Hypothesis n., plural: hypotheses [/haɪˈpɑːθəsɪs/] Definition: Testable scientific prediction

Table of Contents

What Is Hypothesis?

A scientific hypothesis is a foundational element of the scientific method . It’s a testable statement proposing a potential explanation for natural phenomena. The term hypothesis means “little theory” . A hypothesis is a short statement that can be tested and gives a possible reason for a phenomenon or a possible link between two variables . In the setting of scientific research, a hypothesis is a tentative explanation or statement that can be proven wrong and is used to guide experiments and empirical research.

It is an important part of the scientific method because it gives a basis for planning tests, gathering data, and judging evidence to see if it is true and could help us understand how natural things work. Several hypotheses can be tested in the real world, and the results of careful and systematic observation and analysis can be used to support, reject, or improve them.

Researchers and scientists often use the word hypothesis to refer to this educated guess . These hypotheses are firmly established based on scientific principles and the rigorous testing of new technology and experiments .

For example, in astrophysics, the Big Bang Theory is a working hypothesis that explains the origins of the universe and considers it as a natural phenomenon. It is among the most prominent scientific hypotheses in the field.

“The scientific method: steps, terms, and examples” by Scishow:

Biology definition: A hypothesis  is a supposition or tentative explanation for (a group of) phenomena, (a set of) facts, or a scientific inquiry that may be tested, verified or answered by further investigation or methodological experiment. It is like a scientific guess . It’s an idea or prediction that scientists make before they do experiments. They use it to guess what might happen and then test it to see if they were right. It’s like a smart guess that helps them learn new things. A scientific hypothesis that has been verified through scientific experiment and research may well be considered a scientific theory .

Etymology: The word “hypothesis” comes from the Greek word “hupothesis,” which means “a basis” or “a supposition.” It combines “hupo” (under) and “thesis” (placing). Synonym:   proposition; assumption; conjecture; postulate Compare:   theory See also: null hypothesis

Characteristics Of Hypothesis

A useful hypothesis must have the following qualities:

  • It should never be written as a question.
  • You should be able to test it in the real world to see if it’s right or wrong.
  • It needs to be clear and exact.
  • It should list the factors that will be used to figure out the relationship.
  • It should only talk about one thing. You can make a theory in either a descriptive or form of relationship.
  • It shouldn’t go against any natural rule that everyone knows is true. Verification will be done well with the tools and methods that are available.
  • It should be written in as simple a way as possible so that everyone can understand it.
  • It must explain what happened to make an answer necessary.
  • It should be testable in a fair amount of time.
  • It shouldn’t say different things.

Sources Of Hypothesis

Sources of hypothesis are:

  • Patterns of similarity between the phenomenon under investigation and existing hypotheses.
  • Insights derived from prior research, concurrent observations, and insights from opposing perspectives.
  • The formulations are derived from accepted scientific theories and proposed by researchers.
  • In research, it’s essential to consider hypothesis as different subject areas may require various hypotheses (plural form of hypothesis). Researchers also establish a significance level to determine the strength of evidence supporting a hypothesis.
  • Individual cognitive processes also contribute to the formation of hypotheses.

One hypothesis is a tentative explanation for an observation or phenomenon. It is based on prior knowledge and understanding of the world, and it can be tested by gathering and analyzing data. Observed facts are the data that are collected to test a hypothesis. They can support or refute the hypothesis.

For example, the hypothesis that “eating more fruits and vegetables will improve your health” can be tested by gathering data on the health of people who eat different amounts of fruits and vegetables. If the people who eat more fruits and vegetables are healthier than those who eat less fruits and vegetables, then the hypothesis is supported.

Hypotheses are essential for scientific inquiry. They help scientists to focus their research, to design experiments, and to interpret their results. They are also essential for the development of scientific theories.

Types Of Hypothesis

In research, you typically encounter two types of hypothesis: the alternative hypothesis (which proposes a relationship between variables) and the null hypothesis (which suggests no relationship).

Simple Hypothesis

It illustrates the association between one dependent variable and one independent variable. For instance, if you consume more vegetables, you will lose weight more quickly. Here, increasing vegetable consumption is the independent variable, while weight loss is the dependent variable.

Complex Hypothesis

It exhibits the relationship between at least two dependent variables and at least two independent variables. Eating more vegetables and fruits results in weight loss, radiant skin, and a decreased risk of numerous diseases, including heart disease.

Directional Hypothesis

It shows that a researcher wants to reach a certain goal. The way the factors are related can also tell us about their nature. For example, four-year-old children who eat well over a time of five years have a higher IQ than children who don’t eat well. This shows what happened and how it happened.

Non-directional Hypothesis

When there is no theory involved, it is used. It is a statement that there is a connection between two variables, but it doesn’t say what that relationship is or which way it goes.

Null Hypothesis

It says something that goes against the theory. It’s a statement that says something is not true, and there is no link between the independent and dependent factors. “H 0 ” represents the null hypothesis.

Associative and Causal Hypothesis

When a change in one variable causes a change in the other variable, this is called the associative hypothesis . The causal hypothesis, on the other hand, says that there is a cause-and-effect relationship between two or more factors.

Examples Of Hypothesis

Examples of simple hypotheses:

  • Students who consume breakfast before taking a math test will have a better overall performance than students who do not consume breakfast.
  • Students who experience test anxiety before an English examination will get lower scores than students who do not experience test anxiety.
  • Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone, is a statement that suggests that drivers who talk on the phone while driving are more likely to make mistakes.

Examples of a complex hypothesis:

  • Individuals who consume a lot of sugar and don’t get much exercise are at an increased risk of developing depression.
  • Younger people who are routinely exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces, according to a new study.
  • Increased levels of air pollution led to higher rates of respiratory illnesses, which in turn resulted in increased costs for healthcare for the affected communities.

Examples of Directional Hypothesis:

  • The crop yield will go up a lot if the amount of fertilizer is increased.
  • Patients who have surgery and are exposed to more stress will need more time to get better.
  • Increasing the frequency of brand advertising on social media will lead to a significant increase in brand awareness among the target audience.

Examples of Non-Directional Hypothesis (or Two-Tailed Hypothesis):

  • The test scores of two groups of students are very different from each other.
  • There is a link between gender and being happy at work.
  • There is a correlation between the amount of caffeine an individual consumes and the speed with which they react.

Examples of a null hypothesis:

  • Children who receive a new reading intervention will have scores that are different than students who do not receive the intervention.
  • The results of a memory recall test will not reveal any significant gap in performance between children and adults.
  • There is not a significant relationship between the number of hours spent playing video games and academic performance.

Examples of Associative Hypothesis:

  • There is a link between how many hours you spend studying and how well you do in school.
  • Drinking sugary drinks is bad for your health as a whole.
  • There is an association between socioeconomic status and access to quality healthcare services in urban neighborhoods.

Functions Of Hypothesis

The research issue can be understood better with the help of a hypothesis, which is why developing one is crucial. The following are some of the specific roles that a hypothesis plays: (Rashid, Apr 20, 2022)

  • A hypothesis gives a study a point of concentration. It enlightens us as to the specific characteristics of a study subject we need to look into.
  • It instructs us on what data to acquire as well as what data we should not collect, giving the study a focal point .
  • The development of a hypothesis improves objectivity since it enables the establishment of a focal point.
  • A hypothesis makes it possible for us to contribute to the development of the theory. Because of this, we are in a position to definitively determine what is true and what is untrue .

How will Hypothesis help in the Scientific Method?

  • The scientific method begins with observation and inquiry about the natural world when formulating research questions. Researchers can refine their observations and queries into specific, testable research questions with the aid of hypothesis. They provide an investigation with a focused starting point.
  • Hypothesis generate specific predictions regarding the expected outcomes of experiments or observations. These forecasts are founded on the researcher’s current knowledge of the subject. They elucidate what researchers anticipate observing if the hypothesis is true.
  • Hypothesis direct the design of experiments and data collection techniques. Researchers can use them to determine which variables to measure or manipulate, which data to obtain, and how to conduct systematic and controlled research.
  • Following the formulation of a hypothesis and the design of an experiment, researchers collect data through observation, measurement, or experimentation. The collected data is used to verify the hypothesis’s predictions.
  • Hypothesis establish the criteria for evaluating experiment results. The observed data are compared to the predictions generated by the hypothesis. This analysis helps determine whether empirical evidence supports or refutes the hypothesis.
  • The results of experiments or observations are used to derive conclusions regarding the hypothesis. If the data support the predictions, then the hypothesis is supported. If this is not the case, the hypothesis may be revised or rejected, leading to the formulation of new queries and hypothesis.
  • The scientific approach is iterative, resulting in new hypothesis and research issues from previous trials. This cycle of hypothesis generation, testing, and refining drives scientific progress.

Importance Of Hypothesis

  • Hypothesis are testable statements that enable scientists to determine if their predictions are accurate. This assessment is essential to the scientific method, which is based on empirical evidence.
  • Hypothesis serve as the foundation for designing experiments or data collection techniques. They can be used by researchers to develop protocols and procedures that will produce meaningful results.
  • Hypothesis hold scientists accountable for their assertions. They establish expectations for what the research should reveal and enable others to assess the validity of the findings.
  • Hypothesis aid in identifying the most important variables of a study. The variables can then be measured, manipulated, or analyzed to determine their relationships.
  • Hypothesis assist researchers in allocating their resources efficiently. They ensure that time, money, and effort are spent investigating specific concerns, as opposed to exploring random concepts.
  • Testing hypothesis contribute to the scientific body of knowledge. Whether or not a hypothesis is supported, the results contribute to our understanding of a phenomenon.
  • Hypothesis can result in the creation of theories. When supported by substantive evidence, hypothesis can serve as the foundation for larger theoretical frameworks that explain complex phenomena.
  • Beyond scientific research, hypothesis play a role in the solution of problems in a variety of domains. They enable professionals to make educated assumptions about the causes of problems and to devise solutions.

Research Hypotheses: Did you know that a hypothesis refers to an educated guess or prediction about the outcome of a research study?

It’s like a roadmap guiding researchers towards their destination of knowledge. Just like a compass points north, a well-crafted hypothesis points the way to valuable discoveries in the world of science and inquiry.

Choose the best answer. 

Send Your Results (Optional)

Further reading.

  • RNA-DNA World Hypothesis
  • BYJU’S. (2023). Hypothesis. Retrieved 01 Septermber 2023, from https://byjus.com/physics/hypothesis/#sources-of-hypothesis
  • Collegedunia. (2023). Hypothesis. Retrieved 1 September 2023, from https://collegedunia.com/exams/hypothesis-science-articleid-7026#d
  • Hussain, D. J. (2022). Hypothesis. Retrieved 01 September 2023, from https://mmhapu.ac.in/doc/eContent/Management/JamesHusain/Research%20Hypothesis%20-Meaning,%20Nature%20&%20Importance-Characteristics%20of%20Good%20%20Hypothesis%20Sem2.pdf
  • Media, D. (2023). Hypothesis in the Scientific Method. Retrieved 01 September 2023, from https://www.verywellmind.com/what-is-a-hypothesis-2795239#toc-hypotheses-examples
  • Rashid, M. H. A. (Apr 20, 2022). Research Methodology. Retrieved 01 September 2023, from https://limbd.org/hypothesis-definitions-functions-characteristics-types-errors-the-process-of-testing-a-hypothesis-hypotheses-in-qualitative-research/#:~:text=Functions%20of%20a%20Hypothesis%3A&text=Specifically%2C%20a%20hypothesis%20serves%20the,providing%20focus%20to%20the%20study.

©BiologyOnline.com. Content provided and moderated by Biology Online Editors.

Last updated on September 8th, 2023

You will also like...

Gene action – operon hypothesis, water in plants, growth and plant hormones, sigmund freud and carl gustav jung, population growth and survivorship, related articles....

RNA-DNA World Hypothesis?

On Mate Selection Evolution: Are intelligent males more attractive?

Actions of Caffeine in the Brain with Special Reference to Factors That Contribute to Its Widespread Use

Dead Man Walking

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism. Run a free check.

Step 1. ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is high school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout high school will have lower rates of unplanned pregnancy teenagers who did not receive any sex education. High school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved September 8, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, what is your plagiarism score.

Examples

Biology Hypothesis

Ai generator.

use hypothesis in a sentence biology

Delve into the fascinating world of biology with our definitive guide on crafting impeccable hypothesis thesis statements . As the foundation of any impactful biological research, a well-formed hypothesis paves the way for groundbreaking discoveries and insights. Whether you’re examining cellular behavior or large-scale ecosystems, mastering the art of the thesis statement is crucial. Embark on this enlightening journey with us, as we provide stellar examples and invaluable writing advice tailored for budding biologists.

What is a good hypothesis in biology?

A good hypothesis in biology is a statement that offers a tentative explanation for a biological phenomenon, based on prior knowledge or observation. It should be:

  • Testable: The hypothesis should be measurable and can be proven false through experiments or observations.
  • Clear: It should be stated clearly and without ambiguity.
  • Based on Knowledge: A solid hypothesis often stems from existing knowledge or literature in the field.
  • Specific: It should clearly define the variables being tested and the expected outcomes.
  • Falsifiable: It’s essential that a hypothesis can be disproven. This means there should be a possible result that could indicate the hypothesis is incorrect.

What is an example of a hypothesis statement in biology?

Example: “If a plant is given a higher concentration of carbon dioxide, then it will undergo photosynthesis at an increased rate compared to a plant given a standard concentration of carbon dioxide.”

In this example:

  • The independent variable (what’s being changed) is the concentration of carbon dioxide.
  • The dependent variable (what’s being measured) is the rate of photosynthesis. The statement proposes a cause-and-effect relationship that can be tested through experimentation.

100 Biology Thesis Statement Examples

Biology Thesis Statement Examples

Size: 272 KB

Biology, as the study of life and living organisms, is vast and diverse. Crafting a good thesis statement in this field requires a clear understanding of the topic at hand, capturing the essence of the research aim. From genetics to ecology, from cell biology to animal behavior, the following examples will give you a comprehensive idea about forming succinct biology thesis statements.

Genetics: Understanding the role of the BRCA1 gene in breast cancer susceptibility can lead to targeted treatments.

2. Evolution: The finch populations of the Galápagos Islands provide evidence of natural selection through beak variations in response to food availability.

3. Cell Biology: Mitochondrial dysfunction is a central factor in the onset of age-related neurodegenerative diseases.

4. Ecology: Deforestation in the Amazon directly impacts global carbon dioxide levels, influencing climate change.

5. Human Anatomy: Regular exercise enhances cardiovascular health by improving heart muscle function and reducing arterial plaque.

6. Marine Biology: Coral bleaching events in the Great Barrier Reef correlate strongly with rising sea temperatures.

7. Zoology: Migration patterns of Monarch butterflies are influenced by seasonal changes and available food sources.

8. Botany: The symbiotic relationship between mycorrhizal fungi and plant roots enhances nutrient absorption in poor soil conditions.

9. Microbiology: The overuse of antibiotics in healthcare has accelerated the evolution of antibiotic-resistant bacterial strains.

10. Physiology: High altitude adaptation in certain human populations has led to increased hemoglobin production.

11. Immunology: The role of T-cells in the human immune response is critical in developing effective vaccines against viral diseases.

12. Behavioral Biology: Birdsong variations in sparrows can be attributed to both genetic factors and environmental influences.

13. Developmental Biology: The presence of certain hormones during fetal development dictates the differentiation of sex organs in mammals.

14. Conservation Biology: The rapid decline of bee populations worldwide is directly linked to the use of certain pesticides in agriculture.

15. Molecular Biology: The CRISPR-Cas9 system has revolutionized gene editing techniques, offering potential cures for genetic diseases.

16. Virology: The mutation rate of the influenza virus necessitates annual updates in vaccine formulations.

17. Neurobiology: Neural plasticity in the adult brain can be enhanced through consistent learning and cognitive challenges.

18. Ethology: Elephant herds exhibit complex social structures and matriarchal leadership.

19. Biotechnology: Genetically modified crops can improve yield and resistance but also pose ecological challenges.

20. Environmental Biology: Industrial pollution in freshwater systems disrupts aquatic life and can lead to loss of biodiversity.

