isaac newton scientist biography

  • History Classics
  • Your Profile
  • Find History on Facebook (Opens in a new window)
  • Find History on Twitter (Opens in a new window)
  • Find History on YouTube (Opens in a new window)
  • Find History on Instagram (Opens in a new window)
  • Find History on TikTok (Opens in a new window)
  • This Day In History
  • History Podcasts
  • History Vault

Isaac Newton

By: History.com Editors

Updated: October 16, 2023 | Original: March 10, 2015

Sir Isaac NewtonENGLAND - JANUARY 01: Sir Isaac Newton (1642-1727) .Canvas. (Photo by Imagno/Getty Images) [Sir Isaac Newton (1642-1727) . Gemaelde.]

Isaac Newton is best know for his theory about the law of gravity, but his “Principia Mathematica” (1686) with its three laws of motion greatly influenced the Enlightenment in Europe. Born in 1643 in Woolsthorpe, England, Sir Isaac Newton began developing his theories on light, calculus and celestial mechanics while on break from Cambridge University. 

Years of research culminated with the 1687 publication of “Principia,” a landmark work that established the universal laws of motion and gravity. Newton’s second major book, “Opticks,” detailed his experiments to determine the properties of light. Also a student of Biblical history and alchemy, the famed scientist served as president of the Royal Society of London and master of England’s Royal Mint until his death in 1727.

Isaac Newton: Early Life and Education

Isaac Newton was born on January 4, 1643, in Woolsthorpe, Lincolnshire, England. The son of a farmer who died three months before he was born, Newton spent most of his early years with his maternal grandmother after his mother remarried. His education was interrupted by a failed attempt to turn him into a farmer, and he attended the King’s School in Grantham before enrolling at the University of Cambridge’s Trinity College in 1661.

Newton studied a classical curriculum at Cambridge, but he became fascinated by the works of modern philosophers such as René Descartes, even devoting a set of notes to his outside readings he titled “Quaestiones Quaedam Philosophicae” (“Certain Philosophical Questions”). When the Great Plague shuttered Cambridge in 1665, Newton returned home and began formulating his theories on calculus, light and color, his farm the setting for the supposed falling apple that inspired his work on gravity.

Isaac Newton’s Telescope and Studies on Light

Newton returned to Cambridge in 1667 and was elected a minor fellow. He constructed the first reflecting telescope in 1668, and the following year he received his Master of Arts degree and took over as Cambridge’s Lucasian Professor of Mathematics. Asked to give a demonstration of his telescope to the Royal Society of London in 1671, he was elected to the Royal Society the following year and published his notes on optics for his peers.

Through his experiments with refraction, Newton determined that white light was a composite of all the colors on the spectrum, and he asserted that light was composed of particles instead of waves. His methods drew sharp rebuke from established Society member Robert Hooke, who was unsparing again with Newton’s follow-up paper in 1675. 

Known for his temperamental defense of his work, Newton engaged in heated correspondence with Hooke before suffering a nervous breakdown and withdrawing from the public eye in 1678. In the following years, he returned to his earlier studies on the forces governing gravity and dabbled in alchemy.

Isaac Newton and the Law of Gravity

In 1684, English astronomer Edmund Halley paid a visit to the secluded Newton. Upon learning that Newton had mathematically worked out the elliptical paths of celestial bodies, Halley urged him to organize his notes. 

The result was the 1687 publication of “Philosophiae Naturalis Principia Mathematica” (Mathematical Principles of Natural Philosophy), which established the three laws of motion and the law of universal gravity. Newton’s three laws of motion state that (1) Every object in a state of uniform motion will remain in that state of motion unless an external force acts on it; (2) Force equals mass times acceleration: F=MA and (3) For every action there is an equal and opposite reaction.

“Principia” propelled Newton to stardom in intellectual circles, eventually earning universal acclaim as one of the most important works of modern science. His work was a foundational part of the European Enlightenment .

With his newfound influence, Newton opposed the attempts of King James II to reinstitute Catholic teachings at English Universities. King James II was replaced by his protestant daughter Mary and her husband William of Orange as part of the Glorious Revolution of 1688, and Newton was elected to represent Cambridge in Parliament in 1689. 

Newton moved to London permanently after being named warden of the Royal Mint in 1696, earning a promotion to master of the Mint three years later. Determined to prove his position wasn’t merely symbolic, Newton moved the pound sterling from the silver to the gold standard and sought to punish counterfeiters.

The death of Hooke in 1703 allowed Newton to take over as president of the Royal Society, and the following year he published his second major work, “Opticks.” Composed largely from his earlier notes on the subject, the book detailed Newton’s painstaking experiments with refraction and the color spectrum, closing with his ruminations on such matters as energy and electricity. In 1705, he was knighted by Queen Anne of England.

Isaac Newton: Founder of Calculus?

Around this time, the debate over Newton’s claims to originating the field of calculus exploded into a nasty dispute. Newton had developed his concept of “fluxions” (differentials) in the mid 1660s to account for celestial orbits, though there was no public record of his work. 

In the meantime, German mathematician Gottfried Leibniz formulated his own mathematical theories and published them in 1684. As president of the Royal Society, Newton oversaw an investigation that ruled his work to be the founding basis of the field, but the debate continued even after Leibniz’s death in 1716. Researchers later concluded that both men likely arrived at their conclusions independent of one another.

Death of Isaac Newton

Newton was also an ardent student of history and religious doctrines, and his writings on those subjects were compiled into multiple books that were published posthumously. Having never married, Newton spent his later years living with his niece at Cranbury Park near Winchester, England. He died in his sleep on March 31, 1727, and was buried in Westminster Abbey .

A giant even among the brilliant minds that drove the Scientific Revolution, Newton is remembered as a transformative scholar, inventor and writer. He eradicated any doubts about the heliocentric model of the universe by establishing celestial mechanics, his precise methodology giving birth to what is known as the scientific method. Although his theories of space-time and gravity eventually gave way to those of Albert Einstein , his work remains the bedrock on which modern physics was built.

Isaac Newton Quotes

  • “If I have seen further it is by standing on the shoulders of Giants.”
  • “I can calculate the motion of heavenly bodies but not the madness of people.”
  • “What we know is a drop, what we don't know is an ocean.”
  • “Gravity explains the motions of the planets, but it cannot explain who sets the planets in motion.”
  • “No great discovery was ever made without a bold guess.”

isaac newton scientist biography

HISTORY Vault: Sir Isaac Newton: Gravity of Genius

Explore the life of Sir Isaac Newton, who laid the foundations for calculus and defined the laws of gravity.

isaac newton scientist biography

Sign up for Inside History

Get HISTORY’s most fascinating stories delivered to your inbox three times a week.

By submitting your information, you agree to receive emails from HISTORY and A+E Networks. You can opt out at any time. You must be 16 years or older and a resident of the United States.

More details : Privacy Notice | Terms of Use | Contact Us

Biography Online

Biography

Biography Sir Isaac Newton

IsaacNewton-

Early Life of Newton

Sir Isaac Newton was born on Christmas Day, in 1643, to a relatively poor farming family. His father died three months before he was born. His mother later remarried, but her second husband did not get on with Isaac; leading to friction between Isaac and his parents. The young Isaac attended school at King’s School, Grantham in Lincolnshire (where his signature is still inscribed on the walls.) Isaac was one of the top students, but before completing his studies his mother withdrew him from school, so Isaac could work as a farmer. It was only through the intervention of the headmaster that Isaac was able to return to finish his studies; he passed his final exams with very good results and was able to go to Trinity College, Cambridge.

Newton at Cambridge

Isaac Newton

Sir Isaac Newton, has been referred to as one of the greatest geniuses of history. His mathematical and scientific achievements give credence to such a view. His many accomplishments in the field of science include:

Developing a theory of calculus . Unfortunately, at the same time as Newton, calculus was being developed by Leibniz.  When Leibniz published his results, there was a bitter feud between the two men, with Newton claiming plagiarism. This bitter feud lasted until Leibniz death in 1713, it also extended between British mathematicians and the continent.

Mathematical achievements of Newton

  • Generalized binomial theorem
  • Newton’s identities,
  • Newton’s method,
  • Classified cubic plane curves (polynomials of degree three in two variables),
  • Substantial contributions to the theory of finite differences,
  • Use of fractional indices
  • Used geometry to derive solutions to Diophantine equations.
  • Used power series with confidence and to revert power series.
  • Discovered a new formula for pi.

Scientific Achievements of Newton

  • Optics – Newton made great advancements in the study of optics. In particular, he developed the spectrum by splitting white light through a prism.
  • Telescope – Made significant improvements to the development of the telescope. However, when his ideas were criticised by Hooke, Newton withdrew from the public debate. He developed an antagonistic and hostile attitude to Hooke, throughout his life.
  • Mechanics and Gravitation . In his famous book Principia Mathematica . (1687) Newton explained the three laws of motion that laid the framework for modern physics. This involved explaining planetary movements.

Newton hit on the head with an Apple

The most popular anecdote about Sir Isaac Newton is the story of how the theory of gravitation came to him, after being hit on the head with a falling apple. In reality, Newton and his friends may have exaggerated this story. Nevertheless, it is quite likely that seeing apples fall from trees may have influenced his theories of gravity.

Newton’s Religious Beliefs

As well as being a scientist, Newton actually spent more time investigating religious issues. He read the Bible daily, believing it to be the word of God. Nevertheless, he was not satisfied with the Christian interpretations of the Bible. For example, he rejected the philosophy of the Holy Trinity; his beliefs were closer to the Christian beliefs in Arianism (basically there was a difference between Jesus Christ and God)

Newton – Bible Code

Newton was fascinated with the early Church and also the last chapter of the Bible Revelations. He spent many hours poring over the Bible, trying to find the secret Bible Code. He was rumoured to be a Rosicrucian. The religious beliefs that Newton held could have caused serious embarrassment at the time. Because of this, he kept his views hidden, almost to the point of obsession. This desire for secrecy seemed to be part of his nature. It was only on his death that his papers were opened up. The bishop who first opened Newton’s box, actually found them too shocking for public release, therefore, they were kept closed for many more years.

Newton and Alchemy

Newton was also interested in alchemy. He experimented on many objects, using a lot of Mercury. Very high levels of mercury in his bloodstream may have contributed to his early death and irregularities in later life.

Newton was made a member of the Royal Society in 1703. He was also given the job of Master of Mint in 1717. He took this job seriously and unofficially was responsible for moving England from the silver standard to the gold standard.

Newton was an extraordinary polymath; the universe simply fascinated him. He sought to discover the hidden and outer mysteries of life. With his sharp intellect and powers of concentration, he was able to contribute to tremendous developments in many areas of science. He was a unique individual. John Maynard Keynes , a twentieth-century genius, said of Newton:

“I do not think that any one who has pored over the contents of that box which he packed up when he finally left Cambridge in 1696 and which, though partly dispersed, have come down to us, can see him like that. Newton was not the first of the age of reason. He was the last of the magicians, the last of the Babylonians and Sumerians, the last great mind which looked out on the visible and intellectual world with the same eyes as those who began to build our intellectual inheritance rather less than 10,000 years ago. Isaac Newton, a posthumous child born with no father on Christmas Day, 1642, was the last wonderchild to whom the Magi could do sincere and appropriate homage.” [1]

Citation: Pettinger, Tejvan . “Biography of Sir Isaac Newton”, Oxford, www.biographyonline.net , 18th May. 2009. Last updated 28 Feb 2018.

Further reading: Interesting facts about Isaac Newton

Isaac Newton

Book Cover

Isaac Newton at Amazon

Isaac Newton, the Royal Society, and the Birth of the Modern World

Book Cover

Isaac Newton, the Royal Society, and the Birth of the Modern World at Amazon

Related pages

Shakespeare

Inventions that changed the world  – Famous inventions that made a great difference to the progress of the world, including aluminium, the telephone and the printing press.

[1] Keynes on Newton the Man

web analytics

isaac newton scientist biography

Isaac Newton

Server costs fundraiser 2024.

Mark Cartwright

Isaac Newton (1642-1727) was an English mathematician and physicist widely regarded as the single most important figure in the Scientific Revolution for his three laws of motion and universal law of gravity. Newton's laws became a fundamental foundation of physics, while his discovery that white light is made up of a rainbow of colours revolutionised the field of optics.

Isaac Newton was born on 25 December 1642. His family in Woolsthorpe, Lincolnshire, was of the yeomanry class, but it was clear that Isaac was destined for a career other than farming. Isaac's father died a few months before he was born, and his stepfather, a minister, died when he was 14. His mother was Hannah Ayscough, and her second husband insisted that Isaac be separated from his mother for a number of years. Some historians have read into this period of neglect the cause of Newton's notoriously prickly character and hypersensitivity to criticism later in life.

The young Isaac had a prodigious interest in all things mechanical, and he made several working models of his own, but he did not do particularly well at school. He was mischievous and once sent out into the night sky a series of candle-lit lanterns, which startled the local villagers into thinking a shower of comets was about to strike them down. An uncle of Isaac was adamant he was sent to study law at Trinity College, Cambridge, in June 1661. It was not law, though, but mathematics at which the young scholar excelled.

Isaac supplemented his orthodox education by taking private lessons with the mathematician and theologian Isaac Barrow (1630-1677). Barrow would later recommend Newton for his own soon-to-be-vacant chair at Trinity College. Newton graduated in April 1665, but any hope of a quick career launch was scuppered when there was an outbreak of the Black Death plague . Isaac was obliged to return to the family home in Woolthorpe for a year or more.

Newton's Prism

Newton's Approach to Knowledge

Isaac did not waste his year of forced seclusion as he launched into a series of scientific investigations, so much so that he described 1665 to 1666 as his "year of wonder" (Burns, 217). Newton discovered "the binomial theory, the differential and integral calculus, and the refraction of light, and he began to work out the theory of universal gravitation" ( ibid ). Heady stuff. Newton was determined to use all manner of methodologies and thinking, from alchemy to mechanical philosophy , in order to find out scientific truths that can be expressed mathematically. To this end, he relentlessly squirrelled away kernels of ancient and contemporary knowledge, experimentation, and even lore in a few select and very private leather-bound volumes, thus preserving his findings for later consumption when his scientific theories became clearer. As Newton himself once stated in a private letter, "If I have seen further it is by standing on the shoulders of giants" (Wootton, 341).

