasonal pools and intermittent stretches of riffle became available. Perennial and seasonal pool levels remained stable from late February through early May. Between mid-May and mid-July seasonal pools dried until they disappeared. Perennial pools shrank in surface area from a range of 30-60 m² to 3-5- M². (Sartorius and Rosen, Sept. 2000: 269)

Notice how the second sample points out what is important in the accompanying figure. It makes us aware of relationships that we may not have noticed quickly otherwise and that will be important to the discussion.

A similar test result is obtained with a primer derived from the human ß-satellite... This primer (AGTGCAGAGATATGTCACAATG-CCCC: Oligo 435) labels 6 sites in the PRINS reaction: the chromosomes 1, one pair of acrocentrics and, more weakly, the chromosomes 9 (Fig. 2a). After 10 cycles of PCR-IS, the number of sites labeled has doubled (Fig. 2b); after 20 cycles, the number of sites labeled is the same but the signals are stronger (Fig. 2c) (Rouwendal et al ., July 93:80).

Related Information: Use Tables and Figures Effectively

Do not repeat all of the information in the text that appears in a table, but do summarize it. For example, if you present a table of temperature measurements taken at various times, describe the general pattern of temperature change and refer to the table.

"The temperature of the solution increased rapidly at first, going from 50º to 80º in the first three minutes (Table 1)."

You don't want to list every single measurement in the text ("After one minute, the temperature had risen to 55º. After two minutes, it had risen to 58º," etc.). There is no hard and fast rule about when to report all measurements in the text and when to put the measurements in a table and refer to them, but use your common sense. Remember that readers have all that data in the accompanying tables and figures, so your task in this section is to highlight key data, changes, or relationships.

In this section you discuss your results. What aspect you choose to focus on depends on your results and on the main questions addressed by them. For example, if you were testing a new technique, you will want to discuss how useful this technique is: how well did it work, what are the benefits and drawbacks, etc. If you are presenting data that appear to refute or support earlier research, you will want to analyze both your own data and the earlier data--what conditions are different? how much difference is due to a change in the study design, and how much to a new property in the study subject? You may discuss the implication of your research--particularly if it has a direct bearing on a practical issue, such as conservation or public health.

This section centers on speculation . However, this does not free you to present wild and haphazard guesses. Focus your discussion around a particular question or hypothesis. Use subheadings to organize your thoughts, if necessary.

This section depends on a logical organization so readers can see the connection between your study question and your results. One typical approach is to make a list of all the ideas that you will discuss and to work out the logical relationships between them--what idea is most important? or, what point is most clearly made by your data? what ideas are subordinate to the main idea? what are the connections between ideas?

Achieving the Scientific Voice

Eight tips will help you match your style for most scientific publications.

  • Develop a precise vocabulary: read the literature to become fluent, or at least familiar with, the sort of language that is standard to describe what you're trying to describe.
  • Once you've labeled an activity, a condition, or a period of time, use that label consistently throughout the paper. Consistency is more important than creativity.
  • Define your terms and your assumptions.
  • Include all the information the reader needs to interpret your data.
  • Remember, the key to all scientific discourse is that it be reproducible . Have you presented enough information clearly enough that the reader could reproduce your experiment, your research, or your investigation?
  • When describing an activity, break it down into elements that can be described and labeled, and then present them in the order they occurred.
  • When you use numbers, use them effectively. Don't present them so that they cause more work for the reader.
  • Include details before conclusions, but only include those details you have been able to observe by the methods you have described. Do not include your feelings, attitudes, impressions, or opinions.
  • Research your format and citations: do these match what have been used in current relevant journals?
  • Run a spellcheck and proofread carefully. Read your paper out loud, and/ or have a friend look over it for misspelled words, missing words, etc.

Applying the Principles, Example 1

The following example needs more precise information. Look at the original and revised paragraphs to see how revising with these guidelines in mind can make the text clearer and more informative:

Before: Each male sang a definite number of songs while singing. They start with a whistle and then go from there. Each new song is always different, but made up an overall repertoire that was completed before starting over again. In 16 cases (84%), no new songs were sung after the first 20, even though we counted about 44 songs for each bird.
After: Each male used a discrete number of song types in his singing. Each song began with an introductory whistle, followed by a distinctive, complex series of fluty warbles (Fig. 1). Successive songs were always different, and five of the 19 males presented their entire song repertoire before repeating any of their song types (i.e., the first IO recorded songs revealed the entire repertoire of 10 song types). Each song type recurred in long sequences of singing, so that we could be confident that we had recorded the entire repertoire of commonly used songs by each male. For 16 of the 19 males, no new song types were encountered after the first 20 songs, even though we analyzed and average of 44 songs/male (range 30-59).

Applying the Principles, Example 2

In this set of examples, even a few changes in wording result in a more precise second version. Look at the original and revised paragraphs to see how revising with these guidelines in mind can make the text clearer and more informative:

Before: The study area was on Mt. Cain and Maquilla Peak in British Columbia, Canada. The study area is about 12,000 ha of coastal montane forest. The area is both managed and unmanaged and ranges from 600-1650m. The most common trees present are mountain hemlock ( Tsuga mertensiana ), western hemlock ( Tsuga heterophylla ), yellow cedar ( Chamaecyparis nootkatensis ), and amabilis fir ( Abies amabilis ).
After: The study took place on Mt. Cain and Maquilla Peak (50'1 3'N, 126'1 8'W), Vancouver Island, British Columbia. The study area encompassed 11,800 ha of coastal montane forest. The landscape consisted of managed and unmanaged stands of coastal montane forest, 600-1650 m in elevation. The dominant tree species included mountain hemlock ( Tsuga mertensiana ), western hemlock ( Tsuga heterophylla ), yellow cedar ( Chamaecyparis nootkatensis ), and amabilis fir ( Abies amabilis ).

Two Tips for Sentence Clarity

Although you will want to consider more detailed stylistic revisions as you become more comfortable with scientific writing, two tips can get you started:

First, the verb should follow the subject as soon as possible.

Really Hard to Read : "The smallest of the URF's (URFA6L), a 207-nucleotide (nt) reading frame overlapping out of phase the NH2- terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit gene."

Less Hard to Read : "The smallest of the UR-F's is URFA6L, a 207-nucleotide (nt) reading frame overlapping out of phase the NH2-terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene; it has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit 8 gene."

Second, place familiar information first in a clause, a sentence, or a paragraph, and put the new and unfamiliar information later.

More confusing : The epidermis, the dermis, and the subcutaneous layer are the three layers of the skin. A layer of dead skin cells makes up the epidermis, which forms the body's shield against the world. Blood vessels, carrying nourishment, and nerve endings, which relay information about the outside world, are found in the dermis. Sweat glands and fat cells make up the third layer, the subcutaneous layer.

Less confusing : The skin consists of three layers: the epidermis, the dermis, and the subcutaneous layer. The epidermis is made up of dead skin cells, and forms a protective shield between the body and the world. The dermis contains the blood vessels and nerve endings that nourish the skin and make it receptive to outside stimuli. The subcutaneous layer contains the sweat glands and fat cells which perform other functions of the skin.

Bibliography

  • Scientific Writing for Graduate Students . F. P. Woodford. Bethesda, MD: Council of Biology Editors, 1968. [A manual on the teaching of writing to graduate students--very clear and direct.]
  • Scientific Style and Format . Council of Biology Editors. Cambridge: Cambridge University Press, 1994.
  • "The science of scientific writing." George Gopen and Judith Swann. The American Scientist , Vol. 78, Nov.-Dec. 1990. Pp 550-558.
  • "What's right about scientific writing." Alan Gross and Joseph Harmon. The Scientist , Dec. 6 1999. Pp. 20-21.
  • "A Quick Fix for Figure Legends and Table Headings." Donald Kroodsma. The Auk , 117 (4): 1081-1083, 2000.

Wortman-Wunder, Emily, & Kate Kiefer. (1998). Writing the Scientific Paper. Writing@CSU . Colorado State University. https://writing.colostate.edu/resources/writing/guides/.

UCI Libraries Mobile Site

  • Langson Library
  • Science Library
  • Grunigen Medical Library
  • Law Library
  • Connect From Off-Campus
  • Accessibility
  • Gateway Study Center

Libaries home page

Email this link

Writing a scientific paper.

  • Writing a lab report
  • INTRODUCTION

Writing a "good" results section

Figures and Captions in Lab Reports

"Results Checklist" from: How to Write a Good Scientific Paper. Chris A. Mack. SPIE. 2018.

Additional tips for results sections.

  • LITERATURE CITED
  • Bibliography of guides to scientific writing and presenting
  • Peer Review
  • Presentations
  • Lab Report Writing Guides on the Web

This is the core of the paper. Don't start the results sections with methods you left out of the Materials and Methods section. You need to give an overall description of the experiments and present the data you found.