21. Neurodegenerative Diseases: Amyloid-beta protein accumulation in the brain is a key marker for Alzheimer’s disease progression.

22. Endocrinology: The disruption of thyroid hormone balance leads to metabolic disorders and weight fluctuations.

23. Bioinformatics: Machine learning algorithms can predict protein structures with high accuracy, advancing drug design.

24. Plant Physiology: The stomatal closure mechanism in plants helps prevent water loss and maintain turgor pressure.

25. Parasitology: The lifecycle of the malaria parasite involves complex interactions between humans and mosquitoes.

26. Molecular Genetics: Epigenetic modifications play a crucial role in gene expression regulation and cell differentiation.

27. Evolutionary Psychology: Human preference for symmetrical faces is a result of evolutionarily advantageous traits.

28. Ecosystem Dynamics: The reintroduction of apex predators in ecosystems restores ecological balance and biodiversity.

29. Epigenetics: Maternal dietary choices during pregnancy can influence the epigenetic profiles of offspring.

30. Biochemistry: Enzyme kinetics in metabolic pathways reveal insights into cellular energy production.

31. Bioluminescence: The role of bioluminescence in deep-sea organisms serves as camouflage and communication.

32. Genetics of Disease: Mutations in the CFTR gene cause cystic fibrosis, leading to severe respiratory and digestive issues.

33. Reproductive Biology: The influence of pheromones on mate selection is a critical aspect of reproductive success in many species.

34. Plant-Microbe Interactions: Rhizobium bacteria facilitate nitrogen fixation in leguminous plants, benefiting both organisms.

35. Comparative Anatomy: Homologous structures in different species provide evidence of shared evolutionary ancestry.

36. Stem Cell Research: Induced pluripotent stem cells hold immense potential for regenerative medicine and disease modeling.

37. Bioethics: Balancing the use of genetic modification in humans with ethical considerations is a complex challenge.

38. Molecular Evolution: The study of orthologous and paralogous genes offers insights into evolutionary relationships.

39. Bioenergetics: ATP synthesis through oxidative phosphorylation is a fundamental process driving cellular energy production.

40. Population Genetics: The Hardy-Weinberg equilibrium model helps predict allele frequencies in populations over time.

41. Animal Communication: The complex vocalizations of whales serve both social bonding and long-distance communication purposes.

42. Biogeography: The distribution of marsupials in Australia and their absence elsewhere highlights the impact of geographical isolation on evolution.

43. Aquatic Ecology: The phenomenon of eutrophication in lakes is driven by excessive nutrient runoff and results in harmful algal blooms.

44. Insect Behavior: The waggle dance of honeybees conveys precise information about the location of food sources to other members of the hive.

45. Microbial Ecology: The gut microbiome’s composition influences host health, metabolism, and immune system development.

46. Evolution of Sex: The Red Queen hypothesis explains the evolution of sexual reproduction as a defense against rapidly evolving parasites.

47. Immunotherapy: Manipulating the immune response to target cancer cells shows promise as an effective cancer treatment strategy.

48. Epigenetic Inheritance: Epigenetic modifications can be passed down through generations, impacting traits and disease susceptibility.

49. Comparative Genomics: Comparing the genomes of different species sheds light on genetic adaptations and evolutionary divergence.

50. Neurotransmission: The dopamine reward pathway in the brain is implicated in addiction and motivation-related behaviors.

51. Microbial Biotechnology: Genetically engineered bacteria can produce valuable compounds like insulin, revolutionizing pharmaceutical production.

52. Bioinformatics: DNA sequence analysis reveals evolutionary relationships between species and uncovers hidden genetic information.

53. Animal Migration: The navigational abilities of migratory birds are influenced by magnetic fields and celestial cues.

54. Human Evolution: The discovery of ancient hominin fossils provides insights into the evolutionary timeline of our species.

55. Cancer Genetics: Mutations in tumor suppressor genes contribute to the uncontrolled growth and division of cancer cells.

56. Aquatic Biomes: Coral reefs, rainforests of the sea, host incredible biodiversity and face threats from climate change and pollution.

57. Genomic Medicine: Personalized treatments based on an individual’s genetic makeup hold promise for more effective healthcare.

58. Molecular Pharmacology: Understanding receptor-ligand interactions aids in the development of targeted drugs for specific diseases.

59. Biodiversity Conservation: Preserving habitat diversity is crucial to maintaining ecosystems and preventing species extinction.

60. Evolutionary Developmental Biology: Comparing embryonic development across species reveals shared genetic pathways and evolutionary constraints.

61. Plant Reproductive Strategies: Understanding the trade-offs between asexual and sexual reproduction in plants sheds light on their evolutionary success.

62. Parasite-Host Interactions: The coevolution of parasites and their hosts drives adaptations and counter-adaptations over time.

63. Genomic Diversity: Exploring genetic variations within populations helps uncover disease susceptibilities and evolutionary history.

64. Ecological Succession: Studying the process of ecosystem recovery after disturbances provides insights into resilience and stability.

65. Conservation Genetics: Genetic diversity assessment aids in formulating effective conservation strategies for endangered species.

66. Neuroplasticity and Learning: Investigating how the brain adapts through synaptic changes improves our understanding of memory and learning.

67. Synthetic Biology: Designing and engineering biological systems offers innovative solutions for medical, environmental, and industrial challenges.

68. Ethnobotany: Documenting the traditional uses of plants by indigenous communities informs both conservation and pharmaceutical research.

69. Ecological Niche Theory: Exploring how species adapt to specific ecological niches enhances our grasp of biodiversity patterns.

70. Ecosystem Services: Quantifying the benefits provided by ecosystems, like pollination and carbon sequestration, supports conservation efforts.

71. Fungal Biology: Investigating mycorrhizal relationships between fungi and plants illuminates nutrient exchange mechanisms.

72. Molecular Clock Hypothesis: Genetic mutations accumulate over time, providing a method to estimate evolutionary divergence dates.

73. Developmental Disorders: Unraveling the genetic and environmental factors contributing to developmental disorders informs therapeutic approaches.

74. Epigenetics and Disease: Epigenetic modifications contribute to the development of diseases like cancer, diabetes, and neurodegenerative disorders.

75. Animal Cognition: Studying cognitive abilities in animals unveils their problem-solving skills, social dynamics, and sensory perceptions.

76. Microbiota-Brain Axis: The gut-brain connection suggests a bidirectional communication pathway influencing mental health and behavior.

77. Neurological Disorders: Neurodegenerative diseases like Parkinson’s and Alzheimer’s have genetic and environmental components that drive their progression.

78. Plant Defense Mechanisms: Investigating how plants ward off pests and pathogens informs sustainable agricultural practices.

79. Conservation Genomics: Genetic data aids in identifying distinct populations and prioritizing conservation efforts for at-risk species.

80. Reproductive Strategies: Comparing reproductive methods in different species provides insights into evolutionary trade-offs and reproductive success.

81. Epigenetics in Aging: Exploring epigenetic changes in the aging process offers insights into longevity and age-related diseases.

82. Antimicrobial Resistance: Understanding the genetic mechanisms behind bacterial resistance to antibiotics informs strategies to combat the global health threat.

83. Plant-Animal Interactions: Investigating mutualistic relationships between plants and pollinators showcases the delicate balance of ecosystems.

84. Adaptations to Extreme Environments: Studying extremophiles reveals the remarkable ways organisms thrive in extreme conditions like deep-sea hydrothermal vents.

85. Genetic Disorders: Genetic mutations underlie numerous disorders like cystic fibrosis, sickle cell anemia, and muscular dystrophy.

86. Conservation Behavior: Analyzing the behavioral ecology of endangered species informs habitat preservation and restoration efforts.

87. Neuroplasticity in Rehabilitation: Harnessing the brain’s ability to rewire itself offers promising avenues for post-injury or post-stroke rehabilitation.

88. Disease Vectors: Understanding how mosquitoes transmit diseases like malaria and Zika virus is critical for disease prevention strategies.

89. Biochemical Pathways: Mapping metabolic pathways in cells provides insights into disease development and potential therapeutic targets.

90. Invasive Species Impact: Examining the effects of invasive species on native ecosystems guides management strategies to mitigate their impact.

91. Molecular Immunology: Studying the intricate immune response mechanisms aids in the development of vaccines and immunotherapies.

92. Plant-Microbe Symbiosis: Investigating how plants form partnerships with beneficial microbes enhances crop productivity and sustainability.

93. Cancer Immunotherapy: Harnessing the immune system to target and eliminate cancer cells offers new avenues for cancer treatment.

94. Evolution of Flight: Analyzing the adaptations leading to the development of flight in birds and insects sheds light on evolutionary innovation.

95. Genomic Diversity in Human Populations: Exploring genetic variations among different human populations informs ancestry, migration, and susceptibility to diseases.

96. Hormonal Regulation: Understanding the role of hormones in growth, reproduction, and homeostasis provides insights into physiological processes.

97. Conservation Genetics in Plant Conservation: Genetic diversity assessment helps guide efforts to conserve rare and endangered plant species.

98. Neuronal Communication: Investigating neurotransmitter systems and synaptic transmission enhances our comprehension of brain function.

99. Microbial Biogeography: Mapping the distribution of microorganisms across ecosystems aids in understanding their ecological roles and interactions.

100. Gene Therapy: Developing methods to replace or repair defective genes offers potential treatments for genetic disorders.

Scientific Hypothesis Statement Examples

This section offers diverse examples of scientific hypothesis statements that cover a range of biological topics. Each example briefly describes the subject matter and the potential implications of the hypothesis.

  • Genetic Mutations and Disease: Certain genetic mutations lead to increased susceptibility to autoimmune disorders, providing insights into potential treatment strategies.
  • Microplastics in Aquatic Ecosystems: Elevated microplastic levels disrupt aquatic food chains, affecting biodiversity and human health through bioaccumulation.
  • Bacterial Quorum Sensing: Inhibition of quorum sensing in pathogenic bacteria demonstrates a potential avenue for novel antimicrobial therapies.
  • Climate Change and Phenology: Rising temperatures alter flowering times in plants, impacting pollinator interactions and ecosystem dynamics.
  • Neuroplasticity and Learning: The brain’s adaptability facilitates learning through synaptic modifications, elucidating educational strategies for improved cognition.
  • CRISPR-Cas9 in Agriculture: CRISPR-engineered crops with enhanced pest resistance showcase a sustainable approach to improving agricultural productivity.
  • Invasive Species Impact on Predators: The introduction of invasive prey disrupts predator-prey relationships, triggering cascading effects in terrestrial ecosystems.
  • Microbial Contributions to Soil Health: Beneficial soil microbes enhance nutrient availability and plant growth, promoting sustainable agriculture practices.
  • Marine Protected Areas: Examining the effectiveness of marine protected areas reveals their role in preserving biodiversity and restoring marine ecosystems.
  • Epigenetic Regulation of Cancer: Epigenetic modifications play a pivotal role in cancer development, highlighting potential therapeutic targets for precision medicine.

Testable Hypothesis Statement Examples in Biology

Testability hypothesis is a critical aspect of a hypothesis. These examples are formulated in a way that allows them to be tested through experiments or observations. They focus on cause-and-effect relationships that can be verified or refuted.

  • Impact of Light Intensity on Plant Growth: Increasing light intensity accelerates photosynthesis rates and enhances overall plant growth.
  • Effect of Temperature on Enzyme Activity: Higher temperatures accelerate enzyme activity up to an optimal point, beyond which denaturation occurs.
  • Microbial Diversity in Soil pH Gradients: Soil pH influences microbial composition, with acidic soils favoring certain bacterial taxa over others.
  • Predation Impact on Prey Behavior: The presence of predators induces changes in prey behavior, resulting in altered foraging strategies and vigilance levels.
  • Chemical Communication in Marine Organisms: Investigating chemical cues reveals the role of allelopathy in competition among marine organisms.
  • Social Hierarchy in Animal Groups: Observing animal groups establishes a correlation between social rank and access to resources within the group.
  • Effect of Habitat Fragmentation on Pollinator Diversity: Fragmented habitats reduce pollinator species richness, affecting plant reproductive success.
  • Dietary Effects on Gut Microbiota Composition: Dietary shifts influence gut microbiota diversity and metabolic functions, impacting host health.
  • Hybridization Impact on Plant Fitness: Hybrid plants exhibit varied fitness levels depending on the combination of parent species.
  • Human Impact on Coral Bleaching: Analyzing coral reefs under different anthropogenic stresses identifies the main factors driving coral bleaching events.

Scientific Investigation Hypothesis Statement Examples in Biology

This section emphasizes hypotheses that are part of broader scientific investigations. They involve studying complex interactions or phenomena and often contribute to our understanding of larger biological systems.

  • Genomic Variation in Human Disease Susceptibility: Genetic analysis identifies variations associated with increased risk of common diseases, aiding personalized medicine.
  • Behavioral Responses to Temperature Shifts in Insects: Investigating insect responses to temperature fluctuations reveals adaptation strategies to climate change.
  • Endocrine Disruptors and Amphibian Development: Experimental exposure to endocrine disruptors elucidates their role in amphibian developmental abnormalities.
  • Microbial Succession in Decomposition: Tracking microbial communities during decomposition uncovers the succession patterns of different decomposer species.
  • Gene Expression Patterns in Stress Response: Studying gene expression profiles unveils the molecular mechanisms underlying stress responses in plants.
  • Effect of Urbanization on Bird Song Patterns: Urban noise pollution influences bird song frequency and complexity, impacting communication and mate attraction.
  • Nutrient Availability and Algal Blooms: Investigating nutrient loading in aquatic systems sheds light on factors triggering harmful algal blooms.
  • Host-Parasite Coevolution: Analyzing genetic changes in hosts and parasites over time uncovers coevolutionary arms races and adaptation.
  • Ecosystem Productivity and Biodiversity: Linking ecosystem productivity to biodiversity patterns reveals the role of species interactions in ecosystem stability.
  • Habitat Preference of Invasive Species: Studying the habitat selection of invasive species identifies factors promoting their establishment and spread.

Hypothesis Statement Examples in Biology Research

These examples are tailored for research hypothesis studies. They highlight hypotheses that drive focused research questions, often leading to specific experimental designs and data collection methods.

  • Microbial Community Structure in Human Gut: Investigating microbial diversity and composition unveils the role of gut microbiota in human health.
  • Plant-Pollinator Mutualisms: Hypothesizing reciprocal benefits in plant-pollinator interactions highlights the role of coevolution in shaping ecosystems.
  • Chemical Defense Mechanisms in Insects: Predicting the correlation between insect feeding behavior and chemical defenses explores natural selection pressures.
  • Evolutionary Significance of Mimicry: Examining mimicry in organisms demonstrates its adaptive value in predator-prey relationships and survival.
  • Neurological Basis of Mate Choice: Proposing neural mechanisms underlying mate choice behaviors uncovers the role of sensory cues in reproductive success.
  • Mycorrhizal Symbiosis Impact on Plant Growth: Investigating mycorrhizal colonization effects on plant biomass addresses nutrient exchange dynamics.
  • Social Learning in Primates: Formulating a hypothesis on primate social learning explores the transmission of knowledge and cultural behaviors.
  • Effect of Pollution on Fish Behavior: Anticipating altered behaviors due to pollution exposure highlights ecological consequences on aquatic ecosystems.
  • Coevolution of Flowers and Pollinators: Hypothesizing mutual adaptations between flowers and pollinators reveals intricate ecological relationships.
  • Genetic Basis of Disease Resistance in Plants: Identifying genetic markers associated with disease resistance enhances crop breeding programs.

Prediction Hypothesis Statement Examples in Biology

Predictive simple hypothesis involve making educated guesses about how variables might interact or behave under specific conditions. These examples showcase hypotheses that anticipate outcomes based on existing knowledge.