Newton was also a Protestant Christian (although an unorthodox one in private) and saw no conflict in his endeavours to explain why things happened the way they do in the physical world with the story of the Bible . Indeed, the imperfections of the physical world his theories proved all required, Newton said, a Creator to adjust them every now and then. Some Christians saw this as denying the perfection of the Creator, others saw it as support for having a Creator in the first place. For Newton, space was "an eminent effect of God ," and "he seems to have gone so far as to later identify space with the immensity of God, so that the biblical pronouncements that 'In Him we live, and move, and have our being' (Acts 17:28) was taken quite literally" (Henry, 89).

Like many thinkers of the time, Newton was convinced that great knowledge had been gained and then lost over the centuries and so careful research of past intellectual endeavours was essential in order to recapture this lost wisdom (known as prisca sapientia ). This belief in a lost or secret knowledge – a peculiar eccentricity for a scientist – may also explain why Newton was notoriously reticent to publish his own discoveries. He seemed to relish secrecy, just as was the tradition of the great alchemists of the Middle Ages. Fortunately for the progress of humanity, Newton did eventually make his ground-breaking research public.

Newton's Spectrum of Light

Newton did not find the esteemed Royal Society very receptive to his new ideas, particularly on optics, and so he got his foot in the door of that institution by designing a reflective telescope in 1668. This type of telescope used a curved mirror made of a tin and copper alloy, which improved the clarity of the image seen by reducing chromatic aberration, that is, when all colours fail to converge in a single point (a problem of glass lenses at the time). Newton's telescope had a magnification of 40 times and was ten times shorter than the standard refracting telescope of the same strength would have been. The Royal Society was hooked, and Newton was elected to that learned body in 1672; he then submitted his research on optics, which had, in fact, made his super-duper telescope possible.

Newton's Reflecting Telescope

Between 1666 and 1668, Newton had conducted optical experiments where he captured a narrow beam of light through an aperture, which was then projected onto a wall in a dark room. The light was made to shine through a prism. Others had done this sort of thing before, but, significantly, Newton put his prism near the hole and far from the wall on which was projected a block of rainbow colours: red, orange, yellow, green, blue, indigo, and violet. Even more crucial – in what he called his experimentum crucis – Newton then had various colour beams of the split white light go through a second prism, and these left that second prism the same colour as they entered, i.e. they could not be split further. Newton was thus able to develop a new theory of light, which was that white light is made up of a spectrum of different colours, each with a different angle of refraction, just like a rainbow one could see in the sky after a shower of rain. In the rainbow in the sky, drops of water function as a prism, that is, the white light is refracted. Newton also discovered that in the tiny airspace between a lens and a sheet of glass, coloured concentric rings can be seen, and these are now called Newton's rings.

Newton's idea of heterogeneous light, published in Philosophical Transactions in 1672, went directly against the standard theory of the time, which was the inverse of Newton's. Champions of the standard theory included Robert Hooke (1635-1703), who dismissed Newton's theory and later even accused him of plagiarism (without foundation). Newton, who was "of somewhat paranoid temperament" (Burns, 73) and "socially dysfunctional" (Jardine, 36), promptly withdrew from the Royal Society and would not even accept its presidency until Hooke had departed this earth. In 1704, Newton finally published his work on light in detail in his Optics . It took some time for Newton's theory to become widely accepted, but it is now a cornerstone of the science of optics.

Newton's Law of Gravity

The German astronomer Johannes Kepler created the most accurate yet system of planetary astronomy, with the heavenly bodies moving in elliptical orbits around the Sun and not the traditional model of perfect circles as proposed by thinkers from Claudius Ptolemy (c. 100 to c. 170) to Nicolaus Copernicus (1473-1543). The discovery that the planets increased their speed as they drew closer to the Sun was essential for Newton to build his own work upon. Newton's law of gravity would provide the cause for Kepler's keen observations of elliptical planetary motions. Encouraged, both with words and money, by his good friend Edmund Halley (1656-1742), Newton finally presented his theory of gravity in Mathematical Principles of Natural Philosophy ( Philosophiae Naturalis Principia Mathematica ), published in 1687.

Newton's Copy of Principia

The effects of gravity have been known since antiquity. Ancient thinkers formed theories as to why objects fell to the ground, the most common being that this was because Earth was the very centre of the universe and so some mysterious force attracted all objects to the central point. Similarly, thinkers like Galileo Galilei (1564-1642) had pondered what kind of force was responsible for the Sun seemingly pulling orbiting planets more speedily to its centre the closer they got to it. Magnetism was often suggested as the answer, but many thinkers remained unconvinced.

An apple may not have actually fallen from a branch and hit Newton on the head, but it does seem that his observation of fruit falling set him pondering what force was involved and how to measure it. Newton had also noticed many other 'attractions' and 'repulsions' between many other objects and substances, and so he began to formulate a theory that could measure such phenomena and finally bring together (or at least reconcile) two ancient but often opposing strands of human thought: mechanics and mathematics.

In his Principia , Newton put forward his theory of universal gravitation, but first, he presented a system of mathematical laws, which became known as 'Newton's laws of motion', here summarised by W. E. Burns:

That there is an attractive force between bodies that varies with the inverse square of the distance between them – and Newton's three laws of motion – 1. a body at rest or in motion in a straight path will tend to stay in that state, 2. a change of motion in a body varies with the force impressed, and 3. each action has an equal and opposite reaction. (218)

Newton Commemorative Medal

Newton then presented his theory of gravity:

That between any two bodies in the universe there exists a force directly proportional to the product of the masses of the two bodies and inversely proportional to the square of their distance. (Burns, 245)

Newton's theory of gravity was universal because it applied to everything from spinning planets to the movement of comets to the tides of the sea to that apocryphal apple dropping from a tree. The law of gravity (actually called a 'law' by Newton only in his later Optics ) applied equally to terrestrial affairs and to the heavens. Newton could now make accurate predictions of the effects of gravity. This was a new science. Of course, not everyone immediately adopted Newton's theories. The mechanical philosophers and the Cartesian followers of René Descartes (1596-1650), for example, could not accept that one physical body can affect another body without something, a third element, touching the two. Put simply, gravity was rather mysterious, since nobody, not even Newton, knew where it came from, why it exists, and who or what ensures its persistence. Contemplation on this fact and the inference that these forces act without any consideration of humanity led in some ways to a disenchantment regarding a new and pitiless world, at least for those who did not believe that a god of some kind was behind it all.

Recognition: The Greatest Scientist

Newton's work on gravity was ultimately well received, particularly in England , and he was made a fellow of Trinity College in 1687. Two years later, Newton became the Lucasian Professor of Mathematics there. A circle of devoted international followers sprang up around Newton, including the Swiss mathematician Nicolas Fatio de Duillier (1664-1753), who became very close to him. From 1688, Newton became ambitious to forge a political career. The scientist had hoped to move to London but suffered a nervous breakdown in 1693, perhaps because of the end of his relationship with Fatio de Duillier but certainly made worse by his chronic insomnia and possibly even a consequence of mercury poisoning, a key ingredient of Newton's experiments in alchemy. Recovered by 1696, Newton was made the warden of the royal mint in the Tower of London , which carried with it both prestige and a handsome salary. Newton, taking a hands-on approach which had not been required for what was, in effect, an honorary position, impressed his employers so much that he was made the mint master in 1699. He performed the role with remarkable dedication for the next 28 years, much to the chagrin of the countless counterfeiters he identified (who were then invariably hanged).

The Scientific Revolution in Europe

It was also in 1699 that Newton was appointed a member of the French Royal Academy of Sciences, the first foreigner to gain entry. In 1703, he was elected President of the Royal Society, and he used his position to skew the society's endeavours much more towards practical experimentation (as opposed to merely reading the academic papers of others) throughout his tenure, which ended in 1727. Less admirable was his ongoing feud with the German mathematician Gottfried Wilhelm Leibniz , which significantly held back mathematics in Britain . Newton accused Leibniz of plagiarising his work on the calculus (a mathematical tool for calculating curves and their areas). In reality, both men had developed the calculus independently, and although most historians consider Newton to have got there first, Leibniz's version was superior. Newton was knighted by Anne, Queen of Great Britain (r. 1702-1714) in 1705, probably more for his service in the royal mint than his tremendous contribution to science, but, nevertheless, it was a memorable moment for all scientists past and present since he was the first to be so honoured.

Death & Legacy

Newton was famous in his own lifetime for his discoveries, as we have seen with his various appointments to prestigious institutions at home and abroad. Rather oddly for a man so associated with science, Newton spent his final years studying biblical prophecies, an area he believed was just as valid as scientific experimentation. Sir Isaac Newton died of kidney failure on 20 March 1727; he was 84 years old. He had never married and left no children. Newton was given a state funeral and buried in Westminster Abbey. Alexander Pope provided the memorable epitaph:

Sign up for our free weekly email newsletter!

Nature and Nature's Laws lay hid by Night: GOD said, Let Newton be! And all was Light. (Wootton, 361)

Newton, in one of those statements he frequently made where one wonders if he is being genuinely modest, remarked upon his career and discoveries in the following terms:

I don't know what I may seem to the world but, as to myself, I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me. (Gleick, 4)

Tomb of Isaac Newton

There would be many more breakthroughs in science after Newton, but nothing as revolutionary as his work until the development in the 20th century of relativity and quantum physics.

There developed a definite movement, known as Newtonianism, which pushed the idea that scientific knowledge should be presented as a series of mathematical laws which could predict tendencies of motion in relation to hypothetical accelerative forces. In addition, because Newton's research was so complex and inaccessible to the majority, a great number of writers sprang up who simplified Newton's work so that it could be understood by the reasonably well-educated. Newtonianism gradually spread across Europe to become the dominant approach in universities and amongst intellectuals. Newton's approach to knowledge, spread to new minds by such thinkers as Voltaire (1694-1778) in his Elements of Newton's Philosophy (1738), was an important part of the Enlightenment movement, where the improvement of the human condition became the ultimate goal of philosophy and science, despite Newton having split those two disciplines apart forever. Even that great modern genius Albert Einstein (1879-1955), with his new theory of relativity, could not overthrow Newtonianism but only extend it to new and bold horizons. As Einstein once said of Newton: "He stands before us strong, certain, and alone" (Gleick, 9).

Subscribe to topic Related Content Books Cite This Work License

Bibliography

  • Burns, William E. The Scientific Revolution in Global Perspective. Oxford University Press, 2015.
  • Burns, William E. The Scientific Revolution. ABC-CLIO, 2001.
  • Bynum, William F. & Browne, Janet & Porter, Roy. Dictionary of the History of Science . Princeton University Press, 1982.
  • Gleick, James. Isaac Newton. Vintage Books, 2023.
  • Henry. The Scientific Revolution and the Origins of Modern Science . Red Globe Press, 2008.
  • Jardine, Lisa. Ingenious Pursuits. Anchor, 2000.
  • Moran, Bruce T. Distilling Knowledge. Harvard University Press, 2005.
  • Wootton, David. The Invention of Science. Penguin UK, 2023.

About the Author

Mark Cartwright

Translations

We want people all over the world to learn about history. Help us and translate this definition into another language!

Questions & Answers

What is isaac newton famous for, was isaac newton an alchemist, what was the significance of newton's law of gravity, related content.

Astronomy in the Scientific Revolution

Astronomy in the Scientific Revolution

Scientific Revolution

Scientific Revolution

Jesuit Influence on Post-medieval Chinese Astronomy

Jesuit Influence on Post-medieval Chinese Astronomy

Isaac I Komnenos

Isaac I Komnenos

Greek Mathematics

Greek Mathematics

The Foundation of the Royal Society

The Foundation of the Royal Society

Free for the world, supported by you.

World History Encyclopedia is a non-profit organization. For only $5 per month you can become a member and support our mission to engage people with cultural heritage and to improve history education worldwide.

Recommended Books

Cite This Work

Cartwright, M. (2023, September 19). Isaac Newton . World History Encyclopedia . Retrieved from https://www.worldhistory.org/Isaac_Newton/

Chicago Style

Cartwright, Mark. " Isaac Newton ." World History Encyclopedia . Last modified September 19, 2023. https://www.worldhistory.org/Isaac_Newton/.

Cartwright, Mark. " Isaac Newton ." World History Encyclopedia . World History Encyclopedia, 19 Sep 2023. Web. 29 Aug 2024.

License & Copyright

Submitted by Mark Cartwright , published on 19 September 2023. The copyright holder has published this content under the following license: Creative Commons Attribution-NonCommercial-ShareAlike . This license lets others remix, tweak, and build upon this content non-commercially, as long as they credit the author and license their new creations under the identical terms. When republishing on the web a hyperlink back to the original content source URL must be included. Please note that content linked from this page may have different licensing terms.

  • +44 1223 335999
  • [email protected]
  • @Newtoninstitute
  • Institute A-Z
  • How to participate
  • Who was Isaac Newton?

Isaac Newton’s Life

  • A brief history
  • Short films
  • Testimonials
  • Art & artefacts
  • Vacancies at INI
  • Green Impact

isaac newton scientist biography

Special thanks to the Microsoft Corporation for their contribution to our site.  The following information came from Microsoft Encarta.

I  INTRODUCTION

Newton, Sir Isaac (1642-1727), mathematician and physicist, one of the foremost scientific intellects of all time. Born at Woolsthorpe, near Grantham in Lincolnshire, where he attended school, he entered Cambridge University in 1661; he was elected a Fellow of Trinity College in 1667, and Lucasian Professor of Mathematics in 1669. He remained at the university, lecturing in most years, until 1696. Of these Cambridge years, in which Newton was at the height of his creative power, he singled out 1665-1666 (spent largely in Lincolnshire because of plague in Cambridge) as “the prime of my age for invention”. During two to three years of intense mental effort he prepared  Philosophiae Naturalis Principia Mathematica  ( Mathematical Principles of Natural Philosophy ) commonly known as the  Principia,  although this was not published until 1687.

As a firm opponent of the attempt by King James II to make the universities into Catholic institutions, Newton was elected Member of Parliament for the University of Cambridge to the Convention Parliament of 1689, and sat again in 1701-1702. Meanwhile, in 1696 he had moved to London as Warden of the Royal Mint. He became Master of the Mint in 1699, an office he retained to his death. He was elected a Fellow of the Royal Society of London in 1671, and in 1703 he became President, being annually re-elected for the rest of his life. His major work,  Opticks,  appeared the next year; he was knighted in Cambridge in 1705.