  • Factual statements supported by evidence. Short and sweet without excess words
  • Present representative data rather than endlessly repetitive data
  • Discuss variables only if they had an effect (positive or negative)
  • Use meaningful statistics
  • Avoid redundancy. If it is in the tables or captions you may not need to repeat it

A short article by Dr. Brett Couch and Dr. Deena Wassenberg, Biology Program, University of Minnesota

  • Present the results of the paper, in logical order, using tables and graphs as necessary.
  • Explain the results and show how they help to answer the research questions posed in the Introduction. Evidence does not explain itself; the results must be presented and then explained. 
  • Avoid: presenting results that are never discussed;  presenting results in chronological order rather than logical order; ignoring results that do not support the conclusions; 
  • Number tables and figures separately beginning with 1 (i.e. Table 1, Table 2, Figure 1, etc.).
  • Do not attempt to evaluate the results in this section. Report only what you found; hold all discussion of the significance of the results for the Discussion section.
  • It is not necessary to describe every step of your statistical analyses. Scientists understand all about null hypotheses, rejection rules, and so forth and do not need to be reminded of them. Just say something like, "Honeybees did not use the flowers in proportion to their availability (X2 = 7.9, p<0.05, d.f.= 4, chi-square test)." Likewise, cite tables and figures without describing in detail how the data were manipulated. Explanations of this sort should appear in a legend or caption written on the same page as the figure or table.
  • You must refer in the text to each figure or table you include in your paper.
  • Tables generally should report summary-level data, such as means ± standard deviations, rather than all your raw data.  A long list of all your individual observations will mean much less than a few concise, easy-to-read tables or figures that bring out the main findings of your study.  
  • Only use a figure (graph) when the data lend themselves to a good visual representation.  Avoid using figures that show too many variables or trends at once, because they can be hard to understand.

From:  https://writingcenter.gmu.edu/guides/imrad-results-discussion

  • << Previous: METHODS
  • Next: DISCUSSION >>
  • Last Updated: Aug 4, 2023 9:33 AM
  • URL: https://guides.lib.uci.edu/scientificwriting

Off-campus? Please use the Software VPN and choose the group UCIFull to access licensed content. For more information, please Click here

Software VPN is not available for guests, so they may not have access to some content when connecting from off-campus.

  • Your Science & Health Librarians
  • How To Find Articles with Databases
  • Video Learning
  • Artificial Intelligence Tools
  • Industry Reports
  • How To Evaluate Articles
  • Search Tips, General
  • Develop a Research Question
  • How To Read A Scientific Paper
  • How To Interpret Data
  • How To Write A Scientific Paper
  • Teaching Materials
  • Systematic & Evideced-Based Reviews
  • Get More Help
  • New Books, STEM areas

Writing a Scientific Paper or Lab Report

Writing a scientific paper is very similar to writing a lab report. The structure of each is primarily the same, but the purpose of each is different

Lab reports are meant to reflect understanding of the material and learn something new Scientific papers are meant to contribute knowledge to a field of study.

Both are generally broken down into eight sections: title, abstract, introduction, methods, results, discussion, conclusion, and references. 

  • Ex: Determining the Free Chlorine Content of Pool Water"
  • Abstracts are a summary of the research as a whole and should familiarize the reader with the purpose of the research. 
  • Abstracts will always be written last, even though they are the first paragraph of a scientific paper. 
  • Unlike a lab report, all scientific papers will have an abstract.
  • Why was the research done?
  • What problem is being addressed?
  • What results were found?
  • What are the meaning of the results?
  • How is the problem better understood now than before, if at all?

Introduction

  • The introduction of a scientific paper discusses the problem being studied and other theory that is relevant to understanding the findings. 
  • The hypothesis of the experiment and the motivation for the research are stated in this section. 
  • Write the introduction in your own words. Try not to copy from a lab manual or other guidelines. Instead, show comprehension of the research by briefly explaining the problem.
  • Methods and Materials
  • Ex: pipette, graduated cylinder, 1.13mg of Na, 0.67mg Ag
  • List the steps taken as they actually happened during the experiment, not as they were supposed to happen. 
  • If written correctly, another researcher should be able to duplicate the experiment and get the same or very similar results. 
  • In a scientific paper, most often the steps taken during the research are discussed more in length and with more detail than they are in lab reports. 
  • The results show the data that was collected or found during the research. 
  • Explain in words the data that was collected.
  • Tables should be labeled numerically, as "Table 1", "Table 2", etc. Other figures should be labeled numerically as "Figure 1", "Figure 2", etc. 
  • Calculations to understand the data can also be presented in the results. 
  • The discussion section is one of the most important parts of a scientific paper. It analyzes the results of the research and is a discussion of the data. 
  • If any results are unexpected, explain why they are unexpected and how they did or did not effect the data obtained. 
  • Analyze the strengths and weaknesses of the design of the research and compare your results to similar research.
  • If there are any experimental errors, analyze them.
  • Explain your results and discuss them using relevant terms and theories.
  • What do the results indicate?
  • What is the significance of the results?
  • Are there any gaps in knowledge?
  • Are there any new questions that have been raised?
  • The conclusion is a summation of the experiment. It should clearly and concisely state what was learned and its importance.
  • If there is future work that needs to be done, it can be explained in the conclusion.
  • When any outside sources to support a claim or explain background information, those sources must be cited in the references section of the lab report. 
  • Scientific papers will always use outside references. 

Other Useful Sources

  • How to Write a Scientific Article
  • Writing a Scientific Research Article
  • How to Write a Good Scientific Paper
  • << Previous: How To Interpret Data
  • Next: Teaching Materials >>
  • Last Updated: Sep 12, 2024 2:44 PM
  • URL: https://guides.libraries.indiana.edu/STEM

Social media

  • Instagram for Herman B Wells Library
  • Facebook for IU Libraries

Additional resources

Featured databases.

  • Resource available to authorized IU Bloomington users (on or off campus) OneSearch@IU
  • Resource available to authorized IU Bloomington users (on or off campus) Academic Search (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) ERIC (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) Nexis Uni
  • Resource available without restriction HathiTrust Digital Library
  • Databases A-Z
  • Resource available to authorized IU Bloomington users (on or off campus) Google Scholar
  • Resource available to authorized IU Bloomington users (on or off campus) JSTOR
  • Resource available to authorized IU Bloomington users (on or off campus) Web of Science
  • Resource available to authorized IU Bloomington users (on or off campus) Scopus
  • Resource available to authorized IU Bloomington users (on or off campus) WorldCat

IU Libraries

  • Diversity Resources
  • About IU Libraries
  • Alumni & Friends
  • Departments & Staff
  • Jobs & Libraries HR
  • Intranet (Staff)
  • IUL site admin
  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition

Language Editing Services

  • Translation Services

Elsevier QRcode Wechat

Writing a Scientific Research Project Proposal

  • 5 minute read
  • 115.7K views

Table of Contents

The importance of a well-written research proposal cannot be underestimated. Your research really is only as good as your proposal. A poorly written, or poorly conceived research proposal will doom even an otherwise worthy project. On the other hand, a well-written, high-quality proposal will increase your chances for success.

In this article, we’ll outline the basics of writing an effective scientific research proposal, including the differences between research proposals, grants and cover letters. We’ll also touch on common mistakes made when submitting research proposals, as well as a simple example or template that you can follow.

What is a scientific research proposal?

The main purpose of a scientific research proposal is to convince your audience that your project is worthwhile, and that you have the expertise and wherewithal to complete it. The elements of an effective research proposal mirror those of the research process itself, which we’ll outline below. Essentially, the research proposal should include enough information for the reader to determine if your proposed study is worth pursuing.

It is not an uncommon misunderstanding to think that a research proposal and a cover letter are the same things. However, they are different. The main difference between a research proposal vs cover letter content is distinct. Whereas the research proposal summarizes the proposal for future research, the cover letter connects you to the research, and how you are the right person to complete the proposed research.

There is also sometimes confusion around a research proposal vs grant application. Whereas a research proposal is a statement of intent, related to answering a research question, a grant application is a specific request for funding to complete the research proposed. Of course, there are elements of overlap between the two documents; it’s the purpose of the document that defines one or the other.

Scientific Research Proposal Format

Although there is no one way to write a scientific research proposal, there are specific guidelines. A lot depends on which journal you’re submitting your research proposal to, so you may need to follow their scientific research proposal template.

In general, however, there are fairly universal sections to every scientific research proposal. These include:

  • Title: Make sure the title of your proposal is descriptive and concise. Make it catch and informative at the same time, avoiding dry phrases like, “An investigation…” Your title should pique the interest of the reader.
  • Abstract: This is a brief (300-500 words) summary that includes the research question, your rationale for the study, and any applicable hypothesis. You should also include a brief description of your methodology, including procedures, samples, instruments, etc.
  • Introduction: The opening paragraph of your research proposal is, perhaps, the most important. Here you want to introduce the research problem in a creative way, and demonstrate your understanding of the need for the research. You want the reader to think that your proposed research is current, important and relevant.
  • Background: Include a brief history of the topic and link it to a contemporary context to show its relevance for today. Identify key researchers and institutions also looking at the problem
  • Literature Review: This is the section that may take the longest amount of time to assemble. Here you want to synthesize prior research, and place your proposed research into the larger picture of what’s been studied in the past. You want to show your reader that your work is original, and adds to the current knowledge.
  • Research Design and Methodology: This section should be very clearly and logically written and organized. You are letting your reader know that you know what you are going to do, and how. The reader should feel confident that you have the skills and knowledge needed to get the project done.
  • Preliminary Implications: Here you’ll be outlining how you anticipate your research will extend current knowledge in your field. You might also want to discuss how your findings will impact future research needs.
  • Conclusion: This section reinforces the significance and importance of your proposed research, and summarizes the entire proposal.
  • References/Citations: Of course, you need to include a full and accurate list of any and all sources you used to write your research proposal.

Common Mistakes in Writing a Scientific Research Project Proposal

Remember, the best research proposal can be rejected if it’s not well written or is ill-conceived. The most common mistakes made include:

  • Not providing the proper context for your research question or the problem
  • Failing to reference landmark/key studies
  • Losing focus of the research question or problem
  • Not accurately presenting contributions by other researchers and institutions
  • Incompletely developing a persuasive argument for the research that is being proposed
  • Misplaced attention on minor points and/or not enough detail on major issues
  • Sloppy, low-quality writing without effective logic and flow
  • Incorrect or lapses in references and citations, and/or references not in proper format
  • The proposal is too long – or too short

Scientific Research Proposal Example

There are countless examples that you can find for successful research proposals. In addition, you can also find examples of unsuccessful research proposals. Search for successful research proposals in your field, and even for your target journal, to get a good idea on what specifically your audience may be looking for.