  • Pesticide Impact on Insect Abundance: Predicting decreased insect populations due to pesticide application underscores ecological ramifications.
  • Climate Change and Migratory Bird Patterns: Anticipating shifts in migratory routes of birds due to climate change informs conservation strategies.
  • Ocean Acidification Effect on Coral Calcification: Predicting reduced coral calcification rates due to ocean acidification unveils threats to coral reefs.
  • Disease Spread in Crowded Bird Roosts: Predicting accelerated disease transmission in densely populated bird roosts highlights disease ecology dynamics.
  • Eutrophication Impact on Freshwater Biodiversity: Anticipating decreased freshwater biodiversity due to eutrophication emphasizes conservation efforts.
  • Herbivore Impact on Plant Species Diversity: Predicting reduced plant diversity in areas with high herbivore pressure elucidates ecosystem dynamics.
  • Predator-Prey Population Cycles: Predicting cyclical fluctuations in predator and prey populations showcases the role of trophic interactions.
  • Climate Change and Plant Phenology: Anticipating earlier flowering times due to climate change demonstrates the influence of temperature on plant life cycles.
  • Antibiotic Resistance in Bacterial Communities: Predicting increased antibiotic resistance due to overuse forewarns the need for responsible antibiotic use.
  • Human Impact on Avian Nesting Success: Predicting decreased avian nesting success due to habitat fragmentation highlights conservation priorities.

How to Write a Biology Hypothesis – Step by Step Guide

A hypothesis in biology is a critical component of scientific research that proposes an explanation for a specific biological phenomenon. Writing a well-formulated hypothesis sets the foundation for conducting experiments, making observations, and drawing meaningful conclusions. Follow this step-by-step guide to create a strong biology hypothesis:

1. Identify the Phenomenon: Clearly define the biological phenomenon you intend to study. This could be a question, a pattern, an observation, or a problem in the field of biology.

2. Conduct Background Research: Before formulating a hypothesis, gather relevant information from scientific literature. Understand the existing knowledge about the topic to ensure your hypothesis builds upon previous research.

3. State the Independent and Dependent Variables: Identify the variables involved in the phenomenon. The independent variable is what you manipulate or change, while the dependent variable is what you measure as a result of the changes.

4. Formulate a Testable Question: Based on your background research, create a specific and testable question that addresses the relationship between the variables. This question will guide the formulation of your hypothesis.

5. Craft the Hypothesis: A hypothesis should be a clear and concise statement that predicts the outcome of your experiment or observation. It should propose a cause-and-effect relationship between the independent and dependent variables.

6. Use the “If-Then” Structure: Formulate your hypothesis using the “if-then” structure. The “if” part states the independent variable and the condition you’re manipulating, while the “then” part predicts the outcome for the dependent variable.

7. Make it Falsifiable: A good hypothesis should be testable and capable of being proven false. There should be a way to gather data that either supports or contradicts the hypothesis.

8. Be Specific and Precise: Avoid vague language and ensure that your hypothesis is specific and precise. Clearly define the variables and the expected relationship between them.

9. Revise and Refine: Once you’ve formulated your hypothesis, review it to ensure it accurately reflects your research question and variables. Revise as needed to make it more concise and focused.

10. Seek Feedback: Share your hypothesis with peers, mentors, or colleagues to get feedback. Constructive input can help you refine your hypothesis further.

Tips for Writing a Biology Hypothesis Statement

Writing a biology alternative hypothesis statement requires precision and clarity to ensure that your research is well-structured and testable. Here are some valuable tips to help you create effective and scientifically sound hypothesis statements:

1. Be Clear and Concise: Your hypothesis statement should convey your idea succinctly. Avoid unnecessary jargon or complex language that might confuse your audience.

2. Address Cause and Effect: A hypothesis suggests a cause-and-effect relationship between variables. Clearly state how changes in the independent variable are expected to affect the dependent variable.

3. Use Specific Language: Define your variables precisely. Use specific terms to describe the independent and dependent variables, as well as any conditions or measurements.

4. Follow the “If-Then” Structure: Use the classic “if-then” structure to frame your hypothesis. State the independent variable (if) and the expected outcome (then). This format clarifies the relationship you’re investigating.

5. Make it Testable: Your hypothesis must be capable of being tested through experimentation or observation. Ensure that there is a measurable and observable way to determine if it’s true or false.

6. Avoid Ambiguity: Eliminate vague terms that can be interpreted in multiple ways. Be precise in your language to avoid confusion.

7. Base it on Existing Knowledge: Ground your hypothesis in prior research or existing scientific theories. It should build upon established knowledge and contribute new insights.

8. Predict a Direction: Your hypothesis should predict a specific outcome. Whether you anticipate an increase, decrease, or a difference, your hypothesis should make a clear prediction.

9. Be Focused: Keep your hypothesis statement focused on one specific idea or relationship. Avoid trying to address too many variables or concepts in a single statement.

10. Consider Alternative Explanations: Acknowledge alternative explanations for your observations or outcomes. This demonstrates critical thinking and a thorough understanding of your field.

11. Avoid Value Judgments: Refrain from including value judgments or opinions in your hypothesis. Stick to objective and measurable factors.

12. Be Realistic: Ensure that your hypothesis is plausible and feasible. It should align with what is known about the topic and be achievable within the scope of your research.

13. Refine and Revise: Draft multiple versions of your hypothesis statement and refine them. Discuss and seek feedback from mentors, peers, or advisors to enhance its clarity and precision.

14. Align with Research Goals: Your hypothesis should align with the overall goals of your research project. Make sure it addresses the specific question or problem you’re investigating.

15. Be Open to Revision: As you conduct research and gather data, be open to revising your hypothesis if the evidence suggests a different outcome than initially predicted.

Remember, a well-crafted biology science hypothesis statement serves as the foundation of your research and guides your experimental design and data analysis. It’s essential to invest time and effort in formulating a clear, focused, and testable hypothesis that contributes to the advancement of scientific knowledge.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Hypothesis Examples

Hypothesis Examples

A hypothesis is a prediction of the outcome of a test. It forms the basis for designing an experiment in the scientific method . A good hypothesis is testable, meaning it makes a prediction you can check with observation or experimentation. Here are different hypothesis examples.

Null Hypothesis Examples

The null hypothesis (H 0 ) is also known as the zero-difference or no-difference hypothesis. It predicts that changing one variable ( independent variable ) will have no effect on the variable being measured ( dependent variable ). Here are null hypothesis examples:

  • Plant growth is unaffected by temperature.
  • If you increase temperature, then solubility of salt will increase.
  • Incidence of skin cancer is unrelated to ultraviolet light exposure.
  • All brands of light bulb last equally long.
  • Cats have no preference for the color of cat food.
  • All daisies have the same number of petals.

Sometimes the null hypothesis shows there is a suspected correlation between two variables. For example, if you think plant growth is affected by temperature, you state the null hypothesis: “Plant growth is not affected by temperature.” Why do you do this, rather than say “If you change temperature, plant growth will be affected”? The answer is because it’s easier applying a statistical test that shows, with a high level of confidence, a null hypothesis is correct or incorrect.

Research Hypothesis Examples

A research hypothesis (H 1 ) is a type of hypothesis used to design an experiment. This type of hypothesis is often written as an if-then statement because it’s easy identifying the independent and dependent variables and seeing how one affects the other. If-then statements explore cause and effect. In other cases, the hypothesis shows a correlation between two variables. Here are some research hypothesis examples:

  • If you leave the lights on, then it takes longer for people to fall asleep.
  • If you refrigerate apples, they last longer before going bad.
  • If you keep the curtains closed, then you need less electricity to heat or cool the house (the electric bill is lower).
  • If you leave a bucket of water uncovered, then it evaporates more quickly.
  • Goldfish lose their color if they are not exposed to light.
  • Workers who take vacations are more productive than those who never take time off.

Is It Okay to Disprove a Hypothesis?

Yes! You may even choose to write your hypothesis in such a way that it can be disproved because it’s easier to prove a statement is wrong than to prove it is right. In other cases, if your prediction is incorrect, that doesn’t mean the science is bad. Revising a hypothesis is common. It demonstrates you learned something you did not know before you conducted the experiment.

Test yourself with a Scientific Method Quiz .

  • Mellenbergh, G.J. (2008). Chapter 8: Research designs: Testing of research hypotheses. In H.J. Adèr & G.J. Mellenbergh (eds.), Advising on Research Methods: A Consultant’s Companion . Huizen, The Netherlands: Johannes van Kessel Publishing.
  • Popper, Karl R. (1959). The Logic of Scientific Discovery . Hutchinson & Co. ISBN 3-1614-8410-X.
  • Schick, Theodore; Vaughn, Lewis (2002). How to think about weird things: critical thinking for a New Age . Boston: McGraw-Hill Higher Education. ISBN 0-7674-2048-9.
  • Tobi, Hilde; Kampen, Jarl K. (2018). “Research design: the methodology for interdisciplinary research framework”. Quality & Quantity . 52 (3): 1209–1225. doi: 10.1007/s11135-017-0513-8

Related Posts

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

What Is a Hypothesis and How Do I Write One?

author image

General Education

body-glowing-question-mark

Think about something strange and unexplainable in your life. Maybe you get a headache right before it rains, or maybe you think your favorite sports team wins when you wear a certain color. If you wanted to see whether these are just coincidences or scientific fact, you would form a hypothesis, then create an experiment to see whether that hypothesis is true or not.

But what is a hypothesis, anyway? If you’re not sure about what a hypothesis is--or how to test for one!--you’re in the right place. This article will teach you everything you need to know about hypotheses, including: 

  • Defining the term “hypothesis” 
  • Providing hypothesis examples 
  • Giving you tips for how to write your own hypothesis

So let’s get started!

body-picture-ask-sign

What Is a Hypothesis?

Merriam Webster defines a hypothesis as “an assumption or concession made for the sake of argument.” In other words, a hypothesis is an educated guess . Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it’s true or not. Keep in mind that in science, a hypothesis should be testable. You have to be able to design an experiment that tests your hypothesis in order for it to be valid. 

As you could assume from that statement, it’s easy to make a bad hypothesis. But when you’re holding an experiment, it’s even more important that your guesses be good...after all, you’re spending time (and maybe money!) to figure out more about your observation. That’s why we refer to a hypothesis as an educated guess--good hypotheses are based on existing data and research to make them as sound as possible.

Hypotheses are one part of what’s called the scientific method .  Every (good) experiment or study is based in the scientific method. The scientific method gives order and structure to experiments and ensures that interference from scientists or outside influences does not skew the results. It’s important that you understand the concepts of the scientific method before holding your own experiment. Though it may vary among scientists, the scientific method is generally made up of six steps (in order):

  • Observation
  • Asking questions
  • Forming a hypothesis
  • Analyze the data
  • Communicate your results

You’ll notice that the hypothesis comes pretty early on when conducting an experiment. That’s because experiments work best when they’re trying to answer one specific question. And you can’t conduct an experiment until you know what you’re trying to prove!

Independent and Dependent Variables 

After doing your research, you’re ready for another important step in forming your hypothesis: identifying variables. Variables are basically any factor that could influence the outcome of your experiment . Variables have to be measurable and related to the topic being studied.

There are two types of variables:  independent variables and dependent variables. I ndependent variables remain constant . For example, age is an independent variable; it will stay the same, and researchers can look at different ages to see if it has an effect on the dependent variable. 

Speaking of dependent variables... dependent variables are subject to the influence of the independent variable , meaning that they are not constant. Let’s say you want to test whether a person’s age affects how much sleep they need. In that case, the independent variable is age (like we mentioned above), and the dependent variable is how much sleep a person gets. 

Variables will be crucial in writing your hypothesis. You need to be able to identify which variable is which, as both the independent and dependent variables will be written into your hypothesis. For instance, in a study about exercise, the independent variable might be the speed at which the respondents walk for thirty minutes, and the dependent variable would be their heart rate. In your study and in your hypothesis, you’re trying to understand the relationship between the two variables.

Elements of a Good Hypothesis

The best hypotheses start by asking the right questions . For instance, if you’ve observed that the grass is greener when it rains twice a week, you could ask what kind of grass it is, what elevation it’s at, and if the grass across the street responds to rain in the same way. Any of these questions could become the backbone of experiments to test why the grass gets greener when it rains fairly frequently.

As you’re asking more questions about your first observation, make sure you’re also making more observations . If it doesn’t rain for two weeks and the grass still looks green, that’s an important observation that could influence your hypothesis. You'll continue observing all throughout your experiment, but until the hypothesis is finalized, every observation should be noted.

Finally, you should consult secondary research before writing your hypothesis . Secondary research is comprised of results found and published by other people. You can usually find this information online or at your library. Additionally, m ake sure the research you find is credible and related to your topic. If you’re studying the correlation between rain and grass growth, it would help you to research rain patterns over the past twenty years for your county, published by a local agricultural association. You should also research the types of grass common in your area, the type of grass in your lawn, and whether anyone else has conducted experiments about your hypothesis. Also be sure you’re checking the quality of your research . Research done by a middle school student about what minerals can be found in rainwater would be less useful than an article published by a local university.

body-pencil-notebook-writing

Writing Your Hypothesis

Once you’ve considered all of the factors above, you’re ready to start writing your hypothesis. Hypotheses usually take a certain form when they’re written out in a research report.

When you boil down your hypothesis statement, you are writing down your best guess and not the question at hand . This means that your statement should be written as if it is fact already, even though you are simply testing it.

The reason for this is that, after you have completed your study, you'll either accept or reject your if-then or your null hypothesis. All hypothesis testing examples should be measurable and able to be confirmed or denied. You cannot confirm a question, only a statement! 

In fact, you come up with hypothesis examples all the time! For instance, when you guess on the outcome of a basketball game, you don’t say, “Will the Miami Heat beat the Boston Celtics?” but instead, “I think the Miami Heat will beat the Boston Celtics.” You state it as if it is already true, even if it turns out you’re wrong. You do the same thing when writing your hypothesis.

Additionally, keep in mind that hypotheses can range from very specific to very broad.  These hypotheses can be specific, but if your hypothesis testing examples involve a broad range of causes and effects, your hypothesis can also be broad.  

body-hand-number-two

The Two Types of Hypotheses

Now that you understand what goes into a hypothesis, it’s time to look more closely at the two most common types of hypothesis: the if-then hypothesis and the null hypothesis.

#1: If-Then Hypotheses

First of all, if-then hypotheses typically follow this formula:

If ____ happens, then ____ will happen.

The goal of this type of hypothesis is to test the causal relationship between the independent and dependent variable. It’s fairly simple, and each hypothesis can vary in how detailed it can be. We create if-then hypotheses all the time with our daily predictions. Here are some examples of hypotheses that use an if-then structure from daily life: 

  • If I get enough sleep, I’ll be able to get more work done tomorrow.
  • If the bus is on time, I can make it to my friend’s birthday party. 
  • If I study every night this week, I’ll get a better grade on my exam. 

In each of these situations, you’re making a guess on how an independent variable (sleep, time, or studying) will affect a dependent variable (the amount of work you can do, making it to a party on time, or getting better grades). 

You may still be asking, “What is an example of a hypothesis used in scientific research?” Take one of the hypothesis examples from a real-world study on whether using technology before bed affects children’s sleep patterns. The hypothesis read s:

“We hypothesized that increased hours of tablet- and phone-based screen time at bedtime would be inversely correlated with sleep quality and child attention.”

It might not look like it, but this is an if-then statement. The researchers basically said, “If children have more screen usage at bedtime, then their quality of sleep and attention will be worse.” The sleep quality and attention are the dependent variables and the screen usage is the independent variable. (Usually, the independent variable comes after the “if” and the dependent variable comes after the “then,” as it is the independent variable that affects the dependent variable.) This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of “if-then” and the independent and dependent variables are present.

#2: Null Hypotheses

Your if-then hypothesis is not the only one needed to complete a successful experiment, however. You also need a null hypothesis to test it against. In its most basic form, the null hypothesis is the opposite of your if-then hypothesis . When you write your null hypothesis, you are writing a hypothesis that suggests that your guess is not true, and that the independent and dependent variables have no relationship .

One null hypothesis for the cell phone and sleep study from the last section might say: 

“If children have more screen usage at bedtime, their quality of sleep and attention will not be worse.” 

In this case, this is a null hypothesis because it’s asking the opposite of the original thesis! 

Conversely, if your if-then hypothesis suggests that your two variables have no relationship, then your null hypothesis would suggest that there is one. So, pretend that there is a study that is asking the question, “Does the amount of followers on Instagram influence how long people spend on the app?” The independent variable is the amount of followers, and the dependent variable is the time spent. But if you, as the researcher, don’t think there is a relationship between the number of followers and time spent, you might write an if-then hypothesis that reads:

“If people have many followers on Instagram, they will not spend more time on the app than people who have less.”