As Newtonian science became increasingly accepted on the Continent, and especially after a general peace was restored in 1714, following the War of the Spanish Succession, Newton became the most highly esteemed natural philosopher in Europe. His last decades were passed in revising his major works, polishing his studies of ancient history, and defending himself against critics, as well as carrying out his official duties. Newton was modest, diffident, and a man of simple tastes. He was angered by criticism or opposition, and harboured resentment; he was harsh towards enemies but generous to friends. In government, and at the Royal Society, he proved an able administrator. He never married and lived modestly, but was buried with great pomp in Westminster Abbey.

Newton has been regarded for almost 300 years as the founding examplar of modern physical science, his achievements in experimental investigation being as innovative as those in mathematical research. With equal, if not greater, energy and originality he also plunged into chemistry, the early history of Western civilization, and theology; among his special studies was an investigation of the form and dimensions, as described in the Bible, of Solomon’s Temple in Jerusalem.

In 1664, while still a student, Newton read recent work on optics and light by the English physicists Robert Boyle and Robert Hooke; he also studied both the mathematics and the physics of the French philosopher and scientist René Descartes. He investigated the refraction of light by a glass prism; developing over a few years a series of increasingly elaborate, refined, and exact experiments, Newton discovered measurable, mathematical patterns in the phenomenon of colour. He found white light to be a mixture of infinitely varied coloured rays (manifest in the rainbow and the spectrum), each ray definable by the angle through which it is refracted on entering or leaving a given transparent medium. He correlated this notion with his study of the interference colours of thin films (for example, of oil on water, or soap bubbles), using a simple technique of extreme acuity to measure the thickness of such films. He held that light consisted of streams of minute particles. From his experiments he could infer the magnitudes of the transparent “corpuscles” forming the surfaces of bodies, which, according to their dimensions, so interacted with white light as to reflect, selectively, the different observed colours of those surfaces.

The roots of these unconventional ideas were with Newton by about 1668; when first expressed (tersely and partially) in public in 1672 and 1675, they provoked hostile criticism, mainly because colours were thought to be modified forms of homogeneous white light. Doubts, and Newton’s rejoinders, were printed in the learned journals. Notably, the scepticism of Christiaan Huygens and the failure of the French physicist Edmé Mariotte to duplicate Newton’s refraction experiments in 1681 set scientists on the Continent against him for a generation. The publication of  Opticks,  largely written by 1692, was delayed by Newton until the critics were dead. The book was still imperfect: the colours of diffraction defeated Newton. Nevertheless,  Opticks  established itself, from about 1715, as a model of the interweaving of theory with quantitative experimentation.

III  MATHEMATICS

In mathematics too, early brilliance appeared in Newton’s student notes. He may have learnt geometry at school, though he always spoke of himself as self-taught; certainly he advanced through studying the writings of his compatriots William Oughtred and John Wallis, and of Descartes and the Dutch school. Newton made contributions to all branches of mathematics then studied, but is especially famous for his solutions to the contemporary problems in analytical geometry of drawing tangents to curves (differentiation) and defining areas bounded by curves (integration). Not only did Newton discover that these problems were inverse to each other, but he discovered general methods of resolving problems of curvature, embraced in his “method of fluxions” and “inverse method of fluxions”, respectively equivalent to Leibniz’s later differential and integral calculus. Newton used the term “fluxion” (from Latin meaning “flow”) because he imagined a quantity “flowing” from one magnitude to another. Fluxions were expressed algebraically, as Leibniz’s differentials were, but Newton made extensive use also (especially in the  Principia ) of analogous geometrical arguments. Late in life, Newton expressed regret for the algebraic style of recent mathematical progress, preferring the geometrical method of the Classical Greeks, which he regarded as clearer and more rigorous.

Newton’s work on pure mathematics was virtually hidden from all but his correspondents until 1704, when he published, with  Opticks , a tract on the quadrature of curves (integration) and another on the classification of the cubic curves. His Cambridge lectures, delivered from about 1673 to 1683, were published in 1707.

The Calculus Priority Dispute

Newton had the essence of the methods of fluxions by 1666. The first to become known, privately, to other mathematicians, in 1668, was his method of integration by infinite series. In Paris in 1675 Gottfried Wilhelm Leibniz independently evolved the first ideas of his differential calculus, outlined to Newton in 1677. Newton had already described some of his mathematical discoveries to Leibniz, not including his method of fluxions. In 1684 Leibniz published his first paper on calculus; a small group of mathematicians took up his ideas.

In the 1690s Newton’s friends proclaimed the priority of Newton’s methods of fluxions. Supporters of Leibniz asserted that he had communicated the differential method to Newton, although Leibniz had claimed no such thing. Newtonians then asserted, rightly, that Leibniz had seen papers of Newton’s during a London visit in 1676; in reality, Leibniz had taken no notice of material on fluxions. A violent dispute sprang up, part public, part private, extended by Leibniz to attacks on Newton’s theory of gravitation and his ideas about God and creation; it was not ended even by Leibniz’s death in 1716. The dispute delayed the reception of Newtonian science on the Continent, and dissuaded British mathematicians from sharing the researches of Continental colleagues for a century.

IV  MECHANICS AND GRAVITATION

According to the well-known story, it was on seeing an apple fall in his orchard at some time during 1665 or 1666 that Newton conceived that the same force governed the motion of the Moon and the apple. He calculated the force needed to hold the Moon in its orbit, as compared with the force pulling an object to the ground. He also calculated the centripetal force needed to hold a stone in a sling, and the relation between the length of a pendulum and the time of its swing. These early explorations were not soon exploited by Newton, though he studied astronomy and the problems of planetary motion.

Correspondence with Hooke (1679-1680) redirected Newton to the problem of the path of a body subjected to a centrally directed force that varies as the inverse square of the distance; he determined it to be an ellipse, so informing Edmond Halley in August 1684. Halley’s interest led Newton to demonstrate the relationship afresh, to compose a brief tract on mechanics, and finally to write the  Principia.

Book I of the  Principia  states the foundations of the science of mechanics, developing upon them the mathematics of orbital motion round centres of force. Newton identified gravitation as the fundamental force controlling the motions of the celestial bodies. He never found its cause. To contemporaries who found the idea of attractions across empty space unintelligible, he conceded that they might prove to be caused by the impacts of unseen particles.

Book II inaugurates the theory of fluids: Newton solves problems of fluids in movement and of motion through fluids. From the density of air he calculated the speed of sound waves.

Book III shows the law of gravitation at work in the universe: Newton demonstrates it from the revolutions of the six known planets, including the Earth, and their satellites. However, he could never quite perfect the difficult theory of the Moon’s motion. Comets were shown to obey the same law; in later editions, Newton added conjectures on the possibility of their return. He calculated the relative masses of heavenly bodies from their gravitational forces, and the oblateness of Earth and Jupiter, already observed. He explained tidal ebb and flow and the precession of the equinoxes from the forces exerted by the Sun and Moon. All this was done by exact computation.

Newton’s work in mechanics was accepted at once in Britain, and universally after half a century. Since then it has been ranked among humanity’s greatest achievements in abstract thought. It was extended and perfected by others, notably Pierre Simon de Laplace, without changing its basis and it survived into the late 19th century before it began to show signs of failing.  See  Quantum Theory; Relativity.

V  ALCHEMY AND CHEMISTRY

Newton left a mass of manuscripts on the subjects of alchemy and chemistry, then closely related topics. Most of these were extracts from books, bibliographies, dictionaries, and so on, but a few are original. He began intensive experimentation in 1669, continuing till he left Cambridge, seeking to unravel the meaning that he hoped was hidden in alchemical obscurity and mysticism. He sought understanding of the nature and structure of all matter, formed from the “solid, massy, hard, impenetrable, movable particles” that he believed God had created. Most importantly in the “Queries” appended to “Opticks” and in the essay “On the Nature of Acids” (1710), Newton published an incomplete theory of chemical force, concealing his exploration of the alchemists, which became known a century after his death.

VI  HISTORICAL AND CHRONOLOGICAL STUDIES

Newton owned more books on humanistic learning than on mathematics and science; all his life he studied them deeply. His unpublished “classical scholia”—explanatory notes intended for use in a future edition of the  Principia —reveal his knowledge of pre-Socratic philosophy; he read the Fathers of the Church even more deeply. Newton sought to reconcile Greek mythology and record with the Bible, considered the prime authority on the early history of mankind. In his work on chronology he undertook to make Jewish and pagan dates compatible, and to fix them absolutely from an astronomical argument about the earliest constellation figures devised by the Greeks. He put the fall of Troy at 904 BC, about 500 years later than other scholars; this was not well received.

VII  RELIGIOUS CONVICTIONS AND PERSONALITY

Newton also wrote on Judaeo-Christian prophecy, whose decipherment was essential, he thought, to the understanding of God. His book on the subject, which was reprinted well into the Victorian Age, represented lifelong study. Its message was that Christianity went astray in the 4th century AD, when the first Council of Nicaea propounded erroneous doctrines of the nature of Christ. The full extent of Newton’s unorthodoxy was recognized only in the present century: but although a critic of accepted Trinitarian dogmas and the Council of Nicaea, he possessed a deep religious sense, venerated the Bible and accepted its account of creation. In late editions of his scientific works he expressed a strong sense of God’s providential role in nature.

VIII  PUBLICATIONS

Newton published an edition of  Geographia generalis  by the German geographer Varenius in 1672. His own letters on optics appeared in print from 1672 to 1676. Then he published nothing until the  Principia  (published in Latin in 1687; revised in 1713 and 1726; and translated into English in 1729). This was followed by  Opticks  in 1704; a revised edition in Latin appeared in 1706. Posthumously published writings include  The Chronology of Ancient Kingdoms Amended  (1728),  The System of the World  (1728), the first draft of Book III of the  Principia , and  Observations upon the Prophecies of Daniel and the Apocalypse of St John  (1733).

Contributed By: Alfred Rupert Hall

“Sir Isaac Newton” Microsoft® Encarta®. Copyright © 1998 Microsoft Corporation.

Supported By

isaac newton scientist biography

Register for updates

Subscribe for the latest updates on events and news

  • Solidarity for mathematicians
  • INI Retreats
  • Programmes & Workshops
  • Calendar of activities
  • Network Support for the Mathematical Sciences
  • Fellowships
  • Submit a proposal
  • List of current visitors
  • Accommodation
  • IT Services
  • Library services
  • Support services
  • Code of behaviour
  • Log in to ISAAC
  • INI EDI Action Plan 2023-2028
  • Annual Reports
  • Programme Reports
  • Data policies
  • Case studies
  • Ongoing initiatives
  • Initiatives archive
  • Diversity in mathematics
  • Latest news
  • Programme poster PDFs
  • Living Proof podcast
  • Plus magazine articles
  • Video interviews
  • Recordings archive
  • Donate online
  • Campaign Committee
  • Meet the team
  • How to find us
  • Opening hours

Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB3 0EH United Kingdom

Tel: +44 1223 335999 Email: [email protected]

© 2024 Isaac Newton Institute for Mathematical Sciences. All Rights Reserved. Privacy Policy

Web Design by Chameleon Studios

isaac newton scientist biography

INI is a creative collaborative space which is occupied by up to fifty-five mathematical scientists at any one time (and many more when there is a workshop). Some of them may not have met before and others may not realise the relevance of other research to their own work.

INI is especially important as a forum where early-career researchers meet senior colleagues and form networks that last a lifetime.

Here you can learn about all activities past, present and future, watch live seminars and submit your own proposals for research programmes.

  • Programme Archive
  • Workshop Archive
  • Workspace at INI
  • Today’s Seminars
  • Future Seminars
  • Seminars Archive
  • Rothschild Distinguished Visiting Fellows
  • Kirk Distinguished Visiting Fellows
  • Ramanujan Fellowships
  • INI Postdoctoral Fellowships in Mathematics

isaac newton scientist biography

Within this section of the website you should find all the information required to arrange and plan your visit to the Institute. If you have any further questions, or are unable to find the information you require, please get in touch with the relevant staff member or our Reception team via our contact pages.

  • 7 Charles Babbage Road
  • Benians Court Flats
  • Contact IT support
  • Visitors with a disability
  • Participants from developing countries
  • Travel expenses

isaac newton scientist biography

INI and its programme participants produce a range of publications to communicate information about activities and events, publish research outcomes, and document case studies which are written for a non-technical audience. You will find access to them all in this section.

isaac newton scientist biography

The Isaac Newton Institute aims to maximise the benefit of its scientific programmes to the UK mathematical science community in a variety of ways.

Whether spreading research opportunities through its network of correspondents, offering summer schools to early career researchers, or hosting public-facing lectures through events such as the Cambridge Festival, there is always a great deal of activity to catch up on.

Find out about all of these endeavours in this section of the site.

  • Correspondents network
  • Talks elsewhere
  • Cambridge Festival
  • Open for Business
  • Summer Schools
  • Academy for the Mathematical Sciences
  • Knowledge Exchange Hub for Mathematical Sciences
  • INI 30th Anniversary
  • INI 25th Anniversary
  • Mathematics of Planet Earth 2013
  • INI 20th Anniversary
  • IMAGINARY: Through the eyes of mathematics
  • INI 10th Anniversary
  • Posters in the London Underground
  • EPDI for Mathematical Sciences
  • Advent Blackboards
  • Summer Maths Puzzles
  • UK Sea Ice Group

isaac newton scientist biography

There are various ways to keep up-to-date with current events and happenings at the Isaac Newton Institute. As detailed via the menu links within this section, our output covers social media streams, news articles, a regular podcast series, an online newsletter, and more detailed documents produced throughout the year.

isaac newton scientist biography

“A world famous place for research in the mathematical sciences with a reputation for efficient management and a warm welcome for visitors”

The Isaac Newton Institute is a national and international visitor research institute. It runs research programmes on selected themes in mathematics and the mathematical sciences with applications over a wide range of science and technology. It attracts leading mathematical scientists from the UK and overseas to interact in research over an extended period.

INI has a vital national role, building on many strengths that already exist in UK universities, aiming to generate a new vitality through stimulating and nurturing research throughout the country.During each scientific programme new collaborations are made and ideas and expertise are exchanged and catalysed through lectures, seminars and informal interaction, which the INI building has been designed specifically to encourage.

For INI’s knowledge exchange arm, please see the Newton Gateway to Mathematics .