While there’s no one example that will show you everything you need to know, looking at a few will give you a good idea of what you need to include in your own research proposal. Talk, also, to colleagues in your field, especially if you are a student or a new researcher. We can often learn from the mistakes of others. The more prepared and knowledgeable you are prior to writing your research proposal, the more likely you are to succeed.

One of the top reasons scientific research proposals are rejected is due to poor logic and flow. Check out our Language Editing Services to ensure a great proposal , that’s clear and concise, and properly referenced. Check our video for more information, and get started today.

Research Fraud: Falsification and Fabrication in Research Data

Research Fraud: Falsification and Fabrication in Research Data

Research Team Structure

Research Team Structure

You may also like.

what is a descriptive research design

Descriptive Research Design and Its Myriad Uses

Doctor doing a Biomedical Research Paper

Five Common Mistakes to Avoid When Writing a Biomedical Research Paper

Writing in Environmental Engineering

Making Technical Writing in Environmental Engineering Accessible

Risks of AI-assisted Academic Writing

To Err is Not Human: The Dangers of AI-assisted Academic Writing

Importance-of-Data-Collection

When Data Speak, Listen: Importance of Data Collection and Analysis Methods

choosing the Right Research Methodology

Choosing the Right Research Methodology: A Guide for Researchers

Why is data validation important in research

Why is data validation important in research?

Writing a good review article

Writing a good review article

Input your search keywords and press Enter.

View the latest institution tables

View the latest country/territory tables

How to write a good research paper title

“Unread science is lost science .”

how to make scientific research paper

Credit: Mykyta Dolmatov/Getty

“Unread science is lost science.”

28 July 2020

how to make scientific research paper

Mykyta Dolmatov/Getty

With the influx of publications brought on by the pandemic, it’s become more challenging than ever for researchers to attract attention to their work.

Understanding which elements of a title will attract readers – or turn them away – has been proven to increase a paper’s citations and Altmetric score .

“In the era of information overload, most students and researchers do not have time to browse the entire text of a paper,” says Patrick Pu , a librarian at the National University of Singapore.

“The title of a paper, together with its abstract, become very important to capture and sustain the attention of readers.”

1. A good title avoids technical language

Since the primary audience of a paper is likely to be researchers working in the same field, using technical language in the title seems to make sense.

But this alienates the wider lay audience, which can bring valuable attention to your work . It can also alienate inexperienced researchers, or those who have recently entered the field.

“A good title does not use unnecessary jargon,” says Elisa De Ranieri , editor-in-chief at the Nature Communications journal (published by Springer Nature, which also publishes Nature Index.) “It communicates the main results in the study in a way that is clear and accessible, ideally to non-specialists or researchers new to the field.”

How-to: When crafting a title, says De Ranieri, write down the main result of the manuscript in a short paragraph. Shorten the text to make it more concise, while still remaining descriptive. Repeat this process until you have a title of fewer than 15 words.

2. A good title is easily searchable

Most readers today are accessing e-journals, which are indexed in scholarly databases such as Scopus and Google Scholar.

“Although these databases usually index the full text of papers, retrieval weightage for ‘Title’ is usually higher than other fields, such as ‘Results’,” Pu explains.

At the National University of Singapore, Pu and his colleagues run information literacy programmes for editors and authors. They give advice for publishing best practice, such as how to identify the most commonly used keywords in literature searches in a given field.

“A professor once told us how he discovered that industry experts were using a different term or keyword to describe his research area,” says Pu.

“He had written a seminal paper that did not include this ‘industry keyword’. He believes his paper, which was highly cited by academics, would have a higher citation count if he had included this keyword in the title. As librarians, we try to highlight this example to our students so that they will consider all possible keywords to use in their searches and paper titles.”

How-to: Authors should speak to an academic librarian at their institution to gain an understanding of keyword and search trends in their field of research. This should inform how the paper title is written.

3. A good title is substantiated by data

Authors should be cautious to not make any claims in the title that can’t be backed up by evidence.

“For instance, if you make a discovery with potential therapeutic relevance, the title should specify whether it was tested or studied in animals or humans/human samples,” says Irene Jarchum , senior editor at the journal Nature Biotechnology (also published by Springer Nature, which publishes the Nature Index.)

Jarchum adds that titles can be contentious because different authors have different views on the use of specific words, such as acronyms, or more fundamentally, what the main message of the title should be.

Some authors may over-interpret the significance of their preliminary findings, and want to reflect this in the title.

How-to: If you know your paper will be contentious within the scientific community, have the data ready to defend your decisions .

4. A good title sparks curiosity

A one-liner that sparks a reader’s interest can be very effective.

“A title has to pique the interest of the person searching for literature in a split-second – enough that they click on the title to read the abstract. Unread science is lost science,” says Christine Mayer , editor-in-chief of the journal Advanced Therapeutics .

Paper titles such as, "White and wonderful? Microplastics prevail in snow from the Alps to the Arctic" ( 2019 Science ), and “Kids these days: Why the youth of today seem lacking” ( 2019 Science Advances ) are good examples of this principle. Both papers have high Altmetric Attention scores, indicating that they have been widely read and discussed online.

How-to: Take note of the characteristics of paper titles that spark your own interest. Keep a record of these and apply the same principles to your own paper titles.

Sign up to the Nature Index newsletter

Get regular news, analysis and data insights from the editorial team delivered to your inbox.

  • Sign up to receive the Nature Index newsletter. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy .
  • APPLICATIONS
  • LEARN & SUPPORT

landscape-blue-blog-gradient

CST BLOG: Lab Expectations

The official blog of Cell Signaling Technology (CST), where we discuss what to expect from your time at the bench, share tips, tricks, and information.

  • Career Development

How to Prepare and Deliver a Great Research Presentation

After months of running experiments, pouring over data late into the evening, and surviving on whatever snacks drift within arm’s reach, you’re about to present your research for the first time. You’ve memorized every detail, but the thought of facing a live audience still makes your palms sweaty and your knees shake.

Don’t worry, you’re not alone. Plenty of researchers would rather be knee-deep in experimental troubleshooting than face the unpredictability of a Q&A. In the lab, you know how to gear up when handling formaldehyde or BL-2 samples—if only there was PPE for the pointed questions from that one professor in the front row! 

Giving a great research presentation

All jokes aside, whether you’re preparing your first presentation for a departmental seminar or giving a research talk at a conference, the prospect can be a daunting one. But with the right preparation, you can turn your hard-earned findings into a compelling narrative. Many CST scientists regularly present at conferences, so we sat down with a couple to get practical advice on everything from preparing slides to managing anxiety.

Step One: Understand Your Audience and Tailor Your Narrative

Before you start, take a step back and think about who will be listening to your presentation. “Consider your audience before you make any slides—or even write your presentation title,” advises Richard Cho, PhD, Associate Director of Neuroscience at CST. “After you’ve spent so much time on a topic, it’s easy to forget that what’s second nature to you might be completely new to your audience and could require a quick introduction.”

This may involve adapting field-specific jargon or adding slides to explain unfamiliar concepts. For example, the presentation you’d prepare for a smaller, departmental seminar or a focused conference in your sub-field may look very different than what you would put together for a large international event.

Understanding your audience’s familiarity with your topic, along with their background, interests, and level of technical knowledge, will help you tailor your message so that it’s relevant and easily digestible.

Step Two: Craft Compelling Slides

Slides serve as visual aids to support and enhance your verbal presentation. A well-crafted slide distills your content into key points and provides your audience with attention-grabbing visuals. “Use as few words as possible in your slides,” recommends Virginia (Ginny) Bain, PhD, Group Leader of Immunofluorescence at CST. “Images and graphs are easier for an audience to digest than text-heavy slides. Then, when you do include words, they will be more impactful.” 

When designing slides, consider the size of the presentation space and ensure images are large enough to be seen by all audience members. A common stumbling block is trying to cram too much data onto a single slide.

“I’ve found nothing turns off an audience faster than feeling like they need to break out a magnifying glass to understand what they're looking at,” says Ginny. “Likewise, if you can, practice with the projector you’ll use during your talk to make sure it displays colors accurately—especially reds. Sometimes, you must add contrast to your images to ensure features aren’t lost.”

Finally, choose fonts and colors that make sense and carry the same elements throughout all slides. “Many organizations have slide templates that presenters can use,” adds Richard. “It’s worth asking if such a resource exists before you get too far along in assembling your presentation.”

The benefits of a well-crafted presentation are two-fold; first, it can act as a cue card to jog your memory as you are speaking, and second, the audience can glance at your slide if they fail to immediately catch your meaning. However, avoid the trap of simply reading full sentences or paragraphs directly from your slides. This is a surefire way to lose your audience, as they could simply read the information themselves.

Step Three: Engage Your Audience

In addition to producing slides that guide listeners through your talk, there are several techniques for keeping an audience captivated.

Storytelling

People think in stories, so one key to giving a great research talk is to tell a compelling story with your data.

“Before I start making slides, I like to come up with an overarching narrative in my head,” explains Ginny. “Of course, it always sounds amazing when I’m thinking about it, and then I write it down and realize where the holes are. However, this exercise helps me think through the whole story to identify areas that need improvement.”

It can be helpful to reflect on what excited you most about your research when you first started. What problem could your research ultimately help to solve? Why is it important? Weaving your research findings into the bigger picture can help capture your audience’s attention and make your presentation more memorable. 