In this case, the if-then suggests there isn’t a relationship between the variables. In that case, one of the null hypothesis examples might say:

“If people have many followers on Instagram, they will spend more time on the app than people who have less.”

You then test both the if-then and the null hypothesis to gauge if there is a relationship between the variables, and if so, how much of a relationship. 

feature_tips

4 Tips to Write the Best Hypothesis

If you’re going to take the time to hold an experiment, whether in school or by yourself, you’re also going to want to take the time to make sure your hypothesis is a good one. The best hypotheses have four major elements in common: plausibility, defined concepts, observability, and general explanation.

#1: Plausibility

At first glance, this quality of a hypothesis might seem obvious. When your hypothesis is plausible, that means it’s possible given what we know about science and general common sense. However, improbable hypotheses are more common than you might think. 

Imagine you’re studying weight gain and television watching habits. If you hypothesize that people who watch more than  twenty hours of television a week will gain two hundred pounds or more over the course of a year, this might be improbable (though it’s potentially possible). Consequently, c ommon sense can tell us the results of the study before the study even begins.

Improbable hypotheses generally go against  science, as well. Take this hypothesis example: 

“If a person smokes one cigarette a day, then they will have lungs just as healthy as the average person’s.” 

This hypothesis is obviously untrue, as studies have shown again and again that cigarettes negatively affect lung health. You must be careful that your hypotheses do not reflect your own personal opinion more than they do scientifically-supported findings. This plausibility points to the necessity of research before the hypothesis is written to make sure that your hypothesis has not already been disproven.

#2: Defined Concepts

The more advanced you are in your studies, the more likely that the terms you’re using in your hypothesis are specific to a limited set of knowledge. One of the hypothesis testing examples might include the readability of printed text in newspapers, where you might use words like “kerning” and “x-height.” Unless your readers have a background in graphic design, it’s likely that they won’t know what you mean by these terms. Thus, it’s important to either write what they mean in the hypothesis itself or in the report before the hypothesis.

Here’s what we mean. Which of the following sentences makes more sense to the common person?

If the kerning is greater than average, more words will be read per minute.

If the space between letters is greater than average, more words will be read per minute.

For people reading your report that are not experts in typography, simply adding a few more words will be helpful in clarifying exactly what the experiment is all about. It’s always a good idea to make your research and findings as accessible as possible. 

body-blue-eye

Good hypotheses ensure that you can observe the results. 

#3: Observability

In order to measure the truth or falsity of your hypothesis, you must be able to see your variables and the way they interact. For instance, if your hypothesis is that the flight patterns of satellites affect the strength of certain television signals, yet you don’t have a telescope to view the satellites or a television to monitor the signal strength, you cannot properly observe your hypothesis and thus cannot continue your study.

Some variables may seem easy to observe, but if you do not have a system of measurement in place, you cannot observe your hypothesis properly. Here’s an example: if you’re experimenting on the effect of healthy food on overall happiness, but you don’t have a way to monitor and measure what “overall happiness” means, your results will not reflect the truth. Monitoring how often someone smiles for a whole day is not reasonably observable, but having the participants state how happy they feel on a scale of one to ten is more observable. 

In writing your hypothesis, always keep in mind how you'll execute the experiment.

#4: Generalizability 

Perhaps you’d like to study what color your best friend wears the most often by observing and documenting the colors she wears each day of the week. This might be fun information for her and you to know, but beyond you two, there aren’t many people who could benefit from this experiment. When you start an experiment, you should note how generalizable your findings may be if they are confirmed. Generalizability is basically how common a particular phenomenon is to other people’s everyday life.

Let’s say you’re asking a question about the health benefits of eating an apple for one day only, you need to realize that the experiment may be too specific to be helpful. It does not help to explain a phenomenon that many people experience. If you find yourself with too specific of a hypothesis, go back to asking the big question: what is it that you want to know, and what do you think will happen between your two variables?

body-experiment-chemistry

Hypothesis Testing Examples

We know it can be hard to write a good hypothesis unless you’ve seen some good hypothesis examples. We’ve included four hypothesis examples based on some made-up experiments. Use these as templates or launch pads for coming up with your own hypotheses.

Experiment #1: Students Studying Outside (Writing a Hypothesis)

You are a student at PrepScholar University. When you walk around campus, you notice that, when the temperature is above 60 degrees, more students study in the quad. You want to know when your fellow students are more likely to study outside. With this information, how do you make the best hypothesis possible?

You must remember to make additional observations and do secondary research before writing your hypothesis. In doing so, you notice that no one studies outside when it’s 75 degrees and raining, so this should be included in your experiment. Also, studies done on the topic beforehand suggested that students are more likely to study in temperatures less than 85 degrees. With this in mind, you feel confident that you can identify your variables and write your hypotheses:

If-then: “If the temperature in Fahrenheit is less than 60 degrees, significantly fewer students will study outside.”

Null: “If the temperature in Fahrenheit is less than 60 degrees, the same number of students will study outside as when it is more than 60 degrees.”

These hypotheses are plausible, as the temperatures are reasonably within the bounds of what is possible. The number of people in the quad is also easily observable. It is also not a phenomenon specific to only one person or at one time, but instead can explain a phenomenon for a broader group of people.

To complete this experiment, you pick the month of October to observe the quad. Every day (except on the days where it’s raining)from 3 to 4 PM, when most classes have released for the day, you observe how many people are on the quad. You measure how many people come  and how many leave. You also write down the temperature on the hour. 

After writing down all of your observations and putting them on a graph, you find that the most students study on the quad when it is 70 degrees outside, and that the number of students drops a lot once the temperature reaches 60 degrees or below. In this case, your research report would state that you accept or “failed to reject” your first hypothesis with your findings.

Experiment #2: The Cupcake Store (Forming a Simple Experiment)

Let’s say that you work at a bakery. You specialize in cupcakes, and you make only two colors of frosting: yellow and purple. You want to know what kind of customers are more likely to buy what kind of cupcake, so you set up an experiment. Your independent variable is the customer’s gender, and the dependent variable is the color of the frosting. What is an example of a hypothesis that might answer the question of this study?

Here’s what your hypotheses might look like: 

If-then: “If customers’ gender is female, then they will buy more yellow cupcakes than purple cupcakes.”

Null: “If customers’ gender is female, then they will be just as likely to buy purple cupcakes as yellow cupcakes.”

This is a pretty simple experiment! It passes the test of plausibility (there could easily be a difference), defined concepts (there’s nothing complicated about cupcakes!), observability (both color and gender can be easily observed), and general explanation ( this would potentially help you make better business decisions ).

body-bird-feeder

Experiment #3: Backyard Bird Feeders (Integrating Multiple Variables and Rejecting the If-Then Hypothesis)

While watching your backyard bird feeder, you realized that different birds come on the days when you change the types of seeds. You decide that you want to see more cardinals in your backyard, so you decide to see what type of food they like the best and set up an experiment. 

However, one morning, you notice that, while some cardinals are present, blue jays are eating out of your backyard feeder filled with millet. You decide that, of all of the other birds, you would like to see the blue jays the least. This means you'll have more than one variable in your hypothesis. Your new hypotheses might look like this: 

If-then: “If sunflower seeds are placed in the bird feeders, then more cardinals will come than blue jays. If millet is placed in the bird feeders, then more blue jays will come than cardinals.”

Null: “If either sunflower seeds or millet are placed in the bird, equal numbers of cardinals and blue jays will come.”

Through simple observation, you actually find that cardinals come as often as blue jays when sunflower seeds or millet is in the bird feeder. In this case, you would reject your “if-then” hypothesis and “fail to reject” your null hypothesis . You cannot accept your first hypothesis, because it’s clearly not true. Instead you found that there was actually no relation between your different variables. Consequently, you would need to run more experiments with different variables to see if the new variables impact the results.

Experiment #4: In-Class Survey (Including an Alternative Hypothesis)

You’re about to give a speech in one of your classes about the importance of paying attention. You want to take this opportunity to test a hypothesis you’ve had for a while: 

If-then: If students sit in the first two rows of the classroom, then they will listen better than students who do not.

Null: If students sit in the first two rows of the classroom, then they will not listen better or worse than students who do not.

You give your speech and then ask your teacher if you can hand out a short survey to the class. On the survey, you’ve included questions about some of the topics you talked about. When you get back the results, you’re surprised to see that not only do the students in the first two rows not pay better attention, but they also scored worse than students in other parts of the classroom! Here, both your if-then and your null hypotheses are not representative of your findings. What do you do?

This is when you reject both your if-then and null hypotheses and instead create an alternative hypothesis . This type of hypothesis is used in the rare circumstance that neither of your hypotheses is able to capture your findings . Now you can use what you’ve learned to draft new hypotheses and test again! 

Key Takeaways: Hypothesis Writing

The more comfortable you become with writing hypotheses, the better they will become. The structure of hypotheses is flexible and may need to be changed depending on what topic you are studying. The most important thing to remember is the purpose of your hypothesis and the difference between the if-then and the null . From there, in forming your hypothesis, you should constantly be asking questions, making observations, doing secondary research, and considering your variables. After you have written your hypothesis, be sure to edit it so that it is plausible, clearly defined, observable, and helpful in explaining a general phenomenon.

Writing a hypothesis is something that everyone, from elementary school children competing in a science fair to professional scientists in a lab, needs to know how to do. Hypotheses are vital in experiments and in properly executing the scientific method . When done correctly, hypotheses will set up your studies for success and help you to understand the world a little better, one experiment at a time.

body-whats-next-post-it-note

What’s Next?

If you’re studying for the science portion of the ACT, there’s definitely a lot you need to know. We’ve got the tools to help, though! Start by checking out our ultimate study guide for the ACT Science subject test. Once you read through that, be sure to download our recommended ACT Science practice tests , since they’re one of the most foolproof ways to improve your score. (And don’t forget to check out our expert guide book , too.)

If you love science and want to major in a scientific field, you should start preparing in high school . Here are the science classes you should take to set yourself up for success.

If you’re trying to think of science experiments you can do for class (or for a science fair!), here’s a list of 37 awesome science experiments you can do at home

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Ashley Sufflé Robinson has a Ph.D. in 19th Century English Literature. As a content writer for PrepScholar, Ashley is passionate about giving college-bound students the in-depth information they need to get into the school of their dreams.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 3 September 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • More from M-W
  • To save this word, you'll need to log in. Log In

Definition of hypothesis

Did you know.

The Difference Between Hypothesis and Theory

A hypothesis is an assumption, an idea that is proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

A hypothesis is usually tentative; it's an assumption or suggestion made strictly for the objective of being tested.

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, it is understood to be more likely to be true than a hypothesis is.

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch, with theory being the more common choice.

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

  • proposition
  • supposition

hypothesis , theory , law mean a formula derived by inference from scientific data that explains a principle operating in nature.

hypothesis implies insufficient evidence to provide more than a tentative explanation.

theory implies a greater range of evidence and greater likelihood of truth.

law implies a statement of order and relation in nature that has been found to be invariable under the same conditions.

Examples of hypothesis in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'hypothesis.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

Greek, from hypotithenai to put under, suppose, from hypo- + tithenai to put — more at do

1641, in the meaning defined at sense 1a

Phrases Containing hypothesis

  • counter - hypothesis
  • nebular hypothesis
  • null hypothesis
  • planetesimal hypothesis
  • Whorfian hypothesis

Articles Related to hypothesis

hypothesis

This is the Difference Between a...

This is the Difference Between a Hypothesis and a Theory

In scientific reasoning, they're two completely different things

Dictionary Entries Near hypothesis

hypothermia

hypothesize

Cite this Entry

“Hypothesis.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/hypothesis. Accessed 9 Sep. 2024.

Kids Definition

Kids definition of hypothesis, medical definition, medical definition of hypothesis, more from merriam-webster on hypothesis.

Nglish: Translation of hypothesis for Spanish Speakers

Britannica English: Translation of hypothesis for Arabic Speakers

Britannica.com: Encyclopedia article about hypothesis

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Plural and possessive names: a guide, 31 useful rhetorical devices, more commonly misspelled words, absent letters that are heard anyway, how to use accents and diacritical marks, popular in wordplay, 8 words for lesser-known musical instruments, it's a scorcher words for the summer heat, 7 shakespearean insults to make life more interesting, 10 words from taylor swift songs (merriam's version), 9 superb owl words, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

experiments disproving spontaneous generation

  • When did science begin?
  • Where was science invented?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

scientific hypothesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • National Center for Biotechnology Information - PubMed Central - On the scope of scientific hypotheses
  • LiveScience - What is a scientific hypothesis?
  • The Royal Society - Open Science - On the scope of scientific hypotheses

experiments disproving spontaneous generation

scientific hypothesis , an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an “If…then” statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation. The notion of the scientific hypothesis as both falsifiable and testable was advanced in the mid-20th century by Austrian-born British philosopher Karl Popper .

The formulation and testing of a hypothesis is part of the scientific method , the approach scientists use when attempting to understand and test ideas about natural phenomena. The generation of a hypothesis frequently is described as a creative process and is based on existing scientific knowledge, intuition , or experience. Therefore, although scientific hypotheses commonly are described as educated guesses, they actually are more informed than a guess. In addition, scientists generally strive to develop simple hypotheses, since these are easier to test relative to hypotheses that involve many different variables and potential outcomes. Such complex hypotheses may be developed as scientific models ( see scientific modeling ).

Depending on the results of scientific evaluation, a hypothesis typically is either rejected as false or accepted as true. However, because a hypothesis inherently is falsifiable, even hypotheses supported by scientific evidence and accepted as true are susceptible to rejection later, when new evidence has become available. In some instances, rather than rejecting a hypothesis because it has been falsified by new evidence, scientists simply adapt the existing idea to accommodate the new information. In this sense a hypothesis is never incorrect but only incomplete.

The investigation of scientific hypotheses is an important component in the development of scientific theory . Hence, hypotheses differ fundamentally from theories; whereas the former is a specific tentative explanation and serves as the main tool by which scientists gather data, the latter is a broad general explanation that incorporates data from many different scientific investigations undertaken to explore hypotheses.

Countless hypotheses have been developed and tested throughout the history of science . Several examples include the idea that living organisms develop from nonliving matter, which formed the basis of spontaneous generation , a hypothesis that ultimately was disproved (first in 1668, with the experiments of Italian physician Francesco Redi , and later in 1859, with the experiments of French chemist and microbiologist Louis Pasteur ); the concept proposed in the late 19th century that microorganisms cause certain diseases (now known as germ theory ); and the notion that oceanic crust forms along submarine mountain zones and spreads laterally away from them ( seafloor spreading hypothesis ).

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

What Is a Hypothesis? (Science)

If...,Then...

Angela Lumsden/Getty Images

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject.

In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

In the study of logic, a hypothesis is an if-then proposition, typically written in the form, "If X , then Y ."

In common usage, a hypothesis is simply a proposed explanation or prediction, which may or may not be tested.

Writing a Hypothesis

Most scientific hypotheses are proposed in the if-then format because it's easy to design an experiment to see whether or not a cause and effect relationship exists between the independent variable and the dependent variable . The hypothesis is written as a prediction of the outcome of the experiment.

Null Hypothesis and Alternative Hypothesis

Statistically, it's easier to show there is no relationship between two variables than to support their connection. So, scientists often propose the null hypothesis . The null hypothesis assumes changing the independent variable will have no effect on the dependent variable.

In contrast, the alternative hypothesis suggests changing the independent variable will have an effect on the dependent variable. Designing an experiment to test this hypothesis can be trickier because there are many ways to state an alternative hypothesis.

For example, consider a possible relationship between getting a good night's sleep and getting good grades. The null hypothesis might be stated: "The number of hours of sleep students get is unrelated to their grades" or "There is no correlation between hours of sleep and grades."

An experiment to test this hypothesis might involve collecting data, recording average hours of sleep for each student and grades. If a student who gets eight hours of sleep generally does better than students who get four hours of sleep or 10 hours of sleep, the hypothesis might be rejected.