  • Scientific Steering committee
  • Relationship with ICMS
  • Management committee
  • National Advisory Board
  • Policy Statement
  • Books about Sir Isaac Newton
  • Isaac Newton’s Life

isaac newton scientist biography

The Institute depends upon donations, as well as research grants, to support the world class research undertaken by participants in its programmes.

Fundraising activities are supported by a Development Board comprising leading figures in academia, industry and commerce.

Visit this section to learn more about how you could play a part in supporting INI’s groundbreaking research.

isaac newton scientist biography

In this section you can find contact information, staff lists, maps and details of how to find INI’s main building in Cambridge.

Our administrative staff can help you with any queries regarding a prospective or planned visit. If you would like to discuss a proposed a research programme or other event, our senior management team will be happy to help.

Search the website

Use this for pages on our website, including: visitor information, details about INI, fellowships, history, outreach, news, podcasts and more.

Search the database

Use this for information about INI programmes, workshops, seminars, pre-prints, and participants.

Reset password New user? Sign up

Existing user? Log in

Isaac Newton

Already have an account? Log in here.

  • Piers Landon-Lane
  • Infinity Mathematics
  • July Thomas

Sir Isaac Newton (1642-1727) was one of the world's most famous and influential thinkers. He founded the fields of classical mechanics, optics and calculus, among other contributions to algebra and thermodynamics. His concept of a universal law--one that applies everywhere and to all things--set the bar of ambition for physicists since.

Newton held the position of Lucasian Professor of Mathematics at Cambridge University in England, a prestigious professorship later shared by Charles Babbage, George Gabriel Stokes , and Stephen Hawking , among others.

Generalized Binomial Theorem

Newton's laws of motion, gravitation, law of cooling, work outside science and mathematics.

The binomial theorem is a formula used to expand out expressions of the form \((x + y)^{r}\).

While Blaise Pascal had already developed the binomial theorem for the case where \(r\) is a nonnegative integer, Newton derived the general case for which \(r\) could be any rational number in 1655, while spending time away from Cambridge avoiding an outbreak of the plague [1] :

\[(x+y)^r = \sum\limits_{k=0}^{r} {r \choose k} x^{r-k} y^{k},\]

where \({r \choose k} = \frac{r (r-1) (r-2) \ldots (r-k+1)}{k!}\). Notice that if \(r\) is an integer, \({r \choose k} = 0\) for \(k > r\). Then the infinite sum in the formula becomes a finite sum, and the expression reduces to the ordinary binomial theorem.

The expressions generated by these expansions were especially useful for calculating approximations of functions. Newton used the formula to calculate the value of \(\pi\) out to 16 decimal places [2] .

If the function \(f(x) = \sqrt{1 + x}\) is expanded out in terms of powers of \(x\) such that \(f(x) = \sum\limits_{k=0}^{\infty} a_{k} x^{k},\) what's the coefficient \(a_{3}\) of the \(x^{3}\) term?

Express your answer as an exact decimal.

Newton discovered three laws that combined would in principle determine the motion of any object. He published his laws in 1687 in the first volume of the Principia Mathematica (Latin for "Mathematical Principles"). These laws explain how any objects will move given the forces acting between them, and the initial position and velocity of the objects.

  • First Law : An object moving at some velocity will stay at that velocity unless acted upon by some force.
  • Second Law : The acceleration \(\vec{a}\) of an object is given by \(\vec{F} = m\vec{a}\), where \(m\) is its mass and \(\vec{F}\) is the net force on the object.
  • Third Law : Every action has an equal and opposite reaction.

\(\) Wingsuits allow humans to control fall and generate lift. The wingsuit flyer above controls his direction of flight by a direct application of which of Newton's laws?

Image credit: Wikipedia

The first law was in contrast to Aristotelian mechanics, which held that every object had a natural place, and that all objects would tend to go towards their natural place. Newton replaced this goal-centered view of the world with a mechanical, local one. The laws describe a perfectly deterministic universe, one in which the motion and behavior of all objects are theoretically exactly specified given a set of initial conditions and rules for determining the force between objects.

Because of Newton's contribution to the idea of force, the metric unit for force \(\text{N} \equiv (\text{kg}\times \text{m})/\text{s}^2\) is called the Newton.

Newton's laws of motion describe how objects accelerate given specific forces. In order to determine how the position of an object changes from a description of its acceleration, Newton needed to develop a new field of mathematics known as calculus.

Solving for the position, velocity, and acceleration of a moving particle

If a particle has a constant velocity \(v\) at time \(t\), its position at a slightly later time \(t + \Delta t\) is \(x(t) + v \Delta t\). But if the particle is accelerating, this is not quite true. The velocity changes during the period \(\Delta t\). In order to account for this, the time \(\Delta t\) could be split into two intervals, and the velocity at each of those points is used to calculate the position. But this doesn't help, as again the velocity changes between \(t\) and \(t + \frac{1}{2} \Delta t\). Thinking in this way leads to an infinite regress.

Newton introduced calculus as a way of formalizing this reasoning and allowing calculations of position and velocity by considering how these functions behaved as \(\Delta t\) became very small, otherwise known as taking the limit of the function. The process of finding velocity from acceleration or position from velocity is called integration . The process of finding velocity from position or acceleration from velocity is called differentiation .

The mathematician and philosopher Gottfried Leibniz also invented calculus around the same time. There was a large fight in the scientific community over whether Leibniz or Newton had invented it first, or indeed whether one had stolen the ideas from the other. However, the consensus now is that they genuinely did develop the idea independently. Because of this, they used different notation styles for expressing calculus, both of which are in use today. In Newton's notation, the derivative of \(x\) with respect to time is given by \(\dot{x}\), whereas in Leibniz notation, the derivative is \(\frac{dx}{dt}\).

In the third volume of the Principia , Newton described his theory of universal gravitation. His two main insights were that masses attract each other along the line between them, and that every mass attracts every other mass, no matter how large or small. For instance, the force that you exert on the Earth is the same magnitude as the force the Earth exerts on you, just in the opposite direction. Mathematically, this is expressed as

\[\vec{F}_{g} = - \frac{Gm_{1}m_{2}}{r^{2}} \hat{r},\]

where \(F_{g}\) is the force of gravity, \(G\) is the gravitational constant, \(m_1\) and \(m_2\) are the masses of the two objects, and \(\hat{r}\) is the direction of the line between them. The net gravitational force on an object is the vector sum of the forces exerted on it by all other objects in the universe.

One popular story holds that Newton came up with the idea for gravitation when he was sitting under a tree and got hit on the head by an apple. This is not well supported by historical documents, but Newton did at least use falling apples as an analogy for explaining radial forces: "Therefore does this apple fall perpendicularly or towards the centre? If matter thus draws matter, it must be proportion of its quantity. Therefore the apple draws the Earth, as well as the Earth draws the apple." [3] .

While your mass is the same everywhere, your weight , which is the gravitational force you feel as a result of your mass, depends on where you are.

How much lighter are you on the top of Mount Everest than at sea level? Express your answer as the ratio of your weight on Mount Everest to your weight at sea level, to 3 decimal places.

Assume the radius of Earth at sea level is \(6.371 \times 10^6 \text{ m} \) and the height of Mt. Everest is \(8.8 \times 10^3 \text{ m} \).

Types of conic sections

Newton showed that his law could reproduce Kepler's laws of planetary motion, which described how planets move in fixed ellipses around the sun. He then generalized these laws by showing that the paths of objects acting under the gravity of the sun could be any conic sections , including ellipses, but also parabolas , hyperbolas , and lines.

Because the law of gravitation describes a force between two objects no matter how far away they are, Leibniz accused Newton of invoking "spooky action at a distance." [4] This was against a popular philosophy of science at the time, which held that all effects needed to result from local interactions. Today, Einstein's theory of general relativity has replaced Newton's theory, in some sense proving Leibniz right. General relativity agrees with many of the predictions of Newton's theory, but doesn't have action at a distance. Gravitational effects (in the form of warped spacetime) propagate at the speed of light.

Light refracting in a prism: not just an album cover

As with his laws of motion, Newton also overturned Aristotelian beliefs about light. It was thought that white light was completely pure, but Newton showed that it was composed of every other wavelength of light by refracting white light through a prism. The white light splits into distinct beams of light corresponding to all the colors of the rainbow. Newton also invented the color wheel, which arranged all those colors in order, but with violet next to red to show the way humans perceive color:

Opticks " /> Newton's depiction of the color wheel in Opticks

Newton's law of cooling holds that the rate at which an object will change temperature is directly proportional to the temperature difference between it \((T_{obj})\) and its environment \((T_{env}):\)

\[\frac{dT_{obj}}{dt} = k (T_{env} - T_{obj}).\]

If the environment remains at constant temperature, this implies that \(T_{obj}\) will asymptotically approach \(T_{env}:\)

\[T_{obj} = T_{env} + \big(T_{obj}(0) - T_{env}\big) e^{-kt},\]

which can be shown using differential equations .

A thermometer reading \(80^\circ F\) is taken outside. Five minutes later the thermometer reads \(60^\circ F\). After another 5 minutes it reads \(50^\circ F\).

What is the temperature outside \((\)in \(^\circ F)?\)

Assume that this process follows Newton's law of cooling.

In addition to his lasting scientific discoveries, Newton also investigated alchemy, the study of turning one element into another. While the techniques that Newton investigated led nowhere, alchemy was in a sense rediscovered in the form of nuclear physics. It is now strictly possible to turn lead into gold using a particle accelerator. However, at an estimated quadrillion dollars per ounce, it would be a poor financial choice [5] .

Newton was devoutly religious and would frequently study the Bible, attempting to make predictions based on its contents. He once wrote that the world would end no sooner than the year 2060 based on the Book of John [6] .

[1] Westfall, Richard. Never at Rest: A Biography of Isaac Newton. p. 143. 1983.

[2] Newton's Generalization of the Binomial Theorem . Retrieved from http://www.wwu.edu/teachingmathhistory/docs/psfile/newton1-student.pdf on February 22, 2016.

[3] Connor, Steve. The Core of Truth Behind Sir Newton's Apple. The Independent. January 17, 2010. Retrieved from http://www.independent.co.uk/news/science/the-core-of-truth-behind-sir-isaac-newtons-apple-1870915.html on February 22, 2016.

[4] Leibniz's Philosophy of Physics. Stanford Encyclopedia of Philosophy. Published December 17. 2007. Retrieved from http://plato.stanford.edu/entries/leibniz-physics/ on February 22, 2016.

[5] Matson, John. Fact Or Fiction?: Lead Can Be Turned Into Gold. Scientific American. January 31, 2014. Retrieved from http://www.scientificamerican.com/article/fact-or-fiction-lead-can-be-turned-into-gold/ on February 22, 2016.

[6] Newton, Sir Isaac. Sir Isaac Newton's Daniel and the Apocalypse. 1733. Retrieved from http://publicdomainreview.org/collections/sir-isaac-newtons-daniel-and-the-apocalypse-1733/ on February 22, 2016.

Problem Loading...

Note Loading...

Set Loading...

Famous Scientists

Isaac Newton

Isaac Newton

Isaac Newton is perhaps the greatest physicist who has ever lived. He and Albert Einstein are almost equally matched contenders for this title.

Each of these great scientists produced dramatic and startling transformations in the physical laws we believe our universe obeys, changing the way we understand and relate to the world around us.

Early Life and Education

Isaac Newton was born on January 4, 1643 in the tiny village of Woolsthorpe-by-Colsterworth, Lincolnshire, England.

His father, whose name was also Isaac Newton, was a farmer who died before Isaac Junior was born. Although comfortable financially, his father could not read or write.

His mother, Hannah Ayscough, married a churchman when Newton was three years old.

Newton disliked his mother’s new husband and did not join their household, living instead with his mother’s mother, Margery Ayscough.

His resentment of his mother and stepfather’s new life did not subside with time; as a teenager he threatened to burn their house down!

Beginning at age 12, Newton attended The King’s School, Grantham, where he was taught the classics, but no science or mathematics. When he was 17, his mother stopped his schooling so that he could become a farmer. Fortunately for the future of science Newton found he had neither aptitude nor liking for farming; his mother allowed him to return to school, where he finished as top student.

Servant and Undergraduate

In June 1661, age 18, Newton began studying for a law degree at Cambridge University’s Trinity College, earning money as a personal servant to wealthier students.

By the time he was a third-year student he was spending much of his time studying mathematics and natural philosophy (today we call it physics). He was also fascinated by alchemy, which is now categorized as a pseudoscience.

His natural philosophy lecturers based their courses on Aristotle’s incorrect ideas from Ancient Greek times. This was despite the fact that 25 years earlier, in 1638, Galileo Galilei had established a new scientific basis for the physics of motion with his masterpiece Two New Sciences .

Newton began to disregard the material taught at his college, preferring to study the recent (and more scientifically correct) works of Galileo, Boyle, Descartes, and Kepler. He wrote:

Isaac Newton

Reading the works of these great scientists, Newton grew more ambitious about making his own discoveries. While still working part-time as a servant, he wrote a note to himself. In it he posed questions not yet been answered by science. These included questions about gravity, the nature of light, the nature of color and vision, and atoms.

After three years at Cambridge, he won a four-year scholarship. This allowed him to give up working as a servant and devote his time fully to academic studies.

A Mind on Fire

In 1665, at age 22, a year after beginning his four-year scholarship, Newton made his first major discovery: this was in mathematics, where he discovered the generalized binomial theorem. He was awarded his B.A. degree in the same year.

By now his mind was ablaze with new ideas. He began making significant progress in three distinct fields – he would make some of his most profound discoveries in these fields:

  • calculus, the mathematics of change, which is vital to our understanding of the world around us
  • optics and the behavior of light

He did much of his work on these topics back home at Woolsthorpe-by-Colsterworth after the Great Plague forced Cambridge colleges to close.

Fellow and Lucasian Professor of Mathematics

At age 24, in 1667, Newton returned to Cambridge, where events moved quickly.

First he was elected as a fellow of Trinity College.

A year later, in 1668, he was awarded an M.A. degree.

A year after that, the Lucasian Professor of Mathematics at Trinity College, Isaac Barrow, resigned and Newton was appointed as his replacement; he was just 26 years old. Barrow, who had recommended Newton to succeed him, said of him:

Isaac Barrow

Isaac Newton’s Scientific Achievements and Discoveries

Achievements in brief.