“One pitfall I’ve seen early researchers fall for is a desire to share their findings in sequential order. Instead, it may make more sense to organize findings in a way that illustrates a story for your audience,” explains Ginny. “As I’m crafting my narrative, I organize my data in order in a PowerPoint or on a whiteboard to help identify the bigger picture before I decide what I want to show and when.”

Storytelling provides context for your research, making complex concepts more accessible and understandable to a diverse audience.

As you weave your research into a story, consider how it might challenge the audience's expectations and whether you can use the element of surprise as a hook. 

“In any good story, you’re going to have surprises,” explains Richard. “Surprises can be unexpected findings, counterintuitive results, or intriguing anecdotes that challenge conventional wisdom.” If there’s a way to do so, including surprises in your presentation can add intrigue and excitement to your talk and can spark lively discussion and debate.

“One tactic I’ve seen used successfully is to pose a question near the start of your presentation and imply to the audience that the answer might surprise them—but don’t give them the answer right away,” says Richard. “Then, later in the presentation, circle back to that question.”

Step Four: Practice, Practice, Practice

To enhance your presentation skills, it's essential to embrace practice as a critical component of preparation. Before you start, consider the format of the event and your time allotment and tailor the length of your presentation accordingly. For example, at large conferences, a moderator will often be responsible for keeping speakers on schedule, and questions are usually held until the end. In other settings, you may have more time to spend on storytelling and engaging with the audience. In those cases, it may make sense to build in extra time for questions. As you prepare, timing your practice sessions can help you pace your delivery to account for different formats.

Blog: Networking at Conferences: Five Tips for the Introverted Scientist

“Practicing your presentation is so important,” stresses Ginny. “I start intensive practice a week before my talk, which for me means giving the presentation a few times each day. Finding time to do this can be challenging, so I also rehearse while doing other things such as commuting or cooking dinner. Practicing like this has the added benefit of helping me learn how to recover when I get distracted or slip up.”

The number of practice sessions you’ll want to conduct can vary depending on a number of factors, including the length of your talk and the amount of time you have to prepare. Practicing at least three times is generally a good goal, with at least one of those practice sessions in front of a live audience. This allows you to  familiarize yourself with your content, refine your delivery, and identify areas for  improvement.

As you practice, get feedback on your presentation and delivery. “Opinions from your lab mates or colleagues are invaluable,” highlights Ginny. “In my experience, they often have great insights. I usually start this process early so I’m not trying to force last-minute changes that could throw me off.”

“It’s also important to get feedback from different audiences,” adds Richard. In addition to experts in your field, consider inviting peers from outside your lab, or possibly from a different research speciality, to learn to articulate messages in different ways.

When your presentation is refined, “print out thumbnails of your slides or make a PDF for your phone,” advises Ginny. “Having your slides handy for reference makes it easier to carve out moments to practice while you’re doing other things.”

Staying Focused on the Big Day

Throughout the process, remember that mastery is a journey, not a destination. Trite as it may sound, mistake-making is central to the improvement of any skill. Even well-established speakers get nervous and make mistakes. 

“When you feel anxiety creeping in, ‘square breathing’ is a powerful tool for self-regulation and has helped me,” remarks Ginny. “Focus on breathing in for a count of four, holding your breath for a count of four, exhaling for a count of four, and holding again for another count of four.”

Be flexible and recognize you might not get to every point you want to cover. “It's very common to get excited and gloss over something you planned to talk about in detail,” says Ginny. “Try not to let this distract you when it happens!”

Finally, Richard suggests remembering “that we’re our own worst critics. But the truth is, the people who are watching are there to help and want to learn your story. Excitement is contagious. More often than not, if you bring your enthusiasm to your talk, your audience will be excited and supportive as well.”

So, as you step out onto the stage, trust in your preparation, try to relax, and enjoy the rewarding experience of sharing your research with the world.

Additional Resources

Check out some of the other blog posts for more career development insights:

  • How to Perfect Your Elevator Pitch
  • A Guide to Successful Research Collaboration
  • Navigating the Many Forms of Scientific Writing in Academia

Alexandra Foley

Alexandra Foley

Topics: Career Development

Automated IHC ChIP ELISA Flow IF-IC IHC Western Blot Workflow mIHC

Autophagy Cancer Immunology Cancer Research Cell Biology Developmental Biology Epigenetics Immunology Immunotherapy Medicine Metabolism Neurodegeneration Neuroscience Post Translational Modification Proteomics

Antibody Performance Antibody Validation Companion Reagents Fixation PTMScan Primary Antibodies Protocols Q&A Reproducibility Tech Tips Techniques

Corporate Social Responsibility

CST Newsletter

Popular posts, recent posts, cst dominates citeab's top cited research antibodies list—again, a most amazing molecule: validating a monoclonal antibody for the adp-ribosylation ptm.

landscape-blue-blog-gradient

  • Our Company
  • Our Approach
  • Antibody Guarantee
  • Social Responsibility

Help & Support

  • Technical Support
  • Order Information
  • Scientific Resources
  • Conferences & Events
  • Publications & Posters
  • Protein Modification Resource
  • Videos & Webinars
  • Trademark Info
  • Privacy Policy
  • Privacy Shield
  • Cookie Policy
  • Terms & Conditions

For Research Use Only. Not for Use in Diagnostic Procedures. © 2024 Cell Signaling Technology, Inc. All Rights Reserved.

September 19, 2024

This Elegant Math Problem Helps You Find the Best Choice for Hiring, House-Hunting and Even Love

Math’s “best-choice problem” could help humans become better decision-makers, at everything from choosing the best job candidate to finding a romantic partner

By Jack Murtagh

Digital illustration of a couple standing at the top of a set of stairs as single people stand below, looking up towards them

Jonathan Kitchen/Getty Images

Imagine cruising down the highway when you notice your fuel tank running low. Your GPS indicates 10 gas stations lie ahead on your route. Naturally, you want the cheapest option. You pass the first handful and observe their prices before approaching one with a seemingly good deal. Do you stop, not knowing how sweet the bargains could get up the road? Or do you continue exploring and risk regret for rejecting the bird in hand? You won’t double back, so you face a now-or-never choice. What strategy maximizes your chances of picking the cheapest station?

Researchers have studied this so-called best-choice problem and its many variants extensively, attracted by its real-world appeal and surprisingly elegant solution. Empirical studies suggest that humans tend to fall short of the optimal strategy , so learning the secret might just make you a better decision-maker—everywhere from the gas pump to your dating profile.

The scenario goes by several names: “ the secretary problem ,” where instead of ranking gas stations or the like by prices, you rank job applicants by their qualifications; and “ the marriage problem ,” where you rank suitors by eligibility, for two. All incarnations share the same underlying mathematical structure, in which a known number of rankable opportunities present themselves one at a time . You must commit yourself to accept or reject each of them on the spot with no take-backs (if you decline all of them, you’ll be stuck with the last choice). The opportunities can arrive in any order, so you have no reason to suspect that better candidates are more likely to reside at the front or back of the line.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

Let’s test your intuition. If the highway were lined with 1,000 gas stations (or your office with 1,000 applicants, or dating profile with 1,000 matches), and you had to evaluate each sequentially and choose when to stop, what are the chances that you would pick the absolute best option? If you chose at random, you would only find the best 0.1 percent of the time. Even if you tried a strategy cleverer than random guessing , you could get unlucky if the best option happened to show up quite early when you lacked the comparative information to detect it, or quite late at which point you might have already settled for fear of dwindling opportunities.

Amazingly, the optimal strategy results in you selecting your number one pick almost 37 percent of the time. Its success rate also doesn’t depend on the number of candidates. Even with a billion options and a refusal to settle for second best, you could find your needle-in-a-haystack over a third of the time. The winning strategy is simple: Reject the first approximately 37 percent no matter what. Then choose the first option that is better than all the others you’ve encountered so far (if you never find such an option, then you’ll take the final one).

Adding to the fun, mathematicians’ favorite little constant, e = 2.7183… rears its head in the solution. Also known as Euler’s number , e holds fame for cropping up all across the mathematical landscape in seemingly unrelated settings. Including, it seems, the best-choice problem. Under the hood, those references to 37 percent in the optimal strategy and corresponding probability of success are actually 1/ e or about 0.368. The magic number comes from the tension between wanting to see enough samples to inform you about the distribution of options, but not wanting to wait too long lest the best pass you by. The proof argues that 1/ e balances these forces.

The first known reference to the best-choice problem in writing actually appeared in Martin Gardner ’s beloved “Mathematical Games” column here at Scientific American . The problem spread by word of mouth in the mathematical community in the 1950s, and Gardner posed it as a little puzzle in the February 1960 issue under the name “Googol,” following up with a solution the next month . Today the problem generates thousands of hits on Google Scholar as mathematicians continue to study its many variants: What if you’re allowed to pick more than one option, and you win if any of your choices are the best? What if an adversary chose the ordering of the options to trick you? What if you don’t require the absolute best choice and would feel satisfied with second or third? Researchers study these and countless other when-to-stop scenarios in a branch of math called “optimal stopping theory.”

Looking for a house—or a spouse? Math curriculum designer David Wees applied the best-choice strategy to his personal life. While apartment hunting, Wees recognized that to compete in a seller’s market, he would have to commit to an apartment on the spot at the viewing before another buyer snatched it. With his pace of viewings and six-month deadline, he extrapolated that he had time to visit 26 units. And 37 percent of 26 rounds up to 10, so Wees rejected the first 10 places and signed the first subsequent apartment that he preferred to all the previous ones. Without inspecting the remaining batch, he couldn’t know if he had in fact secured the best, but he could at least rest easy knowing he maximized his chances.