But the alternative hypothesis is harder to propose and test. The most general statement would be: "The amount of sleep students get affects their grades." The hypothesis might also be stated as "If you get more sleep, your grades will improve" or "Students who get nine hours of sleep have better grades than those who get more or less sleep."

In an experiment, you can collect the same data, but the statistical analysis is less likely to give you a high confidence limit.

Usually, a scientist starts out with the null hypothesis. From there, it may be possible to propose and test an alternative hypothesis, to narrow down the relationship between the variables.

Example of a Hypothesis

Examples of a hypothesis include:

  • If you drop a rock and a feather, (then) they will fall at the same rate.
  • Plants need sunlight in order to live. (if sunlight, then life)
  • Eating sugar gives you energy. (if sugar, then energy)
  • White, Jay D.  Research in Public Administration . Conn., 1998.
  • Schick, Theodore, and Lewis Vaughn.  How to Think about Weird Things: Critical Thinking for a New Age . McGraw-Hill Higher Education, 2002.
  • Scientific Method Flow Chart
  • Six Steps of the Scientific Method
  • What Are the Elements of a Good Hypothesis?
  • What Are Examples of a Hypothesis?
  • What Is a Testable Hypothesis?
  • Null Hypothesis Examples
  • Scientific Hypothesis Examples
  • Scientific Variable
  • Scientific Method Vocabulary Terms
  • Understanding Simple vs Controlled Experiments
  • What Is an Experimental Constant?
  • What Is a Controlled Experiment?
  • What Is the Difference Between a Control Variable and Control Group?
  • DRY MIX Experiment Variables Acronym
  • Random Error vs. Systematic Error
  • The Role of a Controlled Variable in an Experiment

Hypothesis in a Sentence  🔊

Definition of Hypothesis

a proposed explanation or theory that is studied through scientific testing

Examples of Hypothesis in a sentence

The scientist’s hypothesis did not stand up, since research data was inconsistent with his guess.  🔊

Each student gave a hypothesis and theorized which plant would grow the tallest during the study.  🔊

A hypothesis was presented by the panel, giving a likely explanation for why the trial medicine didn’t seem to have much of an effect on the patients.  🔊

During the study, the researcher changed her hypothesis to a new assumption that fit with current data.  🔊

To confirm his hypothesis on why the dolphin wasn’t eating, the marine biologists did several tests over a week’s time.  🔊

Other words in the Opinion, Belief category:

Most Searched Words (with Video)

Voracious: In a Sentence

Voracious: In a Sentence

Verbose: In a Sentence

Verbose: In a Sentence

Vainglorious: In a Sentence

Vainglorious: In a Sentence

Pseudonym: In a Sentence

Pseudonym: In a Sentence

Propinquity: In a Sentence

Propinquity: In a Sentence

Orotund: In a Sentence

Orotund: In a Sentence

Magnanimous: In a Sentence

Magnanimous: In a Sentence

Inquisitive: In a Sentence

Inquisitive: In a Sentence

Epoch: In a Sentence

Epoch: In a Sentence

Aberrant: In a Sentence

Aberrant: In a Sentence

Apprehensive: In a Sentence

Apprehensive: In a Sentence

Obdurate: In a Sentence

Obdurate: In a Sentence

Heresy: In a Sentence

Heresy: In a Sentence

Gambit: In a Sentence

Gambit: In a Sentence

Pneumonia: In a Sentence

Pneumonia: In a Sentence

Otiose: In a Sentence

Otiose: In a Sentence

  • Neuroscience

Reevaluating the Neural Noise Hypothesis in Dyslexia: Insights from EEG and 7T MRS Biomarkers

Agnieszka glica, katarzyna wasilewska, julia jurkowska, jarosław żygierewicz, bartosz kossowski.

  • Katarzyna Jednoróg author has email address
  • Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3 Street, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Pasteur 5 Street, 02-093 Warsaw, Poland
  • Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3 Street, 02-093 Warsaw, Poland
  • https://doi.org/ 10.7554/eLife.99920.1
  • Open access
  • Copyright information

The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both indirect EEG power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and direct glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.

eLife assessment

The authors combined neurophysiological (electroencephalography [EEG]) and neurochemical (magnetic resonance spectroscopy [MRS]) measures to empirically evaluate the neural noise hypothesis of developmental dyslexia. Their results are solid , supported by consistent findings from the two complementary methodologies and Bayesian statistics. Additional analyses, particularly on the neurochemical measures, are necessary to further substantiate the results. This study is useful for understanding the neural mechanisms of dyslexia and neural development in general.

  • https://doi.org/ 10.7554/eLife.99920.1.sa3
  • Read the peer reviews
  • About eLife assessments

Introduction

According to the neural noise hypothesis of dyslexia, reading difficulties stem from an imbalance between excitatory and inhibitory (E/I) neural activity ( Hancock et al., 2017 ). The hypothesis predicts increased cortical excitation leading to more variable and less synchronous neural firing. This instability supposedly results in disrupted sensory representations and impedes phonological awareness and multisensory integration skills, crucial for learning to read ( Hancock et al., 2017 ). Yet, studies testing this hypothesis are lacking.

The non-invasive measurement of the E/I balance can be derived through assessment of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitters concentration via magnetic resonance spectroscopy (MRS) ( Finkelman et al., 2022 ) or through global, indirect estimations from the electroencephalography (EEG) signal ( Ahmad et al., 2022 ).

Direct measurements of Glu and GABA yielded conflicting findings. Higher Glu concentrations in the midline occipital cortex correlated with poorer reading performance in children ( Del Tufo et al., 2018 ; Pugh et al., 2014 ), while elevated Glu levels in the anterior cingulate cortex (ACC) corresponded to greater phonological skills ( Lebel et al., 2016 ). Elevated GABA in the left inferior frontal gyrus was linked to reduced verbal fluency in adults ( Nakai and Okanoya, 2016 ), and increased GABA in the midline occipital cortex in children was associated with slower reaction times in a linguistic task ( Del Tufo et al., 2018 ). However, notable null findings exist regarding dyslexia status and Glu levels in the ACC among children ( Horowitz-Kraus et al., 2018 ) as well as Glu and GABA levels in the visual and temporo-parietal cortices in both children and adults ( Kossowski et al., 2019 ).

Both beta (∼13-28 Hz) and gamma (> 30 Hz) oscillations may serve as E/I balance indicators ( Ahmad et al., 2022 ), as greater GABA-ergic activity has been associated with greater beta power ( Jensen et al., 2005 ; Porjesz et al., 2002 ) and gamma power or peak frequency ( Brunel and Wang, 2003 ; Chen et al., 2017 ). Resting-state analyses often reported nonsignificant beta power associations with dyslexia ( Babiloni et al., 2012 ; Fraga González et al., 2018 ; Xue et al., 2020 ), however, one study indicated lower beta power in dyslexic compared to control boys ( Fein et al., 1986 ). Mixed results were also observed during tasks. One study found decreased beta power in the dyslexic group ( Spironelli et al., 2008 ), while the other increased beta power relative to the control group ( Rippon and Brunswick, 2000 ). Insignificant relationship between resting gamma power and dyslexia was reported ( Babiloni et al., 2012 ; Lasnick et al., 2023 ). When analyzing auditory steady-state responses, the dyslexic group had a lower gamma peak frequency, while no significant differences in gamma power were observed ( Rufener and Zaehle, 2021 ). Essentially, the majority of studies in dyslexia examining gamma frequencies evaluated cortical entrainment to auditory stimuli ( Lehongre et al., 2011 ; Marchesotti et al., 2020 ; Van Hirtum et al., 2019 ). Therefore, the results from these tasks do not provide direct evidence of differences in either gamma power or peak frequency between the dyslexic and control groups.

The EEG signal comprises both oscillatory, periodic activity, and aperiodic activity, characterized by a gradual decrease in power as frequencies rise (1/f signal) ( Donoghue et al., 2020 ). Recently recognized as a biomarker of E/I balance, a lower exponent of signal decay (flatter slope) indicates a greater dominance of excitation over inhibition in the brain, as shown by the simulation models of local field potentials, ratio of AMPA/GABA a synapses in the rat hippocampus ( Gao et al., 2017 ) and recordings under propofol or ketamine in macaques and humans ( Gao et al., 2017 ; Waschke et al., 2021 ). However, there are also pharmacological studies providing mixed results ( Colombo et al., 2019 ; Salvatore et al., 2024 ). Nonetheless, the 1/f signal has shown associations with various conditions putatively characterized by changes in E/I balance, such as early development in infancy ( Schaworonkow and Voytek, 2021 ), healthy aging ( Voytek et al., 2015 ) and neurodevelopmental disorders like ADHD ( Ostlund et al., 2021 ), autism spectrum disorder ( Manyukhina et al., 2022 ) or schizophrenia ( Molina et al., 2020 ). Despite its potential relevance, the evaluation of the 1/f signal in dyslexia remains limited to one study, revealing flatter slopes among dyslexic compared to control participants at rest ( Turri et al., 2023 ), thereby lending support to the notion of neural noise in dyslexia.

Here, we examined both indirect (1/f signal, beta, and gamma oscillations during both rest and a spoken language task) and direct (Glu and GABA) biomarkers of E/I balance in participants with dyslexia and age-matched controls. The neural noise hypothesis predicts flatter slopes of 1/f signal, decreased beta and gamma power, and higher Glu concentrations in the dyslexic group. Furthermore, we tested the relationships between different E/I measures. Flatter slopes of 1/f signal should be related to higher Glu level, while enhanced beta and gamma power to increased GABA level.

No evidence for group differences in the EEG E/I biomarkers

We recruited 120 Polish adolescents and young adults – 60 with dyslexia diagnosis and 60 controls matched in sex, age, and family socio-economic status. The dyslexic group scored lower in all reading and reading-related tasks and higher in the Polish version of the Adult Reading History Questionnaire (ARHQ-PL) ( Bogdanowicz et al., 2015 ),where a higher score indicates a higher risk of dyslexia (see Table S1 in the Supplementary Material). Although all participants were within the intellectual norm, the dyslexic group scored lower on the IQ scale (including nonverbal subscale only) than the control group. However, the Bayesian statistics did not provide evidence for the difference between groups in the nonverbal IQ.

We analyzed the aperiodic (exponent and offset) components of the EEG signal at rest and during a spoken language task, where participants listened to a sentence and had to indicate its veracity. Due to a technical error, the signal from one person (a female from the dyslexic group) was not recorded during most of the language task and was excluded from the analyses. Hence, the results are provided for 119 participants – 59 in the dyslexic and 60 in the control group.

First, aperiodic parameter values were averaged across all electrodes and compared between groups (dyslexic, control) and conditions (resting state, language task) using a 2×2 repeated measures ANOVA. Age negatively correlated both with the exponent ( r = -.27, p = .003, BF 10 = 7.96) and offset ( r = -.40, p < .001, BF 10 = 3174.29) in line with previous investigations ( Cellier et al., 2021 ; McSweeney et al., 2021 ; Schaworonkow and Voytek, 2021 ; Voytek et al., 2015 ), therefore we included age as a covariate. Post-hoc tests are reported with Bonferroni corrected p -values.

For the mean exponent, we found a significant effect of age ( F (1,116) = 8.90, p = .003, η 2 p = .071, BF incl = 10.47), while the effects of condition ( F (1,116) = 2.32, p = .131, η 2 p = .020, BF incl = 0.39) and group ( F (1,116) = 0.08, p = .779, η 2 p = .001, BF incl = 0.40) were not significant and Bayes Factor did not provide evidence for either inclusion or exclusion. Interaction between group and condition ( F (1,116) = 0.16, p = .689, η 2 p = .001, BF incl = 0.21) was not significant and Bayes Factor indicated against including it in the model.

For the mean offset, we found significant effects of age ( F (1,116) = 22.57, p < .001, η 2 p = .163, BF incl = 1762.19) and condition ( F (1,116) = 23.04, p < .001, η 2 p = .166, BF incl > 10000) with post-hoc comparison indicating that the offset was lower in the resting state condition ( M = -10.80, SD = 0.21) than in the language task ( M = -10.67, SD = 0.26, p corr < .001). The effect of group ( F (1,116) = 0.00, p = .964, η 2 p = .000, BF incl = 0.54) was not significant while Bayes Factor did not provide evidence for either inclusion or exclusion. Interaction between group and condition was not significant ( F (1,116) = 0.07, p = .795, η 2 p = .001, BF incl = 0.22) and Bayes Factor indicated against including it in the model.

Next, we restricted analyses to language regions and averaged exponent and offset values from the frontal electrodes corresponding to the left (F7, FT7, FC5) and right inferior frontal gyrus (F8, FT8, FC6), as well as temporal electrodes, corresponding to the left (T7, TP7, TP9) and right superior temporal sulcus, STS (T8, TP8, TP10)( Giacometti et al., 2014 )( Scrivener and Reader, 2022 ). A 2×2×2×2 (group, condition, hemisphere, region) repeated measures ANOVA with age as a covariate was applied. Power spectra from the left STS at rest and during the language task are presented in Figure 1A and C , while the results for the exponent, offset, and beta power are presented in Figure 1B and D .

use hypothesis in a sentence biology

Overview of the main results obtained in the study. (A) Power spectral densities averaged across 3 electrodes (T7, TP7, TP9) corresponding to the left superior temporal sulcus (STS) separately for dyslexic (DYS) and control (CON) groups at rest and (C) during the language task. (B) Plots illustrating results for the exponent, offset, and the beta power from the left STS electrodes at rest and (D ) during the language task. (E) Group results (CON > DYS) from the fMRI localizer task for words compared to the control stimuli (p < .05 FWE cluster threshold) and overlap of the MRS voxel placement across participants. (F) MRS spectra separately for DYS and CON groups. (G) Plots illustrating results for the Glu, GABA, Glu/GABA ratio and the Glu/GABA imbalance. (H ) Semi-partial correlation between offset at rest (left STS electrodes) and Glu controlling for age and gray matter volume (GMV).

For the exponent, there were significant effects of age ( F (1,116) = 14.00, p < .001, η 2 p = .108, BF incl = 11.46) and condition F (1,116) = 4.06, p = .046, η 2 p = .034, BF incl = 1.88), however, Bayesian statistics did not provide evidence for either including or excluding the condition factor. Furthermore, post-hoc comparisons did not reveal significant differences between the exponent at rest ( M = 1.51, SD = 0.17) and during the language task ( M = 1.51, SD = 0.18, p corr = .546). There was also a significant interaction between region and group, although Bayes Factor indicated against including it in the model ( F (1,116) = 4.44, p = .037, η 2 p = .037, BF incl = 0.25). Post-hoc comparisons indicated that the exponent was higher in the frontal than in the temporal region both in the dyslexic ( M frontal = 1.54, SD frontal = 0.15, M temporal = 1.49, SD temporal = 0.18, p corr < .001) and in the control group ( M frontal = 1.54, SD frontal = 0.17, M temporal = 1.46, SD temporal = 0.20, p corr < .001). The difference between groups was not significant either in the frontal ( p corr = .858) or temporal region ( p corr = .441). The effects of region ( F (1,116) = 1.17, p = .282, η 2 p = .010, BF incl > 10000) and hemisphere ( F (1,116) = 1.17, p = .282, η 2 p = .010, BF incl = 12.48) were not significant, although Bayesian statistics indicated in favor of including them in the model. Furthermore, the interactions between condition and group ( F (1,116) = 0.18, p = .673, η 2 p = .002, BF incl = 3.70), and between region, hemisphere, and condition ( F (1,116) = 0.11, p = .747, η 2 p = .001, BF incl = 7.83) were not significant, however Bayesian statistics indicated in favor of including these interactions in the model. The effect of group ( F (1,116) = 0.12, p = .733, η 2 p = .001, BF incl = 1.19) was not significant, while Bayesian statistics did not provide evidence for either inclusion or exclusion. Any other interactions were not significant and Bayes Factor indicated against including them in the model.