Isaac Newton, who was largely self-taught in mathematics and physics:

  • generalized the binomial theorem
  • showed that sunlight is made up of all of the colors of the rainbow. He used one glass prism to split a beam of sunlight into its separate colors, then another prism to recombine the rainbow colors to make a beam of white light again.
  • built the world’s first working reflecting telescope.
  • discovered/invented calculus, the mathematics of change, without which we could not understand the behavior of objects as tiny as electrons or as large as galaxies.
  • wrote the Principia , one of the most important scientific books ever written; in it he used mathematics to explain gravity and motion. ( Principia is pronounced with a hard c.)
  • discovered the law of universal gravitation, proving that the force holding the moon in orbit around the earth is the same force that causes an apple to fall from a tree.
  • formulated his three laws of motion – Newton’s Laws – which lie at the heart of the science of movement.
  • showed that Kepler’s laws of planetary motion are special cases of Newton’s universal gravitation.
  • proved that all objects moving through space under the influence of gravity must follow a path shaped in the form of one of the conic sections, such as a circle, an ellipse, or a parabola, hence explaining the paths all planets and comets follow.
  • showed that the tides are caused by gravitational interactions between the earth, the moon, and the sun.
  • predicted, correctly, that the earth is not perfectly spherical but is squashed into an oblate spheroid, larger around the equator than around the poles.
  • Used mathematics to model the movement of fluids – from which the concept of a Newtonian fluid comes.
  • devised Newton’s Method for finding the roots of mathematical functions.

Some Details about Newton’s Greatest Discoveries

Newton revealed his laws of motion and gravitation in his book the Principia . Just as few people at first could understand Albert Einstein’s general theory of relativity, few people understood the Principia . When Newton walked past them one day, one student remarked to another:

“There goes a man who has written a book that neither he nor anybody else understands.”

Newton’s ideas were spread by the small number of people who understood the Principia , and who were able to develop and convey its message in more accessible ways: people including Colin Maclaurin, Leonhard Euler , Joseph Louis Lagrange, Pierre Simon de Laplace, Willem Jacob’s Gravesande, William Whiston, John Theophilus Desaguliers, and David Gregory.

Newton was the first person to fully develop calculus. Calculus is the mathematics of change. Modern physics and physical chemistry would be impossible without it. Other academic disciplines such as biology and economics also rely heavily on calculus for analysis.

In his development of calculus Newton was influenced by Pierre de Fermat , who had shown specific examples in which calculus-like methods could be used. Newton was able to build on Fermat’s work and generalize calculus. Newton wrote that he had been guided by:

From Newton’s fertile mind came the ideas that we now call differential calculus, integral calculus, and differential equations.

Soon after Newton generalized calculus, Gottfried Leibniz achieved the same result. Today, most mathematicians give equal credit to Newton and Leibniz for calculus’s discovery.

Universal Gravitation and the Apple

Newton and his apple

He told people that seeing the apple’s fall made him wonder why it fell in a straight line towards the center of our planet rather than moving upwards or sideways.

Ultimately, he realized and proved that the force behind the apple’s fall also causes the moon to orbit the earth; and comets, the earth and other planets to orbit the sun. The force is felt throughout the universe, so Newton called it Universal Gravitation . In a nutshell, it says that mass attracts mass.

Newton discovered the equation that allows us to calculate the force of gravity between two objects.

Most people don’t like equations much: E = mc 2 is as much as they can stand, but, for the record, here’s Newton’s equation:

newton gravity equation

Newton’s equation says that you can calculate the gravitational force attracting one object to another by multiplying the masses of the two objects by the gravitational constant and dividing by the square of the distance between the objects’ centers.

Dividing by distance squared means Newton’s Law is an inverse-square law .

Newton proved mathematically that any object moving in space affected by an inverse-square law will follow a path in the shape of one of the conic sections, the shapes which fascinated Archimedes and other Ancient Greek mathematicians.

For example, planets follow elliptical paths; while comets follow elliptical, or parabolic or hyperbolic paths.

And that’s it! Newton showed everyone how, if they wished to, they could calculate the force of gravity between things such as people, planets, stars, and apples.

Newton’s Laws of Motion

Action Reaction

Third Law: The rocket flies because of the upward thrust it gets as a reaction to the high speed gas particles pushing downward from its engines.

First law: Objects remain stationary or move at a constant velocity unless acted upon by an external force. This law was actually first stated by Galileo , whose influence Newton mentions several times in the Principia .

Second law: The force F on an object is equal to its mass m multiplied by its acceleration: F = ma.

Third law: When one object exerts a force on a second object, the second object exerts a force equal in size and opposite in direction on the first object.

With Newton’s calculus, universal gravitation, and laws of motion, you have enough knowledge at your fingertips to plot a course for a spaceship to any planet in our solar system or even another solar system!

And Isaac Newton figured it all out about 300 years before we actually did send a spaceship to the planets.

A Word of Caution Newton’s laws become increasingly inaccurate when speeds reach substantial fractions of the speed of light, or when the force of gravity is very large. Einstein’s equations are then required to produce reliable results.

Optics and Light

Newton was not just clever with his mind. He was also skilled in experimental methods and working with equipment.

He built the world’s first reflecting telescope. This telescope focuses light from a curved mirror. Reflecting telescopes have several advantages over earlier telescopes including:

  • they are cheaper to make
  • they are easier to make in large sizes, gathering more light, allowing higher magnification
  • they do not suffer from a focusing issue associated with lenses called chromatic aberration.

Newton also used glass prisms to establish that white light is not a simple phenomenon. He proved that it is made up of all of the colors of the rainbow, which could recombine to form white light again.

Newton's two prism experiment.

Newton’s crucial 1672 experiment with two prisms. The result absolutely demolished competing theories, such as the proposal that glass added the colors to sunlight.

Alchemy, Feuds, Religion, and Planets Orbiting Distant Stars

Although he is one of the greatest scientists in history, Newton’s laboratory papers show he probably devoted more of his time to alchemy than to anything we would recognize as science.

The Alchemist

The Alchemist by Joseph Wright depicts Hennig Brand’s discovery of phosphorus. Brand was actually trying to discover the Philosophers’ Stone. Newton seems to have put more of his hours into alchemy than mathematics and physics.

Not surprisingly, Newton never found the Philosophers’ Stone. Given his towering contributions to real science, all we can do is wonder what else he might have achieved if he had not been such a passionate alchemist.

Despite his brilliance, Newton was a very insecure man: most historians trace this back to his childhood family difficulties.

Newton published very little work until his later years, because in his early years as a scientist, Robert Hooke disagreed strongly with a scientific paper Newton published. Newton took criticism of his work in a very personal way and developed a lifelong loathing for Hooke.

His lack of published work also caused a huge issue when Gottfried Leibniz starting publishing his own version of calculus. Newton was already a master of this branch of mathematics, but had published very little of it. Again Newton’s insecurity got the better of him, and he angrily accused Leibniz of stealing his work. The pros and cons of each man’s case have long been debated by historians. Most mathematicians regard Newton and Leibniz as equally responsible for the development of calculus.

Newton was a very religious man with somewhat unorthodox Protestant Christian views. He spent a great deal of time and wrote a large body of private works concerned with theology and his interpretation of the Bible.

His scientific work had revealed a universe that obeyed logical mathematical laws. He had also discovered that starlight and sunlight are the same, and he speculated that stars could have their own systems of planets orbiting them. He believed such a system could only have been made by God.

In 1696, Newton was appointed as a Warden of the Royal Mint. In 1700, he became Master of the Mint, leaving Cambridge for London, and more or less ending his scientific discovery work. He took his new role very seriously, going out into London’s taverns in disguise gathering evidence against counterfeiters.

In 1703, he was elected President of the Royal Society.

In 1705, he was knighted, becoming Sir Isaac Newton.

Albert Einstein

Isaac Newton died on March 31, 1727, age 84. He had never married and had no children.

He was buried in Westminster Abbey, London.

Author of this page: The Doc Images of Newton and Barrow enhanced and colorized by this website. © All rights reserved.

Cite this Page

Please use the following MLA compliant citation:

Published by FamousScientists.org

More from FamousScientists.org:

archimedes

Alphabetical List of Scientists

Louis Agassiz | Maria Gaetana Agnesi | Al-Battani Abu Nasr Al-Farabi | Alhazen | Jim Al-Khalili | Muhammad ibn Musa al-Khwarizmi | Mihailo Petrovic Alas | Angel Alcala | Salim Ali | Luis Alvarez | Andre Marie Ampère | Anaximander | Carl Anderson | Mary Anning | Virginia Apgar | Archimedes | Agnes Arber | Aristarchus | Aristotle | Svante Arrhenius | Oswald Avery | Amedeo Avogadro | Avicenna

Charles Babbage | Francis Bacon | Alexander Bain | John Logie Baird | Joseph Banks | Ramon Barba | John Bardeen | Charles Barkla | Ibn Battuta | William Bayliss | George Beadle | Arnold Orville Beckman | Henri Becquerel | Emil Adolf Behring | Alexander Graham Bell | Emile Berliner | Claude Bernard | Timothy John Berners-Lee | Daniel Bernoulli | Jacob Berzelius | Henry Bessemer | Hans Bethe | Homi Jehangir Bhabha | Alfred Binet | Clarence Birdseye | Kristian Birkeland | James Black | Elizabeth Blackwell | Alfred Blalock | Katharine Burr Blodgett | Franz Boas | David Bohm | Aage Bohr | Niels Bohr | Ludwig Boltzmann | Max Born | Carl Bosch | Robert Bosch | Jagadish Chandra Bose | Satyendra Nath Bose | Walther Wilhelm Georg Bothe | Robert Boyle | Lawrence Bragg | Tycho Brahe | Brahmagupta | Hennig Brand | Georg Brandt | Wernher Von Braun | J Harlen Bretz | Louis de Broglie | Alexander Brongniart | Robert Brown | Michael E. Brown | Lester R. Brown | Eduard Buchner | Linda Buck | William Buckland | Georges-Louis Leclerc, Comte de Buffon | Robert Bunsen | Luther Burbank | Jocelyn Bell Burnell | Macfarlane Burnet | Thomas Burnet

Benjamin Cabrera | Santiago Ramon y Cajal | Rachel Carson | George Washington Carver | Henry Cavendish | Anders Celsius | James Chadwick | Subrahmanyan Chandrasekhar | Erwin Chargaff | Noam Chomsky | Steven Chu | Leland Clark | John Cockcroft | Arthur Compton | Nicolaus Copernicus | Gerty Theresa Cori | Charles-Augustin de Coulomb | Jacques Cousteau | Brian Cox | Francis Crick | James Croll | Nicholas Culpeper | Marie Curie | Pierre Curie | Georges Cuvier | Adalbert Czerny

Gottlieb Daimler | John Dalton | James Dwight Dana | Charles Darwin | Humphry Davy | Peter Debye | Max Delbruck | Jean Andre Deluc | Democritus | René Descartes | Rudolf Christian Karl Diesel | Diophantus | Paul Dirac | Prokop Divis | Theodosius Dobzhansky | Frank Drake | K. Eric Drexler

John Eccles | Arthur Eddington | Thomas Edison | Paul Ehrlich | Albert Einstein | Gertrude Elion | Empedocles | Eratosthenes | Euclid | Eudoxus | Leonhard Euler

Michael Faraday | Pierre de Fermat | Enrico Fermi | Richard Feynman | Fibonacci – Leonardo of Pisa | Emil Fischer | Ronald Fisher | Alexander Fleming | John Ambrose Fleming | Howard Florey | Henry Ford | Lee De Forest | Dian Fossey | Leon Foucault | Benjamin Franklin | Rosalind Franklin | Sigmund Freud | Elizebeth Smith Friedman

Galen | Galileo Galilei | Francis Galton | Luigi Galvani | George Gamow | Martin Gardner | Carl Friedrich Gauss | Murray Gell-Mann | Sophie Germain | Willard Gibbs | William Gilbert | Sheldon Lee Glashow | Robert Goddard | Maria Goeppert-Mayer | Thomas Gold | Jane Goodall | Stephen Jay Gould | Otto von Guericke

Fritz Haber | Ernst Haeckel | Otto Hahn | Albrecht von Haller | Edmund Halley | Alister Hardy | Thomas Harriot | William Harvey | Stephen Hawking | Otto Haxel | Werner Heisenberg | Hermann von Helmholtz | Jan Baptist von Helmont | Joseph Henry | Caroline Herschel | John Herschel | William Herschel | Gustav Ludwig Hertz | Heinrich Hertz | Karl F. Herzfeld | George de Hevesy | Antony Hewish | David Hilbert | Maurice Hilleman | Hipparchus | Hippocrates | Shintaro Hirase | Dorothy Hodgkin | Robert Hooke | Frederick Gowland Hopkins | William Hopkins | Grace Murray Hopper | Frank Hornby | Jack Horner | Bernardo Houssay | Fred Hoyle | Edwin Hubble | Alexander von Humboldt | Zora Neale Hurston | James Hutton | Christiaan Huygens | Hypatia

Ernesto Illy | Jan Ingenhousz | Ernst Ising | Keisuke Ito

Mae Carol Jemison | Edward Jenner | J. Hans D. Jensen | Irene Joliot-Curie | James Prescott Joule | Percy Lavon Julian

Michio Kaku | Heike Kamerlingh Onnes | Pyotr Kapitsa | Friedrich August Kekulé | Frances Kelsey | Pearl Kendrick | Johannes Kepler | Abdul Qadeer Khan | Omar Khayyam | Alfred Kinsey | Gustav Kirchoff | Martin Klaproth | Robert Koch | Emil Kraepelin | Thomas Kuhn | Stephanie Kwolek

Joseph-Louis Lagrange | Jean-Baptiste Lamarck | Hedy Lamarr | Edwin Herbert Land | Karl Landsteiner | Pierre-Simon Laplace | Max von Laue | Antoine Lavoisier | Ernest Lawrence | Henrietta Leavitt | Antonie van Leeuwenhoek | Inge Lehmann | Gottfried Leibniz | Georges Lemaître | Leonardo da Vinci | Niccolo Leoniceno | Aldo Leopold | Rita Levi-Montalcini | Claude Levi-Strauss | Willard Frank Libby | Justus von Liebig | Carolus Linnaeus | Joseph Lister | John Locke | Hendrik Antoon Lorentz | Konrad Lorenz | Ada Lovelace | Percival Lowell | Lucretius | Charles Lyell | Trofim Lysenko