When he was in his 20s, Michael Trick, now dean of Carnegie Mellon University in Qatar, applied similar reasoning to his love life. He figured that people begin dating at 18 and assumed that he would no longer date after 40, and that he’d have a consistent rate of meeting potential partners. Taking 37 percent of this timespan would put him at age 26, at which point he vowed to propose to the first woman he met whom he liked more than all his previous dates. He met Ms. Right, knelt down on one knee, and promptly got rejected. The best-choice problem doesn’t cover cases where opportunities may turn you down. Perhaps it’s best we leave math out of romance.

Empirical research finds that people tend to stop their search too early when faced with best-choice scenarios. So learning the 37 percent rule could improve your decision-making, but be sure to double-check that your situation meets all of the conditions of the problem: a known number of rankable options presented one at a time in any order, and you want the best, and you can’t double back. Nearly every conceivable variant of the problem has been analyzed, and tweaking the conditions can change the optimal strategy in ways large and small. For example, Wees and Trick didn’t really know their total number of potential candidates so they substituted in reasonable estimates instead. If decisions don’t need to be made on the spot, then this nullifies the need for a strategy entirely: simply evaluate every candidate and pick your favorite. If you relax the requirement of picking the absolute best option and instead just want a broadly good outcome, then a similar strategy still works, but a different threshold, typically sooner than 37 percent, becomes the optimal (see discussions here and here ). Whatever dilemma you face, there’s probably a best-choice strategy that will help you quit while you’re ahead.

More From Forbes

6 freelance jobs to make $50+ an hour in 2024.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Nearly 40% of the U.S. workforce were freelancers last year, adding $1.27 trillion to the economy

With the latest advancements in technology, freelancers are seizing new opportunities to earn top dollar with their highly specialized skill set.

A recent study by Upwork revealed that 64 million Americans engaged in freelance work in 2023, up from 59 million in their 2021 study, comprising nearly 40% of the total U.S. workforce and adding a hefty $1.27 trillion to the U.S. economy. Almost half of these freelancers are knowledge workers—meaning that they provide expertise related to IT, tech programming, consulting, marketing, and other business-related services.

The outlook appears very bright for freelance professionals, with them being twice as likely to use generative AI frequently in their work compared to their employed counterparts, which enables them to work more efficiently and produce higher quality while relieving the strain on their time and financial resources. This might be part of the reason why over 85% of freelancers feel positive about their work, and expect the gig industry to continue to bloom over the next few years.

As demand for niche expertise surges amongst organizations, many are turning to freelance talent to solve their talent gap problem—especially in tech. This leads to the creation of in-demand freelance jobs that offer impressive pay rates—even rivalling traditional full-time roles at times.

From blockchain development to digital marketing, here are six freelance jobs poised to earn you $50 or more an hour in 2024:

Apple’s Update Decision—Bad News Confirmed For Millions Of iPhone Users

Blackrock reveals it’s quietly preparing for a $35 trillion federal reserve dollar crisis with bitcoin—predicted to spark a sudden price boom, election 2024 swing state polls: pennsylvania’s a dead heat—as harris leads michigan, trump takes arizona, 1. freelance ai prompt engineer.

AI (artificial intelligence) prompt engineering is a relatively new field, that we are recently discovering has much to do with organizational success when it comes to AI implementation. In fact, AI prompt engineering was recently hailed as the most essential AI skill one could learn and develop, according to the Project Management Institute's CEO Pierre Le Manh.

The more experienced freelance AI prompt engineers on Upwork charge as much as $60, $80, and even $150 an hour for this service, while as per Freelancermap , hourly rates range from $87 to $123.

2. Freelance Blockchain Developer

A blockchain developer is a software developer who builds secure blockchain systems, and works with complex algorithms. Blockchain technology systems are then used in financial and secure business and commerce settings. If you already have experience with this, you could offer blockchain software development as a freelance service.

Freelance blockchain developers can make just shy of $50 an hour on average, according to ZipRecruiter, while a significant number of freelancers on Upwork are making $60 an hour or more.

3. Freelance UX/UI Designer

UX means user experience, and UI simply means user interface. Having a strong skill set in creating the UI and UX of a product is a real asset to companies, especially start-ups, seeking to launch their next ground-breaking tech product to the world. UX and UI designers are in high demand, and can expect to earn as much as $96 an hour according to ZipRecruiter estimates.

4. Freelance Data Science And Analytics Consulting

In addition to artificial intelligence, one of the most in-demand skills that are needed to solve the talent gap in the workforce today is data science and data analytics. This is a core skill that enables organization-wide AI integration, and it was even listed as the number one tech skill with the most demand in the job market, according to Springboard's State of The Workplace Skills Gap 2024 report .

As a freelancer, you can make at least $50 per hour, while if you are more experienced, you may charge up to $150 to $200 per hour for your data science and consulting services.

5. Freelance Video Producer And Editor

If "content is king," then video content must be emperor. YouTube has repeatedly been ranked as the most used search engine , coming second only to Google. It's very clear that YouTube and other streaming platforms hold immense potential as far as content marketing, tutorials and training, and influencer marketing is concerned.

Jumping into this industry as a freelance video editor and producer, offering your services to businesses seeking to build their voice and increase exposure, can lead to hourly earnings of $59.40 according to ZipRecruiter estimates, or $33 if you are just doing video editing.

6. Freelance Digital Marketing Manager

With a background and expertise in marketing, you could offer your services as a freelance digital marketing manager, freelance social media marketing manager, or as a digital or SEO marketing consultant.

When it comes to pay, although you can expect to make $42 an hour on average, if you have extremely niche skills that have been honed over time, you might fall into the top 7% of freelance jobs that pay $52 an hour.

Tech such as blockchain, AI, and data science are in-demand, high-income fields for freelancers to ... [+] capitalize on

How much exactly you make can vary widely depending on your experience and confidence level, therefore take these estimates as a benchmark or guide only. Employers need your knowledge and expertise to solve critical, time-constricted problems, therefore if you can spend time developing your skill set even more than you already have, and gain credibility through certifications, licences, and word-of-mouth referrals, you will be able to launch a full-time freelance career in no time.

Rachel Wells

  • Editorial Standards
  • Forbes Accolades

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

There’s a powerful story behind every headline at Ohio State Health & Discovery. As one of the largest academic health centers and health sciences campuses in the nation, we are uniquely positioned with renowned experts covering all aspects of health, wellness, science, research and education. Ohio State Health & Discovery brings this expertise together to deliver today’s most important health news and the deeper story behind the most powerful topics that affect the health of people, animals, society and the world.  Like the science and discovery news you find here? You can support more innovations fueling advances across medicine, science, health and wellness by giving today.

BROUGHT TO YOU BY

  • The Ohio State University
  • College of Dentistry
  • College of Medicine
  • College of Nursing
  • College of Optometry
  • College of Pharmacy
  • College of Public Health
  • College of Veterinary Medicine
  • Ohio State Wexner Medical Center
  • Ohio State's Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute

Subscribe. The latest from Ohio State Health & Discovery delivered right to your inbox.

A carb intolerance may be why losing weight is so hard

Registered Dietitian Ohio State Wexner Medical Center

  • Share on Facebook
  • Share on Linkedin
  • Share via Email
  • Share this page

A young woman eating a piece of bread with cream cheese

If you’re determined to lose weight in a healthy way, it’s important to make sure you’re in tune with your body and how it works.

We all have different metabolisms and food tolerance levels, so there’s no “one size fits all” exercise and nutrition plan.

One thing to consider if you’ve been trying to lose weight but feel like you’re fighting an uphill battle is how well your body tolerates carbohydrates. Most of us have heard of people being lactose or gluten-intolerant. But your body can have trouble tolerating other carbs as well.

Carb intolerance symptoms

In some people, eating even small amounts of certain carbs can cause bloating, fatigue, abdominal cramps, poor digestion and heartburn.

What exactly is carbohydrate intolerance? Simply put, it's your body’s inability to metabolize carbohydrates normally. When someone consumes more carbohydrate than their body can tolerate, two things happen. The pancreas secretes an overabundance of insulin, which makes your body very efficient at storing fat. Then, the liver takes in all the extra carbohydrate your bloodstream cannot utilize and turns it into fat stores.

How to fix a carb intolerance

If you often feel bloated, distended or chronically fatigued, or you find it nearly impossible to lose weight, these tips can help pinpoint the potential of carb intolerance:

Keep a food and workout journal. Be aware of what you’re eating by writing it down and analyzing the ingredients. If a food has you feeling bloated or tired, start to recognize it and find a more compatible substitute. The journal will also allow you to track if you are getting enough exercise to balance your food intake.

Eat fewer carbs , but don’t ban them completely. An initial approach might be to make sure your portions of carb foods, including milk and yogurt, fruit, starchy vegetables and whole grains, are reasonable. Each person has a different metabolism, and low-carbohydrate diets work very well for some people. It’s important to note, however, that a carb-controlled diet doesn’t mean eating a diet made up of only protein. Eating healthy fats and remembering to include a lot of non-starchy vegetables is important for getting adequate antioxidant-rich nutrients and fiber.

Avoid refined and processed sugars: They’re added to things like sodas, fruit drinks and desserts, so look for them on food labels. Foods that contain high-fructose corn syrup, dextrose and even raw sugar should be eaten sparingly. Instead, stick to foods with more complex carbohydrates, like whole grains, beans and legumes, fruits and vegetables. Let nutrient-dense foods rule.

Eat more often, not less. Many of us think the key to losing weight is to significantly cut down on the amount of food we’re eating and how often. But some people respond well to eating smaller quantities more often. Some clients respond well to eating four to six small meals a day to regulate their blood sugar and keep their appetite under control. Help curb sugar cravings by including protein and healthy fat, in addition to a nutrient dense complex carbohydrate with each meal.