In the case of offset, there were significant effects of condition ( F (1,116) = 20.88, p < .001, η 2 p = .153, BF incl > 10000) and region ( F (1,116) = 6.18, p = .014, η 2 p = .051, BF incl > 10000). For the main effect of condition, post-hoc comparison indicated that the offset was lower in the resting state condition ( M = -10.88, SD = 0.33) than in the language task ( M = -10.76, SD = 0.38, p corr < .001), while for the main effect of region, post-hoc comparison indicated that the offset was lower in the temporal ( M = -10.94, SD = 0.37) as compared to the frontal region ( M = -10.69, SD = 0.34, p corr < .001). There was also a significant effect of age ( F (1,116) = 20.84, p < .001, η 2 p = .152, BF incl = 0.23) and interaction between condition and hemisphere, ( F (1,116) = 4.35, p = .039, η 2 p = .036, BF incl = 0.21), although Bayes Factor indicated against including these factors in the model. Post-hoc comparisons for the condition*hemisphere interaction indicated that the offset was lower in the resting state condition than in the language task both in the left ( M rest = -10.85, SD rest = 0.34, M task = -10.73, SD task = 0.40, p corr < .001) and in the right hemisphere ( M rest = -10.91, SD rest = 0.31, M task = -10.79, SD task = 0.37, p corr < .001) and that the offset was lower in the right as compared to the left hemisphere both at rest ( p corr < .001) and during the language task ( p corr < .001). The interactions between region and condition ( F (1,116) = 1.76, p = .187, η 2 p = .015, BF incl > 10000), hemisphere and group ( F (1,116) = 1.58, p = .211, η 2 p = .013, BF incl = 1595.18), region and group ( F (1,116) = 0.27, p = .605, η 2 p = .002, BF incl = 9.32), as well as between region, condition, and group ( F (1,116) = 0.21, p = .651, η 2 p = .002, BF incl = 2867.18) were not significant, although Bayesian statistics indicated in favor of including them in the model. The effect of group ( F (1,116) = 0.18, p = .673, η 2 p = .002, BF incl < 0.00001) was not significant and Bayesian statistics indicated against including it in the model. Any other interactions were not significant and Bayesian statistics indicated against including them in the model or did not provide evidence for either inclusion or exclusion.

Then, we analyzed the aperiodic-adjusted brain oscillations. Since the algorithm did not find the gamma peak (30-43 Hz) above the aperiodic component in the majority of participants, we report the results only for the beta (14-30 Hz) power. We performed a similar regional analysis as for the exponent and offset with a 2×2×2×2 (group, condition, hemisphere, region) repeated measures ANOVA. However, we did not include age as a covariate, as it did not correlate with any of the periodic measures. The sample size was 117 (DYS n = 57, CON n = 60) since in 2 participants the algorithm did not find the beta peak above the aperiodic component in the left frontal electrodes during the task.

The analysis revealed a significant effect of condition ( F (1,115) = 8.58, p = .004, η 2 p = .069, BF incl = 5.82) with post-hoc comparison indicating that the beta power was greater during the language task ( M = 0.53, SD = 0.22) than at rest ( M = 0.50, SD = 0.19, p corr = .004). There were also significant effects of region ( F (1,115) = 10.98, p = .001, η 2 p = .087, BF incl = 23.71), and hemisphere ( F (1,115) = 12.08, p < .001, η 2 p = .095, BF incl = 23.91). For the main effect of region, post-hoc comparisons indicated that the beta power was greater in the temporal ( M = 0.52, SD = 0.21) as compared to the frontal region ( M = 0.50, SD = 0.19, p corr = .001), while for the main effect of hemisphere, post-hoc comparisons indicated that the beta power was greater in the right ( M = 0.52, SD = 0.20) than in the left hemisphere ( M = 0.51, SD = 0.20, p corr < .001). There was a significant interaction between condition and region ( F (1,115) = 12.68, p < .001, η 2 p = .099, BF incl = 55.26) with greater beta power during the language task as compared to rest significant in the temporal ( M rest = 0.50, SD rest = 0.20, M task = 0.55, SD task = 0.24, p corr < .001), while not in the frontal region ( M rest = 0.49, SD rest = 0.18, M task = 0.51, SD task = 0.22, p corr = .077). Also, greater beta power in the temporal as compared to the frontal region was significant during the language task ( p corr < .001), while not at rest ( p corr = .283). The effect of group ( F (1,115) = 0.05, p = .817, η 2 p = .000, BF incl < 0.00001) was not significant and Bayes Factor indicated against including it in the model. Any other interactions were not significant and Bayesian statistics indicated against including them in the model or did not provide evidence for either inclusion or exclusion.

Additionally, building upon previous findings which demonstrated differences in dyslexia in aperiodic and periodic components within the parieto-occipital region ( Turri et al., 2023 ), we have included analyses for the same cluster of electrodes in the Supplementary Material. However, in this region, we also did not find evidence for group differences either in the exponent, offset or beta power.

No evidence for group differences in Glu and GABA concentrations in the left STS

In total, 59 out of 120 participants underwent MRS session at 7T MRI scanner - 29 from the dyslexic group (13 females, 16 males) and 30 from the control group (14 females, 16 males). The MRS voxel was placed in the left STS, in a region showing highest activation for both visual and auditory words (compared to control stimuli) localized individually in each participant, based on an fMRI task (see Figure 1E for overlap of the MRS voxel placement across participants and Figure 1F for MRS spectra). We decided to analyze the neurometabolites’ levels derived from the left STS, as this region is consistently related to functional and structural differences in dyslexia across languages ( Yan et al., 2021 ).

Due to insufficient magnetic homogeneity or interruption of the study by the participants, 5 participants from the dyslexic group had to be excluded. We excluded further 4 participants due to poor quality of the obtained spectra thus the results for Glu are reported for 50 participants - 21 in the dyslexic (12 females, 9 males) and 29 in the control group (13 females, 16 males). In the case of GABA, we additionally excluded 3 participants based on the Cramér-Rao Lower Bounds (CRLB) > 20%. Therefore, the results for GABA, Glu/GABA ratio and Glu/GABA imbalance are reported for 47 participants - 20 in the dyslexic (12 females, 8 males) and 27 in the control group (11 females, 16 males). Demographic and behavioral characteristics for the subsample of 47 participants are provided in the Table S2.

For each metabolite, we performed a separate univariate ANCOVA with the effect of group being tested and voxel’s gray matter volume (GMV) as a covariate (see Figure 1G ). For the Glu analysis, we also included age as a covariate, due to negative correlation between variables ( r = -.35, p = .014, BF 10 = 3.41). The analysis revealed significant effect of GMV ( F (1,46) = 8.18, p = .006, η 2 p = .151, BF incl = 12.54), while the effects of age ( F (1,46) = 3.01, p = .090, η 2 p = .061, BF incl = 1.15) and group ( F (1,46) = 1.94, p = .170, 1 = .040, BF incl = 0.63) were not significant and Bayes Factor did not provide evidence for either inclusion or exclusion.

Conversely, GABA did not correlate with age ( r = -.11, p = .481, BF 10 = 0.23), thus age was not included as a covariate. The analysis revealed a significant effect of GMV ( F (1,44) = 4.39, p = .042, η 2 p = .091, BF incl = 1.64), however Bayes Factor did not provide evidence for either inclusion or exclusion. The effect of group was not significant ( F (1,44) = 0.49, p = .490, η 2 p = .011, BF incl = 0.35) although Bayesian statistics did not provide evidence for either inclusion or exclusion.

Also, Glu/GABA ratio did not correlate with age ( r = -.05, p = .744, BF 10 = 0.19), therefore age was not included as a covariate. The results indicated that the effect of GMV was not significant ( F (1,44) = 0.95, p = .335, η 2 p = .021, BF incl = 0.43) while Bayes Factor did not provide evidence for either inclusion or exclusion. The effect of group was not significant ( F (1,44) = 0.01, p = .933, η 2 p = .000, BF incl = 0.29) and Bayes Factor indicated against including it in the model.

Following a recent study examining developmental changes in both EEG and MRS E/I biomarkers ( McKeon et al., 2024 ), we calculated an additional measure of Glu/GABA imbalance, computed as the absolute residual value from the linear regression of Glu predicted by GABA with greater values indicating greater Glu/GABA imbalance. Alike the previous work ( McKeon et al., 2024 ), we took the square root of this value to ensure a normal distribution of the data. This measure did not correlate with age ( r = -.05, p = .719, BF 10 = 0.19); thus, age was not included as a covariate. The results indicated that the effect of GMV was not significant ( F (1,44) = 0.63, p = .430, η 2 p = .014, BF incl = 0.37) while Bayes Factor did not provide evidence for either inclusion or exclusion. The effect of group was not significant ( F (1,44) = 0.74, p = .396, η 2 p = .016, BF incl = 0.39) although Bayesian statistics did not provide evidence for either inclusion or exclusion.

Correspondence between Glu and GABA concentrations and EEG E/I biomarkers is limited

Next, we investigated correlations between Glu and GABA concentrations in the left STS and EEG markers of E/I balance. Semi-partial correlations were performed ( Table 1 ) to control for confounding variables - for Glu the effects of age and GMV were regressed, for GABA, Glu/GABA ratio and Glu/GABA imbalance the effect of GMV was regressed, while for exponents and offsets the effect of age was regressed. For zero-order correlations between variables see Table S3.

use hypothesis in a sentence biology

Semi-partial Correlations Between Direct and Indirect Markers of Excitatory-Inhibitory Balance. For Glu the Effects of Age and Gray Matter Volume (GMV) Were Regressed, for GABA, Glu/GABA Ratio and Glu/GABA Imbalance the Effect of GMV was Regressed, While for Exponents and Offsets the Effect of Age was Regressed

Glu negatively correlated with offset in the left STS both at rest ( r = -.38, p = .007, BF 10 = 6.28; Figure 1H ) and during the language task ( r = -.37, p = .009, BF 10 = 5.05), while any other correlations between Glu and EEG markers were not significant and Bayesian statistics indicated in favor of null hypothesis or provided absence of evidence for either hypothesis. Furthermore, Glu/GABA imbalance positively correlated with exponent at rest both averaged across all electrodes ( r = .29, p = .048, BF 10 = 1.21), as well as in the left STS electrodes ( r = .35, p = .017, BF 10 = 2.87) although Bayes Factor provided absence of evidence for either alternative or null hypothesis. Conversely, GABA and Glu/GABA ratio were not significantly correlated with any of the EEG markers and Bayesian statistics indicated in favor of null hypothesis or provided absence of evidence for either hypothesis.

Testing the paths from neural noise to reading

The neural noise hypothesis of dyslexia predicts impact of the neural noise on reading through the impairment of 1) phonological awareness, 2) lexical access and generalization and 3) multisensory integration ( Hancock et al., 2017 ). Therefore, we analyzed correlations between these variables, reading skills and direct and indirect markers of E/I balance. For the composite score of phonological awareness, we averaged z-scores from phoneme deletion, phoneme and syllable spoonerisms tasks. For the composite score of lexical access and generalization we averaged z-scores from objects, colors, letters and digits subtests from rapid automatized naming (RAN) task, while for the composite score of reading we averaged z-scores from words and pseudowords read per minute, and text reading time in reading comprehension task. The outcomes from the RAN and reading comprehension task have been transformed from raw time scores to items/time scores in order to provide the same direction of relationships for all z-scored measures, with greater values indicating better skills. For the multisensory integration score we used results from the redundant target effect task reported in our previous work ( Glica et al., 2024 ), with greater values indicating a greater magnitude of multisensory integration.

Age positively correlated with multisensory integration ( r = .38, p < .001, BF 10 = 87.98), composite scores of reading ( r = .22, p = .014, BF 10 = 2.24) and phonological awareness ( r = .21, p = .021, BF 10 = 1.59), while not with the composite score of RAN ( r = .13, p = .151, BF 10 = 0.32). Hence, we regressed the effect of age from multisensory integration, reading and phonological awareness scores and performed semi-partial correlations ( Table 2 , for zero-order correlations see Table S4).

use hypothesis in a sentence biology

Semi-partial Correlations Between Reading, Phonological Awareness, Rapid Automatized Naming, Multisensory Integration and Markers of Excitatory-Inhibitory Balance. For Reading, Phonological Awareness and Multisensory Integration the Effect of Age was Regressed, for Glu the Effects of Age and Gray Matter Volume (GMV) Were Regressed, for GABA, Glu/GABA Ratio and Glu/GABA Imbalance the Effect of GMV was Regressed, While for Exponents and Offsets the Effect of Age was Regressed

Phonological awareness positively correlated with offset in the left STS at rest ( r = .18, p = .049, BF 10 = 0.77) and with beta power in the left STS both at rest ( r = .23, p = .011, BF 10 = 2.73; Figure 2A ) and during the language task ( r = .23, p = .011, BF 10 = 2.84; Figure 2B ), although Bayes Factor provided absence of evidence for either alternative or null hypothesis. Furthermore, multisensory integration positively correlated with GABA concentration ( r = .31, p = .034, BF 10 = 1.62) and negatively with Glu/GABA ratio ( r = -.32, p = .029, BF 10 = 1.84), although Bayes Factor provided absence of evidence for either alternative or null hypothesis. Any other correlations between reading skills and E/I balance markers were not significant and Bayesian statistics indicated in favor of null hypothesis or provided absence of evidence for either hypothesis.

use hypothesis in a sentence biology

Associations between beta power, phonological awareness and reading. (A) Semi-partial correlation between phonological awareness controlling for age and beta power (in the left STS electrodes) at rest and (B) during the language task. (C) Partial correlation between phonological awareness and reading controlling for age. (D) Mediation analysis results. Unstandardized b regression coefficients are presented. Age was included in the analysis as a covariate. 95% CI - 95% confidence intervals. left STS - values averaged across 3 electrodes corresponding to the left superior temporal sulcus (T7, TP7, TP9).

Given that beta power correlated with phonological awareness, and considering the prediction that neural noise impedes reading by affecting phonological awareness — we examined this relationship through a mediation model. Since phonological awareness correlated with beta power in the left STS both at rest and during language task, the outcomes from these two conditions were averaged prior to the mediation analysis. Macro PROCESS v4.2 ( Hayes, 2017 ) on IBM SPSS Statistics v29 with model 4 (simple mediation) with 5000 Bootstrap samples to assess the significance of indirect effect was employed. Since age correlated both with phonological awareness and reading, we also included age as a covariate.

The results indicated that both effects of beta power in the left STS ( b = .96, t (116) = 2.71, p = .008, BF incl = 7.53) and age ( b = .06, t (116) = 2.55, p = .012, BF incl = 5.98) on phonological awareness were significant. The effect of phonological awareness on reading was also significant ( b = .69, t (115) = 8.16, p < .001, BF incl > 10000), while the effects of beta power ( b = -.42, t (115) = -1.25, p = .213, BF incl = 0.52) and age ( b = .03, t (115) = 1.18, p = .241, BF incl = 0.49) on reading were not significant when controlling for phonological awareness. Finally, the indirect effect of beta power on reading through phonological awareness was significant ( b = .66, SE = .24, 95% CI = [.24, 1.18]), while the total effect of beta power was not significant ( b = .24, t (116) = 0.61, p = .546, BF incl = 0.41). The results from the mediation analysis are presented in Figure 2D .

Although similar mediation analysis could have been conducted for the Glu/GABA ratio, multisensory integration, and reading based on the correlations between these variables, we did not test this model due to the small sample size (47 participants), which resulted in insufficient statistical power.

The current study aimed to validate the neural noise hypothesis of dyslexia ( Hancock et al., 2017 ) utilizing E/I balance biomarkers from EEG power spectra and ultra-high-field MRS. Contrary to its predictions, we did not observe differences either in 1/f slope, beta power, or Glu and GABA concentrations in participants with dyslexia. Relations between E/I balance biomarkers were limited to significant correlations between Glu and the offset when controlling for age, and between Glu/GABA imbalance and the exponent.

In terms of indirect markers, our study found no evidence of group differences in the aperiodic components of the EEG signal. In most of the models, we did not find evidence for either including or excluding the effect of the group when Bayesian statistics were evaluated. The only exception was the regional analysis for the offset, where results indicated against including the group factor in the model. These findings diverge from previous research on an Italian cohort, which reported decreased exponent and offset in the dyslexic group at rest, specifically within the parieto-occipital region, but not the frontal region ( Turri et al., 2023 ). Despite our study involving twice the number of participants and utilizing a longer acquisition time, we observed no group differences, even in the same cluster of electrodes (refer to Supplementary Material). The participants in both studies were of similar ages. The only methodological difference – EEG acquisition with eyes open in our study versus both eyes-open and eyes-closed in the work by Turri and colleagues (2023) – cannot fully account for the overall lack of group differences observed. The diverging study outcomes highlight the importance of considering potential inflation of effect sizes in studies with smaller samples.