Ernst Mach | Marcello Malpighi | Jane Marcet | Guglielmo Marconi | Lynn Margulis | Barry Marshall | Polly Matzinger | Matthew Maury | James Clerk Maxwell | Ernst Mayr | Barbara McClintock | Lise Meitner | Gregor Mendel | Dmitri Mendeleev | Franz Mesmer | Antonio Meucci | John Michell | Albert Abraham Michelson | Thomas Midgeley Jr. | Milutin Milankovic | Maria Mitchell | Mario Molina | Thomas Hunt Morgan | Samuel Morse | Henry Moseley

Ukichiro Nakaya | John Napier | Giulio Natta | John Needham | John von Neumann | Thomas Newcomen | Isaac Newton | Charles Nicolle | Florence Nightingale | Tim Noakes | Alfred Nobel | Emmy Noether | Christiane Nusslein-Volhard | Bill Nye

Hans Christian Oersted | Georg Ohm | J. Robert Oppenheimer | Wilhelm Ostwald | William Oughtred

Blaise Pascal | Louis Pasteur | Wolfgang Ernst Pauli | Linus Pauling | Randy Pausch | Ivan Pavlov | Cecilia Payne-Gaposchkin | Wilder Penfield | Marguerite Perey | William Perkin | John Philoponus | Jean Piaget | Philippe Pinel | Max Planck | Pliny the Elder | Henri Poincaré | Karl Popper | Beatrix Potter | Joseph Priestley | Proclus | Claudius Ptolemy | Pythagoras

Adolphe Quetelet | Harriet Quimby | Thabit ibn Qurra

C. V. Raman | Srinivasa Ramanujan | William Ramsay | John Ray | Prafulla Chandra Ray | Francesco Redi | Sally Ride | Bernhard Riemann | Wilhelm Röntgen | Hermann Rorschach | Ronald Ross | Ibn Rushd | Ernest Rutherford

Carl Sagan | Abdus Salam | Jonas Salk | Frederick Sanger | Alberto Santos-Dumont | Walter Schottky | Erwin Schrödinger | Theodor Schwann | Glenn Seaborg | Hans Selye | Charles Sherrington | Gene Shoemaker | Ernst Werner von Siemens | George Gaylord Simpson | B. F. Skinner | William Smith | Frederick Soddy | Mary Somerville | Arnold Sommerfeld | Hermann Staudinger | Nicolas Steno | Nettie Stevens | William John Swainson | Leo Szilard

Niccolo Tartaglia | Edward Teller | Nikola Tesla | Thales of Miletus | Theon of Alexandria | Benjamin Thompson | J. J. Thomson | William Thomson | Henry David Thoreau | Kip S. Thorne | Clyde Tombaugh | Susumu Tonegawa | Evangelista Torricelli | Charles Townes | Youyou Tu | Alan Turing | Neil deGrasse Tyson

Harold Urey

Craig Venter | Vladimir Vernadsky | Andreas Vesalius | Rudolf Virchow | Artturi Virtanen | Alessandro Volta

Selman Waksman | George Wald | Alfred Russel Wallace | John Wallis | Ernest Walton | James Watson | James Watt | Alfred Wegener | John Archibald Wheeler | Maurice Wilkins | Thomas Willis | E. O. Wilson | Sven Wingqvist | Sergei Winogradsky | Carl Woese | Friedrich Wöhler | Wilbur and Orville Wright | Wilhelm Wundt

Chen-Ning Yang

Ahmed Zewail

Sir Isaac Newton biography: Inventions, laws and quotes

A short history of Sir Isaac Newton, the mathematician and physicist that helped invent and explain some of the most fundamental laws of science.

painting of Sir Isaac Newton shows him with shoulder length gray wavy hair.

Isaac Newton's early life

  • Laws of motion

Isaac Newton's apple

  • Inventions and discoveries

Additional resources

Bibliography.

Sir Isaac Newton contributed significantly to the field of science over his lifetime. He invented calculus and provided a clear understanding of optics. But his most significant work had to do with forces, and specifically with the development of a universal law of gravitation and his laws of motion . 

Isaac Newton was born on Christmas Day to a poor farming family in Woolsthorpe, England, in 1642. At the time of Newton's birth England used the Julian calendar, however, when England adopted the Gregorian calendar in 1752, his birthday became 4th January 1643. 

Isaac Newton arrived in the world only a few months after his father, Isaac Newton Sr, had died. "The boy expected to live managing the farm in the place of the father he had never known," wrote James Gleick in "Isaac Newton" ( Vintage, 2004 ). 

However, when it became clear a farming life was not for him, Newton attended Trinity College in Cambridge, England. "He did not know what he wanted to be or do, but it was not tend sheep or follow the plough and the dung cart," wrote Gleick. While there, he took an interest in mathematics, optics, physics, and astronomy . 

After his graduation, he began to teach at the college and was appointed as the second Lucasian Chair there. Today, the chair is considered the most renowned academic chair in the world, held by the likes of Charles Babbage and Stephen Hawking .

In 1689, Newton was elected as a member of parliament for the university. In 1703, he was elected as president of the Royal Society, a fellowship of scientists that still exists today. He was knighted by Queen Anne in 1705. He never married.

What are Isaac Newton's laws of motion?

Newton's most famous work came with the publication of his " Philosophiae Naturalis Principia Mathematica " ("Mathematical Principles of Natural Philosophy"), generally called Principia. In it, he determined the three laws of motion for the universe .

Newton's first law describes how objects move at the same velocity unless an outside force acts upon them. (A force is something that causes or changes motion.) Thus, an object sitting on a table remains on the table until a force — the push of a hand, or gravity — acts upon it. Similarly, an object travels at the same speed unless it interacts with another force, such as friction.

His second law of motion provided a calculation for how forces interact. The law states that a force is equal to the change in the momentum (mass multiplied by velocity) per change in time. Therefore, when more force is applied to an object, its acceleration also increases, but when the mass of the object increases and the force remains constant, its acceleration decreases.

Newton's third law states that for every action in nature, there is an equal and opposite reaction. If one body applies a force on a second, then the second body exerts a force of the same strength on the first, in the opposite direction. 

From all of this, Newton calculated the universal law of gravitation. He found that as two bodies move farther away from one another, the gravitational attraction between them decreases by the inverse of the square of the distance. Thus, if the objects are twice as far apart, the gravitational force is only a fourth as strong; if they are three times as far apart, it is only a ninth of its previous power.

These laws helped scientists understand more about the motions of planets in the solar system , and of the moon around Earth.

Related: What makes Newton's laws work? Here's the simple trick.

Isaac Newton under an apple tree.

A popular myth tells of an apple falling from a tree in Newton's garden, which brought Newton to an understanding of forces, particularly gravity. Whether the incident actually happened is unknown, but historians doubt the event — if it occurred — was the driving force in Newton's thought process.

The myth tells of Isaac Newton having returned to his family farm in Woolsthorpe, escaping Cambridge for a short time as it was dealing with a plague outbreak. As he sat in the farm's orchard, an apple fell from one of the trees (in some tellings it hit Newton on the head). Watching this happen, Newton began to consider the forces that meant the apple always fell directly towards the ground, beginning his examination of gravity.

One of the reasons that this story gained a foothold in popular understanding is that it is an anecdote Newton himself seems to have shared. "Toward the end of his life, Newton told the apple anecdote around four times, although it only became well known in the nineteenth century," wrote Patricia Fara, a historian of science at the University of Cambridge, in a chapter of " Newton's Apple and Other Myths about Science " (Harvard University Press, 2020).

However, it would be at least 20 years before Newton published his theories on gravity. It seems more likely that Newton used the story as a means of connecting the concept of gravity's impact on objects on Earth with its impact on objects in space for his contemporary audience.

The apple tree in question — known as the "Flower of Kent" — still blooms in the orchard of Woolsthorpe Manor, and is now a popular tourist attraction.  

Isaac Newton's inventions and discoveries

Isaac Newton experimenting with a prism and light.

— Famous astronomers: How these scientists shaped astronomy  

— What is Astrophysics?

— Physicists crack unsolvable three-body problem using drunkard's walk  

While a student, Newton was forced to take a two-year hiatus when plague closed Trinity College. At home, he continued to work with optics, using a prism to separate white light, and became the first person to argue that white light was a mixture of many types of rays, rather than a single entity. He continued working with light and color over the next few years and published his findings in " Opticks " in 1704.

Disturbed by the problems with telescopes at the time, he invented the reflecting telescope, grinding the mirror and building the tube himself. Relying on a mirror rather than lenses, the telescope presented a sharper image than refracting telescopes at the time. Modern techniques have reduced the problems caused by lenses, but large telescopes such as the James Webb Space Telescope use mirrors. 

As a student, Newton studied the most advanced mathematical texts of his time. While on hiatus, he continued to study mathematics, laying the ground for differential and integral calculus. He united many techniques that had previously been considered separately, such as finding areas, tangents, and the lengths of curves. He wrote De Methodis Serierum et Fluxionum in 1671 but was unable to find a publisher.

Newton also established a cohesive scientific method, to be used across disciplines. Previous explorations of science varied depending on the field. Newton established a set format for experimentation still used today.

However, not all of Newton's ideas were quite as revolutionary. In P rincipia, Newton describes how rarefied vapor from comet tails is pulled into Earth's gravitational grasp and enables the movements of the planet's fluids along with the "most subtle and useful part of our air, and so much required to sustain the life of all things with us." 

Isaac Newton quotes

"Amicus Plato amicus Aristoteles magis amica verita."

(Plato is my friend, Aristotle is my friend, but my greatest friend is truth.)

—Written in the margin of a notebook while a student at Cambridge. In Richard S. Westfall, Never at Rest (1980), 89.

"Genius is patience."

—The Homiletic Review, Vol. 83-84 (1922), Vol. 84, 290.

"If I have seen further it is by standing on the shoulders of giants."

—Letter to Robert Hooke (5 Feb 1675-6).In H. W. Turnbull (ed.), The Correspondence of Isaac Newton, 1, 1661-1675 (1959), Vol. 1, 416.

"I see I have made my self a slave to Philosophy."

—Letter to Henry Oldenburg (18 Nov 1676). In H. W. Turnbull (ed.), The Correspondence of Isaac Newton, 1676-1687 (1960), Vol. 2, 182.

"I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me."

—First reported in Joseph Spence, Anecdotes, Observations and Characters, of Books and Men (1820), Vol. 1 of 1966 edn, sect. 1259, p. 462

"To any action there is always an opposite and equal reaction; in other words, the actions of two bodies upon each other are always equal and always opposite in direction."

— The Principia: Mathematical Principles of Natural Philosophy (1687)

"Truth is ever to be found in simplicity, and not in the multiplicity and confusion of things."

—'Fragments from a Treatise on Revelation". In Frank E. Manuel, The Religion of Isaac Newton (1974), 120.

How did Sir Isaac Newton die?

Newton died in 1727 during his sleep at the age of 84. Although the cause of death is unknown, a 1979 study published by Newton's own Royal Society suggests mercury poisoning may have contributed to the decline of his physical and mental health. During the exhumation of his body, large amounts of mercury were found in the scientist's system, likely due to his work with alchemy. Newton conducted several experiments to convert base metals, such as mercury and copper into precious metals, such as gold and silver. 

"In 1693 Newton suffered from insomnia and poor digestion; and he also wrote irrational letters to friends. Although most scholars have attributed Newton's breakdown to psychological factors, it is possible that mercury poisoning may have been the principal cause," wrote L. W. Johnson and M. L. Wolbarsht " Mercury Poisoning: A probable cause of Isaac Newton's physical and mental ills: Notes and Records of the Royal Society of London Vol. 34. No. 1. " .

After his death, his body was moved to a more prominent place in Westminster Abbey. His white and grey marble monument stands in the nave of the Abbey's choir screen and boasts sculptures of Newton lounging surrounded by children using the many instruments, such as telescopes, associated with Newton's work. The inscription on the monument — originally written in Latin — reads: 

" Here is buried Isaac Newton, Knight, who by a strength of mind almost divine, and mathematical principles peculiarly his own, explored the course and figures of the planets, the paths of comets, the tides of the sea, the dissimilarities in rays of light, and, what no other scholar has previously imagined, the properties of the colours thus produced. Diligent, sagacious and faithful, in his expositions of nature, antiquity and the holy Scriptures, he vindicated by his philosophy the majesty of God mighty and good, and expressed the simplicity of the Gospel in his manners. Mortals rejoice that there has existed such and so great an ornament of the human race! He was born on 25th December 1642, and died on 20th March 1726. " The date of his death on his monument is given in the Julian calendar. 

If you want to learn more about the impact of this celebrated scientist, then you should read about how Isaac Newton Changed the World . If you're wondering whether Newton's second law of motion works in space then an Astronaut has tested the theory out.

"Isaac Newton" by James Gleick (Vintage, 2004 )

" Mercury Poisoning: A probable cause of Isaac Newton's physical and mental ills: Notes and Records of the Royal Society of London Vol. 34. No. 1. " by L. W. Johnson and M. L. Wolbarsht (July 1979)

" The Mathematical Principles of Natural Philosophy " by Isaac Newton (Flame Tree Collections, 2020)

" Newton's Apple and Other Myths about Science " edited by Ronald L. Numbers and Kostas Kampourakis (Harvard University Press, 2020)

" Life After Gravity: Isaac Newton's London Career " by Patricia Fara (Oxford University Press, 2021)

"Isaac Newton" Stanford Encyclopedia of Philosophy (2007)

"Isaac Newton" University of St Andrews (2000)

"Sir Isaac Newton" Westminster Abbey (2023)

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Nola Taylor Tillman is a contributing writer for Space.com. She loves all things space and astronomy-related, and enjoys the opportunity to learn more. She has a Bachelor’s degree in English and Astrophysics from Agnes Scott college and served as an intern at Sky & Telescope magazine. In her free time, she homeschools her four children. Follow her on Twitter at @NolaTRedd

Space pictures! See our space image of the day

'The last 12 months have broken records like never before': Earth exceeds 1.5 C warming every month for entire year

Scientists find surprising clue about Venus' past in its atmosphere

Most Popular

  • 2 NASA's DART asteroid crash really messed up its space rock target
  • 3 Salsa's last dance: This European satellite will fall from space soon in a spicy reentry
  • 4 Why the 1st private lunar lander failed
  • 5 James Webb Space Telescope finds 6 wandering 'rogue' planets that formed just like stars

isaac newton scientist biography

Biography of Isaac Newton, Mathematician and Scientist

Print Collector/Getty Images

  • Famous Inventors
  • Famous Inventions
  • Patents & Trademarks
  • Invention Timelines
  • Computers & The Internet
  • American History
  • African American History
  • African History
  • Ancient History and Culture
  • Asian History
  • European History
  • Latin American History
  • Medieval & Renaissance History
  • Military History
  • The 20th Century
  • Women's History

Sir Isaac Newton (Jan. 4, 1643–March 31, 1727) was a superstar of physics, math, and astronomy even in his own time. He occupied the chair of Lucasian Professor of Mathematics at the University of Cambridge in England, the same role later filled, centuries later, by Stephen Hawking . Newton conceived of several laws of motion , influential mathematical principals which, to this day, scientists use to explain how the universe works.