See a dietitian. Together, the two of you can get a better handle on how your body handles and digests carbohydrate foods. Registered dietitians can be a great teammate to help create a diet plan that works for you over the long haul.

Take the first steps to a healthier lifestyle

Ditch the fads and start taking real steps to improving your health with the nutrition and dietary experts from Ohio State.

Liz Weinandy, MPH, RDN, LD , is a registered dietitian at The Ohio State University Wexner Medical Center .

Liz Weinandy

  • Exercise and Nutrition

Related websites

Articles on wellness.

Healthy snacks to fuel your student athlete

Healthy snacks to fuel your student athlete

By Sarah Wick, RD, LD, CSSD

Young athletes need sound nutrition to power through workouts, practices and competitions. An Ohio State dietitian offers tips to keep them energized and healthy.

Always hungry? Never hungry? Here’s how the body regulates hunger, and what can change your appetite

Always hungry? Never hungry? Here’s how the body regulates hunger, and what can change your appetite

By Candace Pumper, MS, RD, LD

Ever wonder what controls your appetite? Find out from an Ohio State dietitian.

Taking a GLP-1? Here are foods to limit — and what to prioritize

By Samantha Snashall, RDN, LD

Is it possible to take too many vitamins?

By Kristine Dilley, RDN, LD

Make meal-prepping work for you: Checklist from a registered dietitian

By Dena Champion, RD, MS

Get articles and stories about health, wellness, medicine, science and education delivered right to your inbox from the experts at Ohio State.

Required fields

By clicking "Subscribe" you agree to our Terms of Use . Learn more about how we use your information by reading our Privacy Policy .

Advertisement

Supported by

How Israel Built a Modern-Day Trojan Horse: Exploding Pagers

The Israeli government did not tamper with the Hezbollah devices that exploded, defense and intelligence officials say. It manufactured them as part of an elaborate ruse.

  • Share full article

A view from above of a group of people at a funeral.

By Sheera Frenkel Ronen Bergman and Hwaida Saad

The pagers began beeping just after 3:30 in the afternoon in Lebanon on Tuesday, alerting Hezbollah operatives to a message from their leadership in a chorus of chimes, melodies, and buzzes.

But it wasn’t the militants’ leaders. The pagers had been sent by Hezbollah’s archenemy, and within seconds the alerts were followed by the sounds of explosions and cries of pain and panic in streets, shops and homes across Lebanon.

Powered by just a few ounces of an explosive compound concealed within the devices, the blasts sent grown men flying off motorcycles and slamming into walls, according to witnesses and video footage. People out shopping fell to the ground, writhing in agony, smoke snaking from their pockets.

Mohammed Awada, 52, and his son were driving by one man whose pager exploded, he said. “My son went crazy and started to scream when he saw the man’s hand flying away from him,” he said.

By the end of the day, at least a dozen people were dead and more than 2,700 were wounded, many of them maimed. And the following day, 20 more people were killed and hundreds wounded when walkie-talkies in Lebanon also began mysteriously exploding. Some of the dead and wounded were Hezbollah members, but others were not; four of the dead were children.

Video player loading

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • PLoS Comput Biol
  • v.16(7); 2020 Jul

Logo of ploscomp

Ten simple rules for reading a scientific paper

Maureen a. carey.

Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America

Kevin L. Steiner

William a. petri, jr, introduction.

“There is no problem that a library card can't solve” according to author Eleanor Brown [ 1 ]. This advice is sound, probably for both life and science, but even the best tool (like the library) is most effective when accompanied by instructions and a basic understanding of how and when to use it.

For many budding scientists, the first day in a new lab setting often involves a stack of papers, an email full of links to pertinent articles, or some promise of a richer understanding so long as one reads enough of the scientific literature. However, the purpose and approach to reading a scientific article is unlike that of reading a news story, novel, or even a textbook and can initially seem unapproachable. Having good habits for reading scientific literature is key to setting oneself up for success, identifying new research questions, and filling in the gaps in one’s current understanding; developing these good habits is the first crucial step.

Advice typically centers around two main tips: read actively and read often. However, active reading, or reading with an intent to understand, is both a learned skill and a level of effort. Although there is no one best way to do this, we present 10 simple rules, relevant to novices and seasoned scientists alike, to teach our strategy for active reading based on our experience as readers and as mentors of undergraduate and graduate researchers, medical students, fellows, and early career faculty. Rules 1–5 are big picture recommendations. Rules 6–8 relate to philosophy of reading. Rules 9–10 guide the “now what?” questions one should ask after reading and how to integrate what was learned into one’s own science.

Rule 1: Pick your reading goal

What you want to get out of an article should influence your approach to reading it. Table 1 includes a handful of example intentions and how you might prioritize different parts of the same article differently based on your goals as a reader.

ExamplesIntentionPriorities
1You are new to reading scientific papers. For each panel of each figure, focus particularly on the questions outlined in Rule 3.
2You are entering a new field and want to learn what is important in that field.Focus on the beginning (motivation presented in the introduction) and the end (next steps presented in the conclusion).
3You receive automated alerts to notify you of the latest publication from a particular author whose work inspires you; you are hoping to work with them for the next phase of your research career and want to know what they are involved in.Skim the entire work, thinking about how it fits into the author’s broader publication history.
4You receive automated alerts to notify you of the latest publication containing a set of keywords because you want to be aware of new ways a technique is being applied or the new developments in a particular topic or research area.Focus on what was done in the methods and the motivation for the approach taken; this is often presented in the introduction.
5You were asked to review an article prior to publication to evaluate the quality of work or to present in a journal club. Same as example 1. Also, do the data support the interpretations? What alternative explanations exist? Are the data presented in a logical way so that many researchers would be able to understand? If the research is about a controversial topic, do the author(s) appropriately present the conflict and avoid letting their own biases influence the interpretation?

1 Yay! Welcome!

2 A journal club is when a group of scientists get together to discuss a paper. Usually one person leads the discussion and presents all of the data. The group discusses their own interpretations and the authors’ interpretation.

Rule 2: Understand the author’s goal

In written communication, the reader and the writer are equally important. Both influence the final outcome: in this case, your scientific understanding! After identifying your goal, think about the author’s goal for sharing this project. This will help you interpret the data and understand the author’s interpretation of the data. However, this requires some understanding of who the author(s) are (e.g., what are their scientific interests?), the scientific field in which they work (e.g., what techniques are available in this field?), and how this paper fits into the author’s research (e.g., is this work building on an author’s longstanding project or controversial idea?). This information may be hard to glean without experience and a history of reading. But don’t let this be a discouragement to starting the process; it is by the act of reading that this experience is gained!

A good step toward understanding the goal of the author(s) is to ask yourself: What kind of article is this? Journals publish different types of articles, including methods, review, commentary, resources, and research articles as well as other types that are specific to a particular journal or groups of journals. These article types have different formatting requirements and expectations for content. Knowing the article type will help guide your evaluation of the information presented. Is the article a methods paper, presenting a new technique? Is the article a review article, intended to summarize a field or problem? Is it a commentary, intended to take a stand on a controversy or give a big picture perspective on a problem? Is it a resource article, presenting a new tool or data set for others to use? Is it a research article, written to present new data and the authors’ interpretation of those data? The type of paper, and its intended purpose, will get you on your way to understanding the author’s goal.

Rule 3: Ask six questions

When reading, ask yourself: (1) What do the author(s) want to know (motivation)? (2) What did they do (approach/methods)? (3) Why was it done that way (context within the field)? (4) What do the results show (figures and data tables)? (5) How did the author(s) interpret the results (interpretation/discussion)? (6) What should be done next? (Regarding this last question, the author(s) may provide some suggestions in the discussion, but the key is to ask yourself what you think should come next.)

Each of these questions can and should be asked about the complete work as well as each table, figure, or experiment within the paper. Early on, it can take a long time to read one article front to back, and this can be intimidating. Break down your understanding of each section of the work with these questions to make the effort more manageable.

Rule 4: Unpack each figure and table

Scientists write original research papers primarily to present new data that may change or reinforce the collective knowledge of a field. Therefore, the most important parts of this type of scientific paper are the data. Some people like to scrutinize the figures and tables (including legends) before reading any of the “main text”: because all of the important information should be obtained through the data. Others prefer to read through the results section while sequentially examining the figures and tables as they are addressed in the text. There is no correct or incorrect approach: Try both to see what works best for you. The key is making sure that one understands the presented data and how it was obtained.

For each figure, work to understand each x- and y-axes, color scheme, statistical approach (if one was used), and why the particular plotting approach was used. For each table, identify what experimental groups and variables are presented. Identify what is shown and how the data were collected. This is typically summarized in the legend or caption but often requires digging deeper into the methods: Do not be afraid to refer back to the methods section frequently to ensure a full understanding of how the presented data were obtained. Again, ask the questions in Rule 3 for each figure or panel and conclude with articulating the “take home” message.

Rule 5: Understand the formatting intentions

Just like the overall intent of the article (discussed in Rule 2), the intent of each section within a research article can guide your interpretation. Some sections are intended to be written as objective descriptions of the data (i.e., the Results section), whereas other sections are intended to present the author’s interpretation of the data. Remember though that even “objective” sections are written by and, therefore, influenced by the authors interpretations. Check out Table 2 to understand the intent of each section of a research article. When reading a specific paper, you can also refer to the journal’s website to understand the formatting intentions. The “For Authors” section of a website will have some nitty gritty information that is less relevant for the reader (like word counts) but will also summarize what the journal editors expect in each section. This will help to familiarize you with the goal of each article section.