Although a lower exponent of the EEG power spectrum has been associated with other neurodevelopmental disorders, such as ADHD ( Ostlund et al., 2021 ) or ASD (but only in children with IQ below average) ( Manyukhina et al., 2022 ), our study suggests that this is not the case for dyslexia. Considering the frequent comorbidity of dyslexia and ADHD ( Germanò et al., 2010 ; Langer et al., 2019 ), increased neural noise could serve as a common underlying mechanism for both disorders. However, our specific exclusion of participants with a comorbid ADHD diagnosis indicates that the EEG spectral exponent cannot serve as a neurobiological marker for dyslexia in isolation. No information regarding such exclusion criteria was provided in the study by Turri et al. (2023) ; thus, potential comorbidity with ADHD may explain the positive findings related to dyslexia reported therein.

Regarding the aperiodic-adjusted oscillatory EEG activity, Bayesian statistics for beta power, indicated in favor of excluding the group factor from the model. Non-significant group differences in beta power at rest have been previously reported in studies that did not account for aperiodic components ( Babiloni et al., 2012 ; Fraga González et al., 2018 ; Xue et al., 2020 ). This again contrasts with the study by Turri et al. (2023) , which observed lower aperiodic-adjusted beta power (at 15-25 Hz) in the dyslexic group. Concerning beta power during task, our results also contrast with previous studies which showed either reduced ( Spironelli et al., 2008 ) or increased ( Rippon and Brunswick, 2000 ) beta activity in participants with dyslexia. Nevertheless, since both of these studies employed phonological tasks and involved children’s samples, their relevance to our work is limited.

In terms of direct neurometabolite concentrations derived from the MRS, we found no evidence for group differences in either Glu, GABA or Glu/GABA imbalance in the language-sensitive left STS. Conversely, the Bayes Factor suggested against including the group factor in the model for the Glu/GABA ratio. While no previous study has localized the MRS voxel based on the individual activation levels, nonsignificant group differences in Glu and GABA concentrations within the temporo-parietal and visual cortices have been reported in both children and adults ( Kossowski et al., 2019 ), as well as in the ACC in children ( Horowitz-Kraus et al., 2018 ). Although our MRS sample size was half that of the EEG sample, previous research reporting group differences in Glu concentrations involved an even smaller dyslexic cohort (10 participants with dyslexia and 45 typical readers in Pugh et al., 2014 ). Consistent with earlier studies that identified group differences in Glu and GABA concentrations ( Del Tufo et al., 2018 ; Pugh et al., 2014 ) we reported neurometabolite levels relative to total creatine (tCr), indicating that the absence of corresponding results cannot be ascribed to reference differences. Notably, our analysis of the fMRI localizer task revealed greater activation in the control group as compared to the dyslexic group within the left STS for words than control stimuli (see Figure 1E and the Supplementary Material) in line with previous observations ( Blau et al., 2009 ; Dębska et al., 2021 ; Yan et al., 2021 ).

Irrespective of dyslexia status, we found negative correlations between age and exponent and offset, consistent with previous research ( Cellier et al., 2021 ; McSweeney et al., 2021 ; Schaworonkow and Voytek, 2021 ; Voytek et al., 2015 ) and providing further evidence for maturational changes in the aperiodic components (indicative of increased E/I ratio). At the same time, in line with previous MRS works ( Kossowski et al., 2019 ; Marsman et al., 2013 ), we observed a negative correlation between age and Glu concentrations. This suggests a contrasting pattern to EEG results, indicating a decrease in neuronal excitation with age. We also found a condition-dependent change in offset, with a lower offset observed at rest than during the language task. The offset value represents the uniform shift in power across frequencies ( Donoghue et al., 2020 ), with a higher offset linked to increased neuronal spiking rates ( Manning et al., 2009 ). Change in offset between conditions is consistent with observed increased alpha and beta power during the task, indicating elevated activity in both broadband (offset) and narrowband (alpha and beta oscillations) frequency ranges during the language task.

In regard to relationships between EEG and MRS E/I balance biomarkers, we observed a negative correlation between the offset in the left STS (both at rest and during the task) and Glu levels, after controlling for age and GMV. This correlation was not observed in zero-order correlations (see Supplementary Material). Contrary to our predictions, informed by previous studies linking the exponent to E/I ratio ( Colombo et al., 2019 ; Gao et al., 2017 ; Waschke et al., 2021 ), we found the correlation with Glu levels to involve the offset rather than the exponent. This outcome was unexpected, as none of the referenced studies reported results for the offset. However, given the strong correlation between the exponent and offset observed in our study ( r = .68, p < .001, BF 10 > 10000 and r = .72, p < .001, BF 10 > 10000 at rest and during the task respectively) it is conceivable that similar association might be identified for the offset if it were analyzed.

Nevertheless, previous studies examining relationships between EEG and MRS E/I balance biomarkers ( McKeon et al., 2024 ; van Bueren et al., 2023 ) did not identify a similar negative association between Glu and the offset. Instead, one study noted a positive correlation between the Glu/GABA ratio and the exponent ( van Bueren et al., 2023 ), which was significant in the intraparietal sulcus but not in the middle frontal gyrus. This finding presents counterintuitive evidence, suggesting that an increased E/I balance, as indicated by MRS, is associated with a higher aperiodic exponent, considered indicative of decreased E/I balance. In line with this pattern, another study discovered a positive relationship between the exponent and Glu levels in the dorsolateral prefrontal cortex ( McKeon et al., 2024 ). Furthermore, they observed a positive correlation between the exponent and the Glu/GABA imbalance measure, calculated as the absolute residual value of a linear relationship between Glu and GABA ( McKeon et al., 2024 ), a finding replicated in the current work. This implies that a higher spectral exponent might not be directly linked to MRS-derived Glu or GABA levels, but rather to a greater disproportion (in either direction) between these neurotransmitters. These findings, alongside the contrasting relationships between EEG and MRS biomarkers and age, suggest that these methods may reflect distinct biological mechanisms of E/I balance.

Evidence regarding associations between neurotransmitters levels and oscillatory activity also remains mixed. One study found a positive correlation between gamma peak frequency and GABA concentration in the visual cortex ( Muthukumaraswamy et al., 2009 ), a finding later challenged by a study with a larger sample ( Cousijn et al., 2014 ). Similarly, a different study noted a positive correlation between GABA in the left STS and gamma power ( Balz et al., 2016 ), another study, found non-significant relation between these measures ( Wyss et al., 2017 ). Moreover, in a simultaneous EEG and MRS study, an event-related increase in Glu following visual stimulation was found to correlate with greater gamma power ( Lally et al., 2014 ). We could not investigate such associations, as the algorithm failed to identify a gamma peak above the aperiodic component for the majority of participants. Also, contrary to previous findings showing associations between GABA in the motor and sensorimotor cortices and beta power ( Cheng et al., 2017 ; Gaetz et al., 2011 ) or beta peak frequency ( Baumgarten et al., 2016 ), we observed no correlation between Glu or GABA levels and beta power. However, these studies placed MRS voxels in motor regions which are typically linked to movement-related beta activity ( Baker et al., 1999 ; Rubino et al., 2006 ; Sanes and Donoghue, 1993 ) and did not adjust beta power for aperiodic components, making direct comparisons with our findings limited.

Finally, we examined pathways posited by the neural noise hypothesis of dyslexia, through which increased neural noise may impact reading: phonological awareness, lexical access and generalization, and multisensory integration ( Hancock et al., 2017 ). Phonological awareness was positively correlated with the offset in the left STS at rest, and with beta power in the left STS, both at rest and during the task. Additionally, multisensory integration showed correlations with GABA and the Glu/GABA ratio. Since the Bayes Factor did not provide conclusive evidence supporting either the alternative or null hypothesis, these associations appear rather weak. Nonetheless, given the hypothesis’s prediction of a causal link between these variables, we further examined a mediation model involving beta power, phonological awareness, and reading skills. The results suggested a positive indirect effect of beta power on reading via phonological awareness, whereas both the direct (controlling for phonological awareness and age) and total effects (without controlling for phonological awareness) were not significant. This finding is noteworthy, considering that participants with dyslexia exhibited reduced phonological awareness and reading skills, despite no observed differences in beta power. Given the cross-sectional nature of our study, further longitudinal research is necessary to confirm the causal relation among these variables. The effects of GABA and the Glu/GABA ratio on reading, mediated by multisensory integration, warrant further investigation. Additionally, considering our finding that only males with dyslexia showed deficits in multisensory integration ( Glica et al., 2024 ), sex should be considered as a potential moderating factor in future analyses. We did not test this model here due to the smaller sample size for GABA measurements.

Our findings suggest that the neural noise hypothesis, as proposed by Hancock and colleagues (2017) , does not fully explain the reading difficulties observed in dyslexia. Despite the innovative use of both EEG and MRS biomarkers to assess excitatory-inhibitory (E/I) balance, neither method provided evidence supporting an E/I imbalance in dyslexic individuals. Importantly, our study focused on adolescents and young adults, and the EEG recordings were conducted during rest and a spoken language task. These factors may limit the generalizability of our results. Future research should include younger populations and incorporate a broader array of tasks, such as reading and phonological processing, to provide a more comprehensive evaluation of the E/I balance hypothesis. Additionally, our findings are consistent with another study by Tan et al. (2022) which found no evidence for increased variability (’noise’) in behavioral and fMRI response patterns in dyslexia. Together, these results highlight the need to explore alternative neural mechanisms underlying dyslexia and suggest that cortical hyperexcitability may not be the primary cause of reading difficulties.

In conclusion, while our study challenges the neural noise hypothesis as a sole explanatory framework for dyslexia, it also underscores the complexity of the disorder and the necessity for multifaceted research approaches. By refining our understanding of the neural underpinnings of dyslexia, we can better inform future studies and develop more effective interventions for those affected by this condition.

Materials and methods

Participants.

A total of 120 Polish participants aged between 15.09 and 24.95 years ( M = 19.47, SD = 3.06) took part in the study. This included 60 individuals with a clinical diagnosis of dyslexia performed by the psychological and pedagogical counseling centers (28 females and 32 males) and 60 control participants without a history of reading difficulties (28 females and 32 males). All participants were right-handed, born at term, without any reported neurological/psychiatric diagnosis and treatment (including ADHD), without hearing impairment, with normal or corrected-to-normal vision, and IQ higher than 80 as assessed by the Polish version of the Abbreviated Battery of the Stanford-Binet Intelligence Scale-Fifth Edition (SB5) ( Roid et al., 2017 ).

The study was approved by the institutional review board at the University of Warsaw, Poland (reference number 2N/02/2021). All participants (or their parents in the case of underaged participants) provided written informed consent and received monetary remuneration for taking part in the study.

Reading and Reading-Related Tasks

Participants’ reading skills were assessed by multiple paper-pencil tasks described in detail in our previous work ( Glica et al., 2024 ). Briefly, we evaluated words and pseudowords read in one minute ( Szczerbiński and Pelc-Pękała, 2013 ), rapid automatized naming ( Fecenec et al., 2013 ), and reading comprehension speed. We also assessed phonological awareness by a phoneme deletion task ( Szczerbiński and Pelc-Pękała, 2013 ) and spoonerisms tasks ( Bogdanowicz et al., 2016 ), as well as orthographic awareness (Awramiuk and Krasowicz-Kupis, 2013). Furthermore, we evaluated non-verbal perception speed ( Ciechanowicz and Stańczak, 2006 ) and short-term and working memory by forward and backward conditions from the Digit Span subtest from the WAIS-R ( Wechsler, 1981 ). We also assessed participants’ multisensory audiovisual integration by a redundant target effect task, which results have been reported in our previous work ( Glica et al., 2024 ).

Electroencephalography Acquisition and Procedure

EEG was recorded from 62 scalp and 2 ear electrodes using the Brain Products system (actiCHamp Plus, Brain Products GmbH, Gilching, Germany). Data were recorded in BrainVision Recorder Software (Vers. 1.22.0002, Brain Products GmbH, Gilching, Germany) with a 500 Hz sampling rate. Electrodes were positioned in line with the extended 10-20 system. Electrode Cz served as an online reference, while the Fpz as a ground electrode. All electrodes’ impedances were kept below 10 kΩ. Participants sat in a chair with their heads on a chin-rest in a dark, sound-attenuated, and electrically shielded room while the EEG was recorded during both a 5-minute eyes-open resting state and the spoken language comprehension task. The paradigm was prepared in the Presentation software (Version 20.1, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com ).

During rest, participants were instructed to relax and fixate their eyes on a white cross presented centrally on a black background. After 5 minutes, the spoken language comprehension task automatically started. The task consisted of 3 to 5 word-long sentences recorded in a speech synthesizer which were presented binaurally through sound-isolating earphones. After hearing a sentence, participants were asked to indicate whether the sentence was true or false by pressing a corresponding button. In total, there were 256 sentences – 128 true (e.g., “Plants need water”) and 128 false (e.g., “Dogs can fly”).

Sentences were presented in a random order in two blocks of 128 trials. At the beginning of each trial, a white fixation cross was presented centrally on a black background for 500 ms, then a blank screen appeared for either 500, 600, 700, or 800 ms (durations set randomly and equiprobably) followed by an auditory sentence presentation. The length of sentences ranged between 1.17 and 2.78 seconds and was balanced between true ( M = 1.82 seconds, SD = 0.29) and false sentences ( M = 1.82 seconds, SD = 0.32; t (254) = -0.21, p = .835; BF 10 = 0.14). After a sentence presentation, a blank screen was displayed for 1000 ms before starting the next trial. To reduce participants’ fatigue, a 1-minute break between two blocks of trials was introduced, and it took approximately 15 minutes to complete the task.

fMRI Acquisition and Procedure

MRI data were acquired using Siemens 3T Trio system with a 32-channel head coil. Structural data were acquired using whole brain 3D T1-weighted image (MP_RAGE, TI = 1100 ms, GRAPPA parallel imaging with acceleration factor PE = 2, voxel resolution = 1mm 3 , dimensions = 256×256×176). Functional data were acquired using whole-brain echo planar imaging sequence (TE = 30ms, TR = 1410 ms, flip angle FA = 90°, FOV = 212 mm, matrix size = 92×92, 60 axial slices 2.3mm thick, 2.3×2.3 mm in-plane resolution, multiband acceleration factor = 3). Due to a technical issue, data from two participants were acquired with a 12-channel coil (see Supplementary Material).

The fMRI task served as a localizer for later MRS voxel placement in language-sensitive left STS. The task was prepared using Presentation software (Version 20.1, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com ) and consisted of three runs, each lasting 5 minutes and 9 seconds. Two runs involved the presentation of visual stimuli, while the third run of auditory stimuli. In each run, stimuli were presented in 12 blocks, with 14 stimuli per block. In visual runs, there were four blocks from each category: 1) 3 to 4 letters-long words, 2) the same words presented as a false font string (BACS font) ( Vidal et al., 2017 ), and 3) strings of 3 to 4-long consonants. Similarly, in the auditory run, there were four blocks from each category: 1) words recorded in a speech synthesizer, 2) the same words presented backward, and 3) consonant strings recorded in a speech synthesizer. Stimuli within each block were presented for 800 ms with a 400 ms break in between. The duration of each block was 16.8 seconds. Between blocks, a fixation cross was displayed for 8 seconds. Participants performed a 1-back task to maintain focus. The blocks were presented in a pseudorandom order and each block included 2 to 3 repeated stimuli.

MRS Acquisition and Procedure

The GE 7T system with a 32-channel coil was utilized. Structural data were acquired using whole brain 3D T1-weighted image (3D-SPGR BRAVO, TI = 450ms, TE = 2.6ms, TR = 6.6ms, flip angle = 12 deg, bandwidth = ±32.5kHz, ARC acceleration factor PE = 2, voxel resolution = 1mm, dimensions = 256 x 256 x 180). MRS spectra with 320 averages were acquired from the left STS using single-voxel spectroscopy semiLaser sequence ( Deelchand et al., 2021 ) (voxel size = 15 x 15 x 15 mm, TE = 28ms, TR = 4000ms, 4096 data points, water suppressed using VAPOR). Eight averages with unsuppressed water as a reference were collected.

To localize left STS, T1-weighted images from fMRI and MRS sessions were coregistered and fMRI peak coordinates were used as a center of voxel volume for MRS. Voxels were then adjusted to include only the brain tissue. During the acquisition, participants took part in a simple orthographic task.

Statistical Analyses

The continuous EEG signal was preprocessed in the EEGLAB ( Delorme and Makeig, 2004 ). The data were filtered between 0.5 and 45 Hz (Butterworth filter, 4th order) and re-referenced to the average of both ear electrodes. The data recorded during the break between blocks, as well as bad channels, were manually rejected. The number of rejected channels ranged between 0 and 4 ( M = 0.19, SD = 0.63). Next, independent component analysis (ICA) was applied. Components were automatically labeled by ICLabel ( Pion-Tonachini et al., 2019 ), and those classified with 50-100% source probability as eye blinks, muscle activity, heart activity, channel noise, and line noise, or with 0-50% source probability as brain activity, were excluded. Components labeled as “other” were visually inspected, and those identified as eye blinks and muscle activity were also rejected. The number of rejected components ranged between 11 and 46 ( M = 28.43, SD = 7.26). Previously rejected bad channels were interpolated using the nearest neighbor spline ( Perrin et al., 1989 , 1987 ).

The preprocessed data were divided into a 5-minute resting-state signal and a signal recorded during a spoken language comprehension task using MNE ( Gramfort, 2013 ) and custom Python scripts. The signal from the task was cut up based on the event markers indicating the beginning and end of a sentence. Only trials with correct responses given between 0 and 1000 ms after the end of a sentence were included. The signals recorded during every trial were further multiplied by the Tukey window with α = 0.01 in order to normalize signal amplitudes at the beginning and end of every trial. This allowed a smooth concatenation of signals recorded during task trials, resulting in a continuous signal derived only when participants were listening to the sentences.

The continuous signal from the resting state and the language task was epoched into 2-second-long segments. An automatic rejection criterion of +/-200 μV was applied to exclude epochs with excessive amplitudes. The number of epochs retained in the analysis ranged between 140–150 ( M = 149.66, SD = 1.20) in the resting state condition and between 102–226 ( M = 178.24, SD = 28.94) in the spoken language comprehension task.

Power spectral density (PSD) for 0.5-45 Hz in 0.5 Hz increments was calculated for every artifact-free epoch using Welch’s method for 2-second-long data segments windowed with a Hamming window with no overlap. The estimated PSDs were averaged for each participant and each channel separately for the resting state condition and the language task. Aperiodic and periodic (oscillatory) components were parameterized using the FOOOF method ( Donoghue et al., 2020 ). For each PSD, we extracted parameters for the 1-43 Hz frequency range using the following settings: peak_width_limits = [1, 12], max_n_peaks = infinite, peak_threshold = 2.0, mean_peak_height = 0.0, aperiodic_mode = ‘fixed’. Apart from broad-band aperiodic parameters (exponent and offset), we also extracted power, bandwidth, and the center frequency parameters for the theta (4-7 Hz), alpha (7-14 Hz), beta (14-30 Hz) and gamma (30-43 Hz) bands. Since in the majority of participants, the algorithm did not find the peak above the aperiodic component in theta and gamma bands, we calculated the results only for the alpha and beta bands. The results for other periodic parameters than the beta power are reported in Supplementary Material.

Apart from the frequentist statistics, we also performed Bayesian statistics using JASP ( JASP Team, 2023 ). For Bayesian repeated measures ANOVA, we reported the Bayes Factor for the inclusion of a given effect (BF incl ) with the ’across matched model’ option, as suggested by Keysers and colleagues (2020) , calculated as a likelihood ratio of models with a presence of a specific factor to equivalent models differing only in the absence of the specific factor. For Bayesian t -tests and correlations, we reported the BF 10 value, indicating the ratio of the likelihood of an alternative hypothesis to a null hypothesis. We considered BF incl/10 > 3 and BF incl/10 < 1/3 as evidence for alternative and null hypotheses respectively, while 1/3 < BF incl/10 < 3 as the absence of evidence ( Keysers et al., 2020 ).

MRS voxel localization in the native space

The data were analyzed using Statistical Parametric Mapping (SPM12, Wellcome Trust Centre for Neuroimaging, London, UK) run on MATLAB R2020b (The MathWorks Inc., Natick, MA, USA). First, all functional images were realigned to the participant’s mean. Then, T1-weighted images were coregistered to functional images for each subject. Finally, fMRI data were smoothed with a 6mm isotropic Gaussian kernel.

In each subject, the left STS was localized in the native space as a cluster in the middle and posterior left superior temporal sulcus, exhibiting higher activation for visual words versus false font strings and auditory words versus backward words (logical AND conjunction) at p < .01 uncorrected. For 6 participants, the threshold was lowered to p < .05 uncorrected, while for another 6 participants, the contrast from the auditory run was changed to auditory words versus fixation cross due to a lack of activation for other contrasts.

In the Supplementary Material, we also performed the group-level analysis of the fMRI data (Tables S5-S7 and Figure S1).

MRS data were analyzed using fsl-mrs version 2.0.7 ( Clarke et al., 2021 ). Data stored in pfile format were converted into NIfTI-MRS using spec2nii tool. We then used the fsl_mrs_preproc function to automatically perform coil combination, frequency and phase alignment, bad average removal, combination of spectra, eddy current correction, shifting frequency to reference peak and phase correction.

To obtain information about the percentage of WM, GM and CSF in the voxel we used the svs_segmentation with results of fsl_anat as an input. Voxel segmentation was performed on structural images from a 3T scanner, coregistered to 7T structural images in SPM12. Next, quantitative fitting was performed using fsl_mrs function. As a basis set, we utilized a collection of 27 metabolite spectra simulated using FID-A ( Simpson et al., 2017 ) and a script tailored for our experiment. We supplemented this with synthetic macromolecule spectra provided by fsl_mrs . Signals acquired with unsuppressed water served as water reference.

Spectra underwent quantitative assessment and visual inspection and those with linewidth higher than 20Hz, %CRLB higher than 20%, and poor fit to the model were excluded from the analysis (see Table S8 in the Supplementary Material for a detailed checklist). Glu and GABA concentrations were expressed as a ratio to total-creatine (tCr; Creatine + Phosphocreatine).

Data Availability Statement

Behavioral data, raw and preprocessed EEG data, 2 nd level fMRI data, preprocessed MRS data and Python script for the analysis of preprocessed EEG data can be found at OSF: https://osf.io/4e7ps/

Acknowledgements

This study was supported by the National Science Centre grant (2019/35/B/HS6/01763) awarded to Katarzyna Jednoróg.

We gratefully acknowledge valuable discussions with Ralph Noeske from GE Healthcare for his support in setting up the protocol for an ultra-high field MR spectroscopy and sharing the set-up for basis set simulation in FID-A.

  • Buitelaar J
  • dos Santos FP
  • Verschure PFMJ
  • McAlonan G.
  • Krasowicz-Kupis G
  • Albertini G
  • Roa Romero Y
  • Ittermann B
  • Senkowski D
  • Baumgarten TJ
  • Oeltzschner G
  • Hoogenboom N
  • Wittsack H-J
  • Schnitzler A
  • van Atteveldt N
  • Bogdanowicz KM
  • Bogdanowicz M
  • Sajewicz-Radtke U
  • Karpińska E
  • Łockiewicz M
  • Ciechanowicz A
  • Napolitani M
  • Gosseries O
  • Casarotto S
  • Brichant J-F
  • Massimini M
  • Chieregato A
  • Harrison PJ
  • Dzięgiel-Fivet G
  • Łuniewska M
  • Grabowska A
  • Deelchand DK
  • Berrington A
  • Seraji-Bozorgzad N
  • Del Tufo SN
  • Fulbright RK
  • Peterson EJ
  • Sebastian P
  • Jaworowska A
  • Yingling CD
  • Johnstone J
  • Davenport L
  • Finkelman T
  • Furman-Haran E
  • Fraga González G
  • van der Molen MJW
  • de Geus EJC
  • van der Molen MW.
  • Roberts TPL
  • Giacometti P
  • Wasilewska K
  • Kossowski B
  • Żygierewicz J
  • Horowitz-Kraus T
  • Ermentrout B
  • Wagenmakers E-J
  • Bogorodzki P
  • Roberts M V.
  • Haenschel C
  • Lasnick OHM
  • MacMaster FP
  • Villiermet N
  • Manyukhina VO
  • Prokofyev AO
  • Obukhova TS
  • Schneiderman JF
  • Altukhov DI
  • Stroganova TA
  • Orekhova E V
  • Marchesotti S
  • Donoghue JP
  • van den Heuvel MP
  • Hilleke E. HP
  • Hetherington H
  • McSweeney M
  • Swerdlow NR
  • Muthukumaraswamy SD
  • Swettenham JB
  • Karalunas SL
  • Echallier JF
  • Pion-Tonachini L
  • Kreutz-Delgado K
  • Edenberg HJ
  • Chorlian DB
  • O’Connor SJ
  • Rohrbaugh J
  • Schuckit MA
  • Hesselbrock V
  • Conneally PM
  • Tischfield JA
  • Begleiter H
  • Grigorenko EL
  • Seidenberg MS
  • Brunswick N
  • Hatsopoulos NG
  • Salvatore S V.
  • Zorumski CF
  • Mennerick S
  • Schaworonkow N
  • Scrivener CL
  • Hennessy TJ
  • Spironelli C
  • Penolazzi B
  • Szczerbiński M
  • Pelc-Pękała O
  • van Bueren NER
  • van der Ven SHG
  • Cohen Kadosh R.
  • Van Hirtum T
  • Ghesquière P
  • Tempesta ZR
  • Achermann R

Article and author information

Katarzyna jednoróg, for correspondence:, version history.

  • Sent for peer review : June 11, 2024
  • Preprint posted : June 12, 2024
  • Reviewed Preprint version 1 : September 5, 2024

© 2024, Glica et al.

This article is distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use and redistribution provided that the original author and source are credited.

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Be the first to read new articles from eLife

IMAGES

  1. Hypothesis

    use hypothesis in a sentence biology

  2. Biology 150 Lab Report Hypothesis & Prediction

    use hypothesis in a sentence biology

  3. 15 Hypothesis Examples (2024)

    use hypothesis in a sentence biology

  4. Null hypothesis

    use hypothesis in a sentence biology

  5. How to use in sentence of "hypothesis"

    use hypothesis in a sentence biology

  6. Sentences with Hypothesis, Sentences about Hypothesis

    use hypothesis in a sentence biology

VIDEO

  1. Intro to Statistics Basic Concepts and Research Techniques

  2. What Is A Hypothesis?

  3. What is a Hypothesis?

  4. How to use Hypothesis with JSTOR content

  5. Formulation of Hypothesis

  6. Writing a hypothesis

COMMENTS

  1. Hypothesis

    Biology definition: A hypothesis is a supposition or tentative explanation for (a group of) phenomena, (a set of) facts, or a scientific inquiry that may be tested, verified or answered by further investigation or methodological experiment.It is like a scientific guess.It's an idea or prediction that scientists make before they do experiments. They use it to guess what might happen and then ...

  2. How to Write a Strong Hypothesis

    How to Write a Strong Hypothesis | Steps & Examples

  3. Examples of 'Hypothesis' in a Sentence

    Synonyms for hypothesis. The results of the experiment did not support his hypothesis. Their hypothesis is that watching excessive amounts of television reduces a person's ability to concentrate. Other chemists rejected his hypothesis. Isaac Newton initially argued against a parabolic orbit for the … comet of 1680, preferring the hypothesis ...

  4. Biology Hypothesis

    Writing a well-formulated hypothesis sets the foundation for conducting experiments, making observations, and drawing meaningful conclusions. Follow this step-by-step guide to create a strong biology hypothesis: 1. Identify the Phenomenon: Clearly define the biological phenomenon you intend to study.

  5. Hypothesis Examples

    Here are some research hypothesis examples: If you leave the lights on, then it takes longer for people to fall asleep. If you refrigerate apples, they last longer before going bad. If you keep the curtains closed, then you need less electricity to heat or cool the house (the electric bill is lower). If you leave a bucket of water uncovered ...

  6. How to Write a Hypothesis in 6 Steps, With Examples

    How to Write a Hypothesis in 6 Steps, With Examples

  7. What Is a Hypothesis and How Do I Write One? · PrepScholar

    Merriam Webster defines a hypothesis as "an assumption or concession made for the sake of argument.". In other words, a hypothesis is an educated guess. Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it's true or not.

  8. A Strong Hypothesis

    Keep in mind that writing the hypothesis is an early step in the process of doing a science project. The steps below form the basic outline of the Scientific Method: Ask a Question. Do Background Research. Construct a Hypothesis. Test Your Hypothesis by Doing an Experiment. Analyze Your Data and Draw a Conclusion.

  9. How to Write a Strong Hypothesis

    How to Write a Strong Hypothesis | Guide & Examples - Scribbr

  10. Hypothesis Definition & Meaning

    How to use hypothesis in a sentence. The Difference Between Hypothesis and Theory Synonym Discussion of Hypothesis. an assumption or concession made for the sake of argument; an interpretation of a practical situation or condition taken as the ground for action…

  11. How to Write a Hypothesis w/ Strong Examples

    Associative Hypothesis Examples. There is an association between the number of hours spent on social media and the level of anxiety in teenagers. Daily consumption of green tea is associated with weight loss in adults. The frequency of public transport use correlates with the level of urban air pollution.

  12. Scientific hypothesis

    Scientific hypothesis | Definition, Formulation, & Example

  13. Hypothesis: Definition, Examples, and Types

    Hypothesis: Definition, Examples, and Types

  14. Hypothesis Examples: Different Types in Science and Research

    To form a solid theory, the vital first step is creating a hypothesis. See the various types of hypotheses and how they can lead you on the path to discovery.

  15. What Are Effective Hypothesis Examples?

    What Are Examples of a Hypothesis?

  16. What Is a Hypothesis? The Scientific Method

    What Is a Hypothesis? (Science) - Scientific Method

  17. How to Write a Strong Hypothesis in 6 Simple Steps

    Learning how to write a hypothesis comes down to knowledge and strategy. So where do you start? Learn how to make your hypothesis strong step-by-step here.

  18. PDF The Hypothesis in Science Writingaccordingly.

    ve. growth.To begin formulating a hypothesis:1. Review. ll. the information gathered during research 2. Fig. re. out what the main question of the study is3. Form a general statement outlining this question. and the overall expectation of the experimentThe goal is to create a rough version of the statement seen in Exam.

  19. Hypothesis in a Sentence

    Examples of Hypothesis in a sentence. The scientist's hypothesis did not stand up, since research data was inconsistent with his guess. Each student gave a hypothesis and theorized which plant would grow the tallest during the study. A hypothesis was presented by the panel, giving a likely explanation for why the trial medicine didn't seem ...

  20. Examples of "Hypothesis" in a Sentence

    Herbert Spencer, again, before the decline in question set in, put forward the hypothesis that "the ability to maintain individual life and the ability to multiply vary inversely"; in other words, the strain upon the nervous system involved in the struggle for life under the conditions of modern civilization, by reacting on the reproductive powers, tends towards comparative sterility.

  21. Examples of 'hypothesis' in a sentence

    Competing in a Global Economy. (1990) Country data also provide evidence supporting the hypothesis. Forstner, Helmut, Ballance, Robert. Competing in a Global Economy. (1990) His colleagues must surely be asking themselves whether they really need to test this hypothesis before making a change. Times, Sunday Times. (2011)

  22. Khan Academy

    The scientific method (article)

  23. Reevaluating the Neural Noise Hypothesis in Dyslexia: Insights ...

    After hearing a sentence, participants were asked to indicate whether the sentence was true or false by pressing a corresponding button. In total, there were 256 sentences - 128 true (e.g., "Plants need water") and 128 false (e.g., "Dogs can fly"). Sentences were presented in a random order in two blocks of 128 trials.