Fast Facts: Sir Isaac Newton

  • Known For : Developed laws that explain how the universe works
  • Born : Jan. 4, 1643 in Lincolnshire, England
  • Parents : Isaac Newton, Hannah Ayscough
  • Died : March 20, 1727 in Middlesex, England
  • Education : Trinity College, Cambridge (B.A., 1665)
  • Published Works : De Analysi per Aequationes Numero Terminorum Infinitas (1669, published 1711), Philosophiae Naturalis Principia Mathematica (1687), Opticks (1704)
  • Awards and Honors : Fellowship of the Royal Society (1672), Knight Bachelor (1705)
  • Notable Quote : "If I have seen further than others, it is by standing upon the shoulders of giants."

Early Years and Influences

Newton was born in 1642 in a manor house in Lincolnshire, England. His father had died two months before his birth. When Newton was 3 his mother remarried and he remained with his grandmother. He was not interested in the family farm, so he was sent to Cambridge University to study.

Newton was born just a short time after the death of  Galileo , one of the greatest scientists of all time. Galileo had proved that the planets revolve around the sun, not the earth as people thought at the time. Newton was very interested in the discoveries of Galileo and others. Newton thought the universe worked like a machine and that a few simple laws governed it. Like Galileo, he realized that mathematics was the way to explain and prove those laws.

Laws of Motion

Newton formulated laws of motion and gravitation. These laws are math formulas that explain how objects move when a force acts on them. Newton published his most famous book, "Principia," in 1687 while he was a mathematics professor at Trinity College in Cambridge. In "Principia," Newton explained three basic laws that govern the way objects move. He also described his theory of gravity, the force that causes things to fall down. Newton then used his laws to show that the planets revolve around the suns in orbits that are oval, not round.

The three laws are often called Newton’s Laws. The first law states that an object that is not being pushed or pulled by some force will stay still or will keep moving in a straight line at a steady speed. For example, if someone is riding a bike and jumps off before the bike is stopped, what happens? The bike continues on until it falls over. The tendency of an object to remain still or keep moving in a straight line at a steady speed is called inertia.

The second law explains how a force acts on an object. An object accelerates in the direction the force is moving it. If someone gets on a bike and pushes the pedals forward, the bike will begin to move. If someone gives the bike a push from behind, the bike will speed up. If the rider pushes back on the pedals, the bike will slow down. If the rider turns the handlebars, the bike will change direction.

The third law states that if an object is pushed or pulled, it will push or pull equally in the opposite direction. If someone lifts a heavy box, they use force to push it up. The box is heavy because it is producing an equal force downward on the lifter’s arms. The weight is transferred through the lifter’s legs to the floor. The floor also presses upward with an equal force. If the floor pushed back with less force, the person lifting the box would fall through the floor. If it pushed back with more force, the lifter would fly up in the air.

Importance of Gravity

When most people think of Newton, they think of him sitting under an apple tree observing an apple fall to the ground. When he saw the apple fall, Newton began to think about a specific kind of motion called gravity. Newton understood that gravity was a force of attraction between two objects. He also understood that an object with more matter or mass exerted the greater force or pulled smaller objects toward it. That meant that the large mass of the Earth pulled objects toward it. That is why the apple fell down instead of up and why people don’t float in the air.

He also thought that maybe gravity was not just limited to the Earth and the objects on the earth. What if gravity extended to the Moon and beyond? Newton calculated the force needed to keep the Moon moving around the earth. Then he compared it with the force that made the apple fall downward. After allowing for the fact that the Moon is much farther from the Earth and has a much greater mass, he discovered that the forces were the same and that the Moon is also held in orbit around Earth by the pull of earth’s gravity.

Disputes in Later Years and Death

Newton moved to London in 1696 to accept the position of warden of the Royal Mint. For many years afterward, he argued with Robert Hooke over who had actually discovered the connection between elliptical orbits and the inverse square law, a dispute that ended only with Hooke's death in 1703.

In 1705, Queen Anne bestowed a knighthood upon Newton, and thereafter he was known as Sir Isaac Newton. He continued his work, particularly in mathematics. This led to another dispute in 1709, this time with German mathematician Gottfried Leibniz. They both quarreled over which of them had invented calculus.

One reason for Newton's disputes with other scientists was his overwhelming fear of criticism, which led him to write, but then postpone publication of, his brilliant articles until after another scientist created similar work. Besides his earlier writings, "De Analysi" (which didn't see publication until 1711) and "Principia" (published in 1687), Newton's publications included "Optics" (published in 1704), "The Universal Arithmetic" (published in 1707), the "Lectiones Opticae" (published in 1729), the "Method of Fluxions" (published in 1736), and the "Geometrica Analytica" (printed in 1779).

On March 20, 1727, Newton died near London. He was buried in Westminster Abbey, the first scientist to receive this honor. 

Newton’s calculations changed the way people understood the universe. Prior to Newton, no one had been able to explain why the planets stayed in their orbits. What held them in place? People had thought that the planets were held in place by an invisible shield. Newton proved that they were held in place by the sun’s gravity and that the force of gravity was affected by distance and mass. While he was not the first person to understand that the orbit of a planet was elongated like an oval, he was the first to explain how it worked.

  • “Isaac Newton's Life.”  Isaac Newton Institute for Mathematical Sciences.
  • “ Isaac Newton Quotes. ”  BrainyQuote , Xplore.
  • “ Sir Isaac Newton. ”  StarChild , NASA.
  • Biography of Christiaan Huygens, Prolific Scientist
  • Women in Mathematics History
  • Biography of Joseph Louis Lagrange, Mathematician
  • Biography of Galileo Galilei, Renaissance Philosopher and Inventor
  • James Clerk Maxwell, Master of Electromagnetism
  • Biography of Alan Turing, Code-Breaking Computer Scientist
  • Biography of Ada Lovelace, First Computer Programmer
  • The History of Tablet Compters
  • Biography of Johannes Kepler, Pioneering German Astronomer
  • Biography of Charles Babbage, Mathematician and Computer Pioneer
  • Biography of Leonardo Pisano Fibonacci, Noted Italian Mathematician
  • John Napier - Napier's Bones
  • Biography of Srinivasa Ramanujan, Mathematical Genius
  • Leonhard Euler, Mathematician: His Life and Work
  • Biography of John Napier, Scottish Mathematician
  • Biography of John Lee Love, Portable Pencil Sharpener Inventor

Advertisement

Isaac Newton

Isaac Newton

Gottfried Kneller

New Scientist once described Isaac Newton as “the supreme genius and most enigmatic character in the history of science.” His three greatest discoveries — the theory of universal gravitation, the nature of white light and calculus — are the reasons why he is considered such an important figure in the history of science.

Newton’s theory of universal gravitation says that every particle in the universe attracts every other particle through the force of gravity. The theory helps us predict how objects as large as planets and as small as individual colliding molecules will interact; it shows us the way earthquakes ripple through the Earth’s crust and how to build building that can withstand them. His simple equation for universal gravitation, written in 1666 when he was 23, helped overthrow more than a thousand years of Aristotelian thinking (reinforced by Greek astronomer Claudius Ptolemy ) which said that objects only moved if an external force drove that motion.

Newton’s three laws of motion, published 20 years later in his Principia, established that every object in a state of uniform motion will remain in that state of motion unless an external force acts on it, that force equals mass times acceleration and that for every action there is an equal and opposite reaction. These laws were among the first to explain fundamental aspects of nature with simple mathematical formulas that were useful in a vast range of real life scenarios. Although the laws were later replaced by Albert Einstein ’s more accurate theories about spacetime and general relativity , they laid the groundwork for this and all other modern thought about physics and the nature of reality.

Newton was also the first to understand the rainbow, and to refract white light with a prism into its component colours and back again into white light, establishing rigid experimental proof in the face of intense criticism from his contemporaries. One of the byproducts of his experiments with light was the Newtonian telescope, still widely used today. Newtonian telescopes use a reflecting mirror to avoid the colour distortion and rainbow effect afflicting telescopes that use lenses.

Finally, Newton discovered and defined calculus, the mathematical system for understanding change, which he applied to general physics. His basic system, developed simultaneously – but independently – from German polymath Gottfried Wilhelm Leibniz’s studies, defined the framework and language for calculating and comparing the motion of objects.

Sign up to our weekly newsletter

Receive a weekly dose of discovery in your inbox! We'll also keep you up to date with New Scientist events and special offers.

More on Isaac Newton

Planet Venus on a dark background. Elements of this image furnished by NASA. High quality photo; Shutterstock ID 2396628567; purchase_order: -; job: -; client: -; other: -

How strange ice could form in the extremely hot interiors of planets

Subscriber-only

isaac newton scientist biography

Strange stars full of metals may be created by imploding supernovae

December 2, 2011, New York, New York, USA: December 2, 2011 - New York, New York USA:

Mathematics

The surprising connections between maths and poetry, related articles.

Portrait of Galileo Galilei

People in Science

Galileo galilei.

Mathematician and physicist Roger Penrose

Roger Penrose

Sophie Germain

Sophie Germain

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction & Top Questions
  • Formative influences
  • Influence of the Scientific Revolution
  • Work during the plague years

Inaugural lectures at Trinity

Controversy, influence of the hermetic tradition.

  • Planetary motion
  • Universal gravitation
  • Warden of the mint
  • Interest in religion and theology
  • Leader of English science
  • Final years

Consider how Isaac Newton's discovery of gravity led to a better understanding of planetary motion

  • What is Isaac Newton most famous for?
  • How was Isaac Newton educated?
  • What was Isaac Newton’s childhood like?
  • What is the Scientific Revolution?
  • How is the Scientific Revolution connected to the Enlightenment?

Above the clouds 130 nautical miles below, astronaut Mark C. Lee floats freely without tethers as he tests the new Simplified Aid for Extravehicular Activity (EVA) Spacewalk Rescue (SAFER) system, Sept. 16, 1994. Space Shuttle Discovery, STS-64

Career of Isaac Newton

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Isaac Newton Institute of Mathematical Sciences - Who was Isaac Newton?
  • Science Kids - Fun Science and Technology for Kids - Biography of Isaac Newton
  • Trinity College Dublin - School of mathematics - Biography of Sir Isaac Newton
  • World History Encyclopedia - Isaac Newton
  • Stanford Encyclopedia of Philosophy - Biography of Isaac Newton
  • University of British Columbia - Physics and Astronomy Department - The Life and Work of Newton
  • LiveScience - Biography of Isaac Newton
  • Physics LibreTexts - Newton's Laws of Motion
  • Isaac Newton - Children's Encyclopedia (Ages 8-11)
  • Isaac Newton - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

isaac newton scientist biography

Newton was elected to a fellowship in Trinity College in 1667, after the university reopened. Two years later, Isaac Barrow , Lucasian professor of mathematics , who had transmitted Newton’s De Analysi to John Collins in London , resigned the chair to devote himself to divinity and recommended Newton to succeed him. The professorship exempted Newton from the necessity of tutoring but imposed the duty of delivering an annual course of lectures. He chose the work he had done in optics as the initial topic; during the following three years (1670–72), his lectures developed the essay “Of Colours” into a form which was later revised to become Book One of his Opticks .

isaac newton scientist biography

Recent News

Beginning with Kepler’s Paralipomena in 1604, the study of optics had been a central activity of the Scientific Revolution . Descartes’s statement of the sine law of refraction , relating the angles of incidence and emergence at interfaces of the media through which light passes, had added a new mathematical regularity to the science of light, supporting the conviction that the universe is constructed according to mathematical regularities. Descartes had also made light central to the mechanical philosophy of nature; the reality of light, he argued, consists of motion transmitted through a material medium. Newton fully accepted the mechanical nature of light, although he chose the atomistic alternative and held that light consists of material corpuscles in motion. The corpuscular conception of light was always a speculative theory on the periphery of his optics, however. The core of Newton’s contribution had to do with colours . An ancient theory extending back at least to Aristotle held that a certain class of colour phenomena, such as the rainbow , arises from the modification of light, which appears white in its pristine form. Descartes had generalized this theory for all colours and translated it into mechanical imagery. Through a series of experiments performed in 1665 and 1666, in which the spectrum of a narrow beam was projected onto the wall of a darkened chamber, Newton denied the concept of modification and replaced it with that of analysis. Basically, he denied that light is simple and homogeneous—stating instead that it is complex and heterogeneous and that the phenomena of colours arise from the analysis of the heterogeneous mixture into its simple components. The ultimate source of Newton’s conviction that light is corpuscular was his recognition that individual rays of light have immutable properties; in his view, such properties imply immutable particles of matter. He held that individual rays (that is, particles of given size) excite sensations of individual colours when they strike the retina of the eye . He also concluded that rays refract at distinct angles—hence, the prismatic spectrum, a beam of heterogeneous rays, i.e., alike incident on one face of a prism , separated or analyzed by the refraction into its component parts—and that phenomena such as the rainbow are produced by refractive analysis. Because he believed that chromatic aberration could never be eliminated from lenses, Newton turned to reflecting telescopes ; he constructed the first ever built. The heterogeneity of light has been the foundation of physical optics since his time.

There is no evidence that the theory of colours, fully described by Newton in his inaugural lectures at Cambridge, made any impression, just as there is no evidence that aspects of his mathematics and the content of the Principia , also pronounced from the podium, made any impression. Rather, the theory of colours, like his later work, was transmitted to the world through the Royal Society of London, which had been organized in 1660. When Newton was appointed Lucasian professor, his name was probably unknown in the Royal Society; in 1671, however, they heard of his reflecting telescope and asked to see it. Pleased by their enthusiastic reception of the telescope and by his election to the society, Newton volunteered a paper on light and colours early in 1672. On the whole, the paper was also well received, although a few questions and some dissent were heard.

Among the most important dissenters to Newton’s paper was Robert Hooke , one of the leaders of the Royal Society who considered himself the master in optics and hence he wrote a condescending critique of the unknown parvenu. One can understand how the critique would have annoyed a normal man. The flaming rage it provoked, with the desire publicly to humiliate Hooke, however, bespoke the abnormal. Newton was unable rationally to confront criticism . Less than a year after submitting the paper, he was so unsettled by the give and take of honest discussion that he began to cut his ties, and he withdrew into virtual isolation.

isaac newton scientist biography

In 1675, during a visit to London, Newton thought he heard Hooke accept his theory of colours. He was emboldened to bring forth a second paper, an examination of the colour phenomena in thin films , which was identical to most of Book Two as it later appeared in the Opticks . The purpose of the paper was to explain the colours of solid bodies by showing how light can be analyzed into its components by reflection as well as refraction . His explanation of the colours of bodies has not survived, but the paper was significant in demonstrating for the first time the existence of periodic optical phenomena. He discovered the concentric coloured rings in the thin film of air between a lens and a flat sheet of glass; the distance between these concentric rings ( Newton’s rings ) depends on the increasing thickness of the film of air. In 1704 Newton combined a revision of his optical lectures with the paper of 1675 and a small amount of additional material in his Opticks .

A second piece which Newton had sent with the paper of 1675 provoked new controversy. Entitled “An Hypothesis Explaining the Properties of Light,” it was in fact a general system of nature. Hooke apparently claimed that Newton had stolen its content from him, and Newton boiled over again. The issue was quickly controlled, however, by an exchange of formal, excessively polite letters that fail to conceal the complete lack of warmth between the men.

Newton was also engaged in another exchange on his theory of colours with a circle of English Jesuits in Liège, perhaps the most revealing exchange of all. Although their objections were shallow, their contention that his experiments were mistaken lashed him into a fury. The correspondence dragged on until 1678, when a final shriek of rage from Newton, apparently accompanied by a complete nervous breakdown, was followed by silence. The death of his mother the following year completed his isolation. For six years he withdrew from intellectual commerce except when others initiated a correspondence, which he always broke off as quickly as possible.

During his time of isolation, Newton was greatly influenced by the Hermetic tradition with which he had been familiar since his undergraduate days. Newton, always somewhat interested in alchemy , now immersed himself in it, copying by hand treatise after treatise and collating them to interpret their arcane imagery. Under the influence of the Hermetic tradition, his conception of nature underwent a decisive change. Until that time, Newton had been a mechanical philosopher in the standard 17th-century style, explaining natural phenomena by the motions of particles of matter. Thus, he held that the physical reality of light is a stream of tiny corpuscles diverted from its course by the presence of denser or rarer media. He felt that the apparent attraction of tiny bits of paper to a piece of glass that has been rubbed with cloth results from an ethereal effluvium that streams out of the glass and carries the bits of paper back with it. This mechanical philosophy denied the possibility of action at a distance; as with static electricity , it explained apparent attractions away by means of invisible ethereal mechanisms. Newton’s “Hypothesis of Light” of 1675, with its universal ether , was a standard mechanical system of nature. Some phenomena, such as the capacity of chemicals to react only with certain others, puzzled him, however, and he spoke of a “secret principle” by which substances are “sociable” or “unsociable” with others. About 1679, Newton abandoned the ether and its invisible mechanisms and began to ascribe the puzzling phenomena—chemical affinities , the generation of heat in chemical reactions , surface tension in fluids, capillary action , the cohesion of bodies, and the like—to attractions and repulsions between particles of matter. More than 35 years later, in the second English edition of the Opticks , Newton accepted an ether again, although it was an ether that embodied the concept of action at a distance by positing a repulsion between its particles. The attractions and repulsions of Newton’s speculations were direct transpositions of the occult sympathies and antipathies of Hermetic philosophy—as mechanical philosophers never ceased to protest. Newton, however, regarded them as a modification of the mechanical philosophy that rendered it subject to exact mathematical treatment. As he conceived of them, attractions were quantitatively defined, and they offered a bridge to unite the two basic themes of 17th-century science—the mechanical tradition, which had dealt primarily with verbal mechanical imagery, and the Pythagorean tradition, which insisted on the mathematical nature of reality. Newton’s reconciliation through the concept of force was his ultimate contribution to science.

Isaac Newton Biography

isaac newton scientist biography

Isaac Netwon is synonymous with apples and gravity. He rose to become the most influential scientist of the 17th century, his ideas becoming the foundation of modern physics, after very humble beginnings. But first, the big question: Did an apple really fall on Newton's head and spur him to figure out gravity? Historians say there is likely no more than a grain of truth to the story.

Sir Isaac Newton was born, premature and tiny, in 1642 in Woolsthorpe, England. His father, wealthy but uneducated, died before Newton was born, and he ended up being raised by his grandmother after his mother remarried. It’s said he didn’t excel at school, but he ended up studying law at Trinity College Cambridge, part of Cambridge University. He worked as a servant to pay his bills. And he kept a journal about his ideas.

What got Newton interested in math? He bought a book on the subject and couldn't comprehend it. After getting his bachelor's degree in 1665; he studied math, physics, optics and astronomy on his own (Cambridge was closed for a couple of years due to the plague known as the Black Death). By 1666 he had completed his early work on  his three laws of motion . Later he got his master's degree.

Later work focused on the diffraction of light (he used a prism to discover that white light is made of a spectrum of colors ) and the concepts he'd become known for: universal gravitation, centrifugal force, centripetal force, and the effects and characteristics of bodies in motion. His laws are still used by physics students today:

  • An object will remain in a state of inertia unless acted upon by force.
  • The relationship between acceleration and applied force is F=ma.
  • For every action there is an equal and opposite reaction.

Isaac Newton quotes

Newton said many things worth remembering, including these philosophical gems:

  • "I can calculate the motion of heavenly bodies, but not the madness of people."
  • "To myself I am only a child playing on the beach, while vast oceans of truth lie undiscovered before me."

Newton once said that if he had achieved anything in his research, it was "by standing on the shoulders of giants ." The quote was prophetic. A couple of centuries later, Albert Einstein puzzled over how to reconcile Newton's law of gravity with special relativity, which after several years led to  Einstein's theory of general relativity .

Isaac Newton inventions

While he's best known for his work on gravity, Newton was a tinkerer, too, but more with ideas than physical inventions. He did invent reflecting lenses for telescopes, which produced clearer images in a smaller telescope compared with the refracting models of the time. In his later years, he developed anti-counterfeiting measures for coins, including the ridges you see on quarters today.

Among his biggest " inventions " was calculus. Yes, that's right. Mere math and algebra weren't enough to explain the ideas in his head, so he helped invent calculus (German mathematician Gottfried Leibniz is typically credited with developing it independently at about the same time).

It's said that Newton invented a cat door so his cats would stop scratching to get in, but the truth of that one is a bit sketchy.

He also conceived of an "orbital cannon" that would poke out of a huge mountain, up in space, and with just the right amount of gunpowder could put a cannonball into orbit. This was not something Newton actually imagined building, but rather a way to think about his theories.

Later years

Urged by astronomer  Edmond Halley  (who was studying his now-famous comet), Newton continued to study his notion of gravity and apply it to the motions of the Earth, sun and moon. It all led to his seminal work, published in 1687, called the "Principia" — considered by many as the greatest science book ever written.

Newton's research stopped in 1679 when he had a nervous breakdown. Later, recovered, he spoke out against King James II, who wanted only Roman Catholics to be in powerful government and academic positions. When James was later driven out of England, Newton was elected to Parliament. He had a second breakdown in 1693, then retired from research. Isaac Newton died in 1727.

Among his more eccentric pastimes, Newton also dabbled (or more than dabbled) in alchemy, also called chymistry, with some historians estimating that he wrote more than a million words of alchemical notes, according to curator of rare books at the Chemical Heritage Foundation, James Voelkel.

And in March 2016, researchers announced they had found bought a 17th-century alchemy manuscript written by Newton . The manuscript, which had been hidden in a private collection for decades and turned up at an auction at Bonhams, provided the recipe for "philosophic" mercury, which was considered a step in the process for concocting a mysterious substance known the philosopher's stone; this material was thought to have supernatural powers — the ability to turn any metal into gold and to grant immortality. The manuscript will be available online for enthusiasts to explore.

Further reading

  • Isaac Newton's Three Laws of Motion
  • Inertia & Newton's First Law of Motion
  • Force, Mass & Acceleration: Newton's Second Law of Motion
  • Equal & Opposite Reactions: Newton's Third Law of Motion
  • How Isaac Newton Changed the World
  • What Is Gravity?
  • What Is Einstein's Theory of Relativity?
  • What Is Classical Mechanics?
  • 20 inventions that changed the world

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

World's fastest microscope can see electrons moving

Heaviest antimatter particle ever discovered could hold secrets to our universe's origins

200 meteorites on Earth traced to 5 craters on Mars

Most Popular

  • 2 Scientists collect high-resolution images of the North Star's surface for 1st time
  • 3 Supercharged 'cocoon of energy' may power the brightest supernovas in the universe
  • 4 AI and brain implant enables ALS patient to easily converse with family 'for 1st time in years'
  • 5 Fallout from NASA's asteroid-smashing DART mission could hit Earth — potentially triggering 1st human-caused meteor shower

isaac newton scientist biography

Isaac Newton

Sir Isaac Newton
January 4, 1643
Woolsthorpe-by-Colsterworth, Lincolnshire,
March 31, 1727
Kensington,

Sir Isaac Newton (January 4, 1643 – March 31, 1727) was an English physicist, mathematician, astronomer , alchemist , inventor, and natural philosopher , who is generally regarded as one of the most accomplished and influential scientists in history.

In his work Philosophiae Naturalis Principia Mathematica , Newton enunciated his law of universal gravitation and three laws of motion. He thus laid the groundwork for classical mechanics , also known as Newtonian mechanics , which held sway in the physical sciences until the advent of quantum mechanics around the beginning of the twentieth century. By deriving Kepler's laws of planetary motion from this system, he was the first to show that the motions of bodies on Earth and celestial bodies are governed by the same set of natural laws. The unifying and predictive power of his laws was integral to the scientific revolution and advancement of the heliocentric model of the solar system .

Among other scientific work, Newton realized that white light is composed of a spectrum of colors and further argued that light consists of corpuscles (particles). He enunciated the principles of conservation of momentum and angular momentum, and he developed a law describing the rate of cooling of objects when exposed to air. Furthermore, he studied the speed of sound in air and voiced a theory of the origin of stars .

Newton and Gottfried Wilhelm Leibniz share the credit for playing major roles in the development of calculus in the Western world. This area of mathematics has since proved of enormous value for the advancement of science and technology. Newton also made contributions to other areas of mathematics, having derived the binomial theorem in its entirety.

  • 1.1 Early years
  • 1.2.1.1 The dispute over who first developed calculus
  • 1.2.2 Optics
  • 1.2.3 Gravity and motion
  • 1.3 Later life
  • 2.1 Newton's effects on religious thought
  • 3 Effects on Enlightenment thought
  • 4 Newton and the counterfeiters
  • 5 Newton's apple
  • 6 Newton's writings
  • 8 References
  • 9 External links

In addition to his monumental work in mathematics and science, Newton was a devout Christian, although a somewhat unorthodox and non-Trinitarian one. He claimed to study the Bible every day, and he wrote more on religion than he did on science. He thought that his scientific investigations were a way to bring to light the Creator's work and the principles used by the Creator in ordering the physical universe.

Early years

Newton was born in Woolsthorpe-by-Colsterworth (at Woolsthorpe Manor), a hamlet in the county of Lincolnshire. As he was born prematurely, no one expected him to live. His mother, Hannah Ayscough Newton, is reported to have said that his body at that time could have fit inside a quart mug (Bell 1937). His father, Isaac, had died three months before Newton's birth. When Newton was two, his mother went to live with her new husband, leaving her son in the care of his grandmother.

After beginning his education at village schools, Newton attended the King's School in Grantham (Grantham Grammar School) from the age of 12. His signature remains preserved on a windowsill at Grantham. By October 1659, he had been removed from school and brought back to Woolsthorpe, where his mother attempted to make a farmer of him. Later reports of his contemporaries indicate that he was thoroughly unhappy with the work. It appears that Henry Stokes, master at the King's School, persuaded Newton's mother to send him back to school to complete his education. This he did at age 18, achieving an admirable final report. His teacher's praise was effusive:

His genius now begins to mount upwards apace and shine out with more strength. He excels particularly in making verses. In everything he undertakes, he discovers an application equal to the pregnancy of his parts and exceeds even the most sanguine expectations I have conceived of him.

In June 1661, he matriculated to Trinity College, Cambridge . At that time, the college's teachings were based on those of Aristotle , but Newton preferred to read the more advanced ideas of modern philosophers such as Descartes and astronomers such as Galileo , Copernicus , and Kepler . In 1665, he discovered the binomial theorem and began to develop a mathematical theory that would later become calculus. A manuscript of his, dated May 28, 1665, is the earliest evidence of his invention of fluxions ( derivatives in differential calculus). Soon after Newton obtained his degree in 1665, the University closed down as a precaution against the Great Plague. For the next 18 months, Newton worked at home on calculus, optics, and a theory of gravitation.

The only account of a romantic relationship in Newton's life is connected to his time at Grantham. According to Eric Temple Bell (1937) and H. Eves:

At Grantham, he lodged with the local apothecary, William Clarke, and eventually became engaged to the apothecary's stepdaughter, Anne Storer, before going off to Cambridge University at age 19. As Newton became engrossed in his studies, the romance cooled and Miss Storer married someone else. It is said he kept a warm memory of this love, but Newton had no other recorded "sweethearts" and never married. [1]

Middle years

Mathematical research.

Newton became a fellow of Trinity College in 1669. In the same year, he circulated his findings in De Analysi per Aequationes Numeri Terminorum Infinitas (On Analysis by Infinite Series) , and later in De methodis serierum et fluxionum (On the Methods of Series and Fluxions) , whose title gave rise to the "method of fluxions."

Newton is generally credited with the binomial theorem, an essential step toward the development of modern analysis. It is now also recognized that Newton and Leibniz (the German polymath) developed calculus independently of each other, but for years a bitter dispute raged over who was to be given priority and