SectionContent
TitleThe “take home” message of the entire project, according to the authors.
Author listThese people made significant scientific contributions to the project. Fields differ in the standard practice for ordering authors. For example, as a general rule for biomedical sciences, the first author led the project’s implementation, and the last author was the primary supervisor to the project.
AbstractA brief overview of the research question, approach, results, and interpretation. This is the road map or elevator pitch for an article.
IntroductionSeveral paragraphs (or less) to present the research question and why it is important. A newcomer to the field should get a crash course in the field from this section.
MethodsWhat was done? How was it done? Ideally, one should be able to recreate a project by reading the methods. In reality, the methods are often overly condensed. Sometimes greater detail is provided within a “Supplemental” section available online (see below).
ResultsWhat was found? Paragraphs often begin with a statement like this: “To do X, we used approach Y to measure Z.” The results should be objective observations.
Figures, tables, legends, and captionsThe data are presented in figures and tables. Legends and captions provide necessary information like abbreviations, summaries of methods, and clarifications.
DiscussionWhat do the results mean and how do they relate to previous findings in the literature? This is the perspective of the author(s) on the results and their ideas on what might be appropriate next steps. Often it may describe some (often not all!) strengths and limitations of the study: Pay attention to this self-reflection of the author(s) and consider whether you agree or would add to their ideas.
ConclusionA brief summary of the implications of the results.
ReferencesA list of previously published papers, datasets, or databases that were essential for the implementation of this project or interpretation of data. This section may be a valuable resource listing important papers within the field that are worth reading as well.
Supplemental materialAny additional methods, results, or information necessary to support the results or interpretations presented in the discussion.
Supplemental dataEssential datasets that are too large or cumbersome to include in the paper. Especially for papers that include “big data” (like sequencing or modeling results), this is often where the real, raw data is presented.

Research articles typically contain each of these sections, although sometimes the “results” and “discussion” sections (or “discussion” and “conclusion” sections) are merged into one section. Additional sections may be included, based on request of the journal or the author(s). Keep in mind: If it was included, someone thought it was important for you to read.

Rule 6: Be critical

Published papers are not truths etched in stone. Published papers in high impact journals are not truths etched in stone. Published papers by bigwigs in the field are not truths etched in stone. Published papers that seem to agree with your own hypothesis or data are not etched in stone. Published papers that seem to refute your hypothesis or data are not etched in stone.

Science is a never-ending work in progress, and it is essential that the reader pushes back against the author’s interpretation to test the strength of their conclusions. Everyone has their own perspective and may interpret the same data in different ways. Mistakes are sometimes published, but more often these apparent errors are due to other factors such as limitations of a methodology and other limits to generalizability (selection bias, unaddressed, or unappreciated confounders). When reading a paper, it is important to consider if these factors are pertinent.

Critical thinking is a tough skill to learn but ultimately boils down to evaluating data while minimizing biases. Ask yourself: Are there other, equally likely, explanations for what is observed? In addition to paying close attention to potential biases of the study or author(s), a reader should also be alert to one’s own preceding perspective (and biases). Take time to ask oneself: Do I find this paper compelling because it affirms something I already think (or wish) is true? Or am I discounting their findings because it differs from what I expect or from my own work?

The phenomenon of a self-fulfilling prophecy, or expectancy, is well studied in the psychology literature [ 2 ] and is why many studies are conducted in a “blinded” manner [ 3 ]. It refers to the idea that a person may assume something to be true and their resultant behavior aligns to make it true. In other words, as humans and scientists, we often find exactly what we are looking for. A scientist may only test their hypotheses and fail to evaluate alternative hypotheses; perhaps, a scientist may not be aware of alternative, less biased ways to test her or his hypothesis that are typically used in different fields. Individuals with different life, academic, and work experiences may think of several alternative hypotheses, all equally supported by the data.

Rule 7: Be kind

The author(s) are human too. So, whenever possible, give them the benefit of the doubt. An author may write a phrase differently than you would, forcing you to reread the sentence to understand it. Someone in your field may neglect to cite your paper because of a reference count limit. A figure panel may be misreferenced as Supplemental Fig 3E when it is obviously Supplemental Fig 4E. While these things may be frustrating, none are an indication that the quality of work is poor. Try to avoid letting these minor things influence your evaluation and interpretation of the work.

Similarly, if you intend to share your critique with others, be extra kind. An author (especially the lead author) may invest years of their time into a single paper. Hearing a kindly phrased critique can be difficult but constructive. Hearing a rude, brusque, or mean-spirited critique can be heartbreaking, especially for young scientists or those seeking to establish their place within a field and who may worry that they do not belong.

Rule 8: Be ready to go the extra mile

To truly understand a scientific work, you often will need to look up a term, dig into the supplemental materials, or read one or more of the cited references. This process takes time. Some advisors recommend reading an article three times: The first time, simply read without the pressure of understanding or critiquing the work. For the second time, aim to understand the paper. For the third read through, take notes.

Some people engage with a paper by printing it out and writing all over it. The reader might write question marks in the margins to mark parts (s)he wants to return to, circle unfamiliar terms (and then actually look them up!), highlight or underline important statements, and draw arrows linking figures and the corresponding interpretation in the discussion. Not everyone needs a paper copy to engage in the reading process but, whatever your version of “printing it out” is, do it.

Rule 9: Talk about it

Talking about an article in a journal club or more informal environment forces active reading and participation with the material. Studies show that teaching is one of the best ways to learn and that teachers learn the material even better as the teaching task becomes more complex [ 4 – 5 ]; anecdotally, such observations inspired the phrase “to teach is to learn twice.”

Beyond formal settings such as journal clubs, lab meetings, and academic classes, discuss papers with your peers, mentors, and colleagues in person or electronically. Twitter and other social media platforms have become excellent resources for discussing papers with other scientists, the public or your nonscientist friends, or even the paper’s author(s). Describing a paper can be done at multiple levels and your description can contain all of the scientific details, only the big picture summary, or perhaps the implications for the average person in your community. All of these descriptions will solidify your understanding, while highlighting gaps in your knowledge and informing those around you.

Rule 10: Build on it

One approach we like to use for communicating how we build on the scientific literature is by starting research presentations with an image depicting a wall of Lego bricks. Each brick is labeled with the reference for a paper, and the wall highlights the body of literature on which the work is built. We describe the work and conclusions of each paper represented by a labeled brick and discuss each brick and the wall as a whole. The top brick on the wall is left blank: We aspire to build on this work and label this brick with our own work. We then delve into our own research, discoveries, and the conclusions it inspires. We finish our presentations with the image of the Legos and summarize our presentation on that empty brick.

Whether you are reading an article to understand a new topic area or to move a research project forward, effective learning requires that you integrate knowledge from multiple sources (“click” those Lego bricks together) and build upwards. Leveraging published work will enable you to build a stronger and taller structure. The first row of bricks is more stable once a second row is assembled on top of it and so on and so forth. Moreover, the Lego construction will become taller and larger if you build upon the work of others, rather than using only your own bricks.

Build on the article you read by thinking about how it connects to ideas described in other papers and within own work, implementing a technique in your own research, or attempting to challenge or support the hypothesis of the author(s) with a more extensive literature review. Integrate the techniques and scientific conclusions learned from an article into your own research or perspective in the classroom or research lab. You may find that this process strengthens your understanding, leads you toward new and unexpected interests or research questions, or returns you back to the original article with new questions and critiques of the work. All of these experiences are part of the “active reading”: process and are signs of a successful reading experience.

In summary, practice these rules to learn how to read a scientific article, keeping in mind that this process will get easier (and faster) with experience. We are firm believers that an hour in the library will save a week at the bench; this diligent practice will ultimately make you both a more knowledgeable and productive scientist. As you develop the skills to read an article, try to also foster good reading and learning habits for yourself (recommendations here: [ 6 ] and [ 7 ], respectively) and in others. Good luck and happy reading!

Acknowledgments

Thank you to the mentors, teachers, and students who have shaped our thoughts on reading, learning, and what science is all about.

Funding Statement

MAC was supported by the PhRMA Foundation's Postdoctoral Fellowship in Translational Medicine and Therapeutics and the University of Virginia's Engineering-in-Medicine seed grant, and KLS was supported by the NIH T32 Global Biothreats Training Program at the University of Virginia (AI055432). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Energy.gov Home

The Science

Superconducting radiofrequency (SRF) cavities form the backbone of advanced particle accelerators . SRF cavities are part of the systems that power the electromagnetic fields that accelerate subatomic particles . The cleanliness, shape, and roughness of the inner surfaces of these cavities contribute to their efficiency. Scientists have developed a new toolkit to help accelerator builders better monitor and control the characteristics of inner cavity surfaces. In tests of the toolkit, scientists found that smoother SRF cavities function more efficiently. This means that the smoothness of the cavity surface indicates its performance. The toolkit can also predict cavity performance by quantifying a cavity’s surface smoothness.

SRF cavities made of niobium are the standard for efficient, high-power acceleration of particle beams. Adding contaminants to niobium cavities can further enhance their efficiency. But these enhanced cavities can’t withstand high-power operations as well as pure niobium cavities can. This research studied the surface roughness of cavities with added nitrogen or oxygen. The result highlights the crucial role that surface topography plays in performance. It also hinted that oxygen would provide the cheapest gains in efficiency. The goal for the toolkit this research developed is to help accelerator scientists make better SRF cavities for future accelerators by controlling surface smoothness and impurities.

Particle accelerator scientists have developed a novel toolkit for investigating SRF cavity topography and its impact on performance. The toolkit was built on decades of empirical research in surface processing of niobium SRF cavities. In this work, the team used the toolkit to investigate samples treated with the same recipe applied for cavities adopted by upgrade projects at the Linac Coherent Light Source , a Department of Energy (DOE) user facility. These upgrades are the DOE’s latest additions to its SRF accelerator fleet.

Their study revealed that the grain boundaries, formed as the niobium metal is made, play a role in performance. Grooves develop along grain boundaries after chemical processing of nitrogen-doped niobium. Atomic force microscope measurements combined with an algorithm based on differential surface geometry predict a suppression factor of the superheating field due to these grooves. The grooves are found to degrade SRF cavity performance because of early breakdown of doped surfaces. Thus, a smoother surface would give better performance for higher fields. The researchers also made new measurements of niobium samples prepared with a simplified oxygen-doping process. These cavity samples showed better topography. This indicates that controlling the surface smoothness and impurity profile may help boost performance both in high efficiency and high fields to help DOE’s future SRF accelerators, such as the Electron-Ion Collider (EIC).

Eric Lechner Thomas Jefferson National Accelerator Facility [email protected]

This material is based on work supported by the Department of Energy Office of Science, Office of Nuclear Physics, by an Office of Nuclear Physics Early Career Award, and by the DOE Office of Science Office of High Energy Physics.

Publications

Lechner, E.M., et al. , Topographic evolution of heat-treated Nb upon electropolishing for superconducting rf applications . Physical Review Accelerators and Beams 26 , 103101. [DOI: 10.1103/PhysRevAccelBeams.26.103101]

Related Links

Smoother Surfaces Make for Better Accelerators , Jefferson Lab news release

IMAGES

  1. How to Write a Scientific Paper

    how to make scientific research paper

  2. How to make scientific paper

    how to make scientific research paper

  3. (PDF) How to Write the Introduction to a Scientific Paper?

    how to make scientific research paper

  4. Tips For How To Write A Scientific Research Paper

    how to make scientific research paper

  5. How to Write a Scientific Paper

    how to make scientific research paper

  6. How To Write A Research Paper Step By Step

    how to make scientific research paper

VIDEO

  1. Research Methods Workshop on Reading Computer Science Research Papers

  2. How to Write a Scientific Research Paper

  3. How to write a scientific research paper

  4. How to write a scientific research paper

  5. Writing a Scientific Research Paper: The Literature Review

  6. How to write a scientific research paper

COMMENTS

  1. How to Write a Research Paper: the LEAP approach (+cheat sheet)

    How to write a research paper according to the LEAP approach. For a scientist, it is much easier to start writing a research paper with laying out the facts in the narrow sections (i.e. results), step back to describe them (i.e. write the discussion), and step back again to explain the broader picture in the introduction.

  2. How to Write a Research Paper

    Choose a research paper topic. Conduct preliminary research. Develop a thesis statement. Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion. The second draft.

  3. How to write a research paper

    Then, writing the paper and getting it ready for submission may take me 3 to 6 months. I like separating the writing into three phases. The results and the methods go first, as this is where I write what was done and how, and what the outcomes were. In a second phase, I tackle the introduction and refine the results section with input from my ...

  4. Writing a scientific article: A step-by-step guide for beginners

    We describe here the basic steps to follow in writing a scientific article. We outline the main sections that an average article should contain; the elements that should appear in these sections, and some pointers for making the overall result attractive and acceptable for publication. 1.

  5. Successful Scientific Writing and Publishing: A Step-by-Step Approach

    Sections of an Original Research Article. Original research articles make up most of the peer-reviewed literature (), follow a standardized format, and are the focus of this article.The 4 main sections are the introduction, methods, results, and discussion, sometimes referred to by the initialism, IMRAD.

  6. Toolkit: How to write a great paper

    A clear format will ensure that your research paper is understood by your readers. Follow: 1. Context — your introduction. 2. Content — your results. 3. Conclusion — your discussion. Plan ...

  7. How to write a first-class paper

    In each paragraph, the first sentence defines the context, the body contains the new idea and the final sentence offers a conclusion. For the whole paper, the introduction sets the context, the ...

  8. Writing a Research Paper Introduction

    Table of contents. Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  9. The Ultimate Guide to Writing a Research Paper

    Few things strike more fear in academics than the accursed research paper, a term synonymous with long hours and hard work.Luckily there's a secret to help you get through them. As long as you know how to write a research paper properly, you'll find they're not so bad . . . or at least less painful.. In this guide we concisely explain how to write an academic research paper step by step.

  10. Writing Center

    Download the training. This page is your source for scientific writing & publishing essentials. Learn how to write a successful scientific research article with our free, practical guides and hands-on resources for authors looking to improve their scientific publishing skillset.

  11. How to Create a Structured Research Paper Outline

    A research paper outline is a useful tool to aid in the writing process, providing a structure to follow with all information to be included in the paper clearly organized. A quality outline can make writing your research paper more efficient by helping to: Organize your thoughts; Understand the flow of information and how ideas are related

  12. How to Write and Publish a Research Paper for a Peer ...

    Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common ...

  13. How to Write Your First Research Paper

    After you get enough feedback and decide on the journal you will submit to, the process of real writing begins. Copy your outline into a separate file and expand on each of the points, adding data and elaborating on the details. When you create the first draft, do not succumb to the temptation of editing.

  14. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  15. HOW TO WRITE A SCIENTIFIC ARTICLE

    The task of writing a scientific paper and submitting it to a journal for publication is a time‐consuming and often daunting task. 3,4 Barriers to effective writing include lack of experience, poor writing habits, writing anxiety, unfamiliarity with the requirements of scholarly writing, lack of confidence in writing ability, fear of failure ...

  16. Writing the Scientific Paper

    The scientific paper has developed over the past three centuries into a tool to communicate the results of scientific inquiry. The main audience for scientific papers is extremely specialized. The purpose of these papers is twofold: to present information so that it is easy to retrieve, and to present enough information that the reader can ...

  17. Research Guides: Writing a Scientific Paper: RESULTS

    Chris A. Mack. SPIE. 2018. Present the results of the paper, in logical order, using tables and graphs as necessary. Explain the results and show how they help to answer the research questions posed in the Introduction. Evidence does not explain itself; the results must be presented and then explained. Avoid: presenting results that are never ...

  18. Library Research Guides: STEM: How To Write A Scientific Paper

    Introduction. The introduction of a scientific paper discusses the problem being studied and other theory that is relevant to understanding the findings. The hypothesis of the experiment and the motivation for the research are stated in this section. Write the introduction in your own words. Try not to copy from a lab manual or other guidelines.

  19. Writing a Scientific Research Project Proposal

    Abstract: This is a brief (300-500 words) summary that includes the research question, your rationale for the study, and any applicable hypothesis. You should also include a brief description of your methodology, including procedures, samples, instruments, etc. Introduction: The opening paragraph of your research proposal is, perhaps, the most ...

  20. How to write a good research paper title

    Shorten the text to make it more concise, while still remaining descriptive. Repeat this process until you have a title of fewer than 15 words. 2. A good title is easily searchable. Most readers ...

  21. PDF Writing a scientific paper, step by painful step

    To polish this turd takes more than checking for typos; there are four critical steps. (1) read and revise the paper until you believe it is complete and coherent. (2) confirm the paragraph and sentence structure/flow. (3) correct common wording mistakes. (4) proof it and send the draft out for comments.

  22. How to Write and Publish a Research Paper for a Peer-Reviewed Journal

    The introduction section should be approximately three to five paragraphs in length. Look at examples from your target journal to decide the appropriate length. This section should include the elements shown in Fig. 1. Begin with a general context, narrowing to the specific focus of the paper.

  23. How to Prepare and Deliver a Great Research Presentation

    "Likewise, if you can, practice with the projector you'll use during your talk to make sure it displays colors accurately—especially reds. Sometimes, you must add contrast to your images to ensure features aren't lost." Finally, choose fonts and colors that make sense and carry the same elements throughout all slides.

  24. This Elegant Math Problem Could Help You Make the ...

    On supporting science journalism. If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the ...

  25. 6 Freelance Jobs To Make $50+ An Hour In 2024

    Nearly 40% of the U.S. workforce were freelancers last year, adding $1.27 trillion to the economy. getty. With the latest advancements in technology, freelancers are seizing new opportunities to ...

  26. A carb intolerance may be the reason weight loss is difficult

    Your source for health, wellness, innovation, research and science news from the experts at Ohio State. There's a powerful story behind every headline at Ohio State Health & Discovery. As one of the largest academic health centers and health sciences campuses in the nation, we are uniquely positioned with renowned experts covering all aspects ...

  27. How Israel Built a Modern-Day Trojan Horse: Exploding Pagers

    In Lebanon, as Israel picked off senior Hezbollah commandos with targeted assassinations, their leader came to a conclusion: If Israel was going high-tech, Hezbollah would go low.

  28. Ten simple rules for reading a scientific paper

    Rule 6: Be critical. Published papers are not truths etched in stone. Published papers in high impact journals are not truths etched in stone. Published papers by bigwigs in the field are not truths etched in stone. Published papers that seem to agree with your own hypothesis or data are not etched in stone.

  29. Smoother Surfaces Make for Better Particle Accelerators

    The Science. Superconducting radiofrequency (SRF) cavities form the backbone of advanced particle accelerators. SRF cavities are part of the systems that power the electromagnetic fields that accelerate subatomic particles. The cleanliness, shape, and roughness of the inner surfaces of these cavities contribute to their efficiency.

  30. How did pagers explode in Lebanon and why was Hezbollah using ...

    Hundreds of pagers carried by Hezbollah members blew up nearly simultaneously in an attack that tops a series of covert assassinations and cyber-attacks in the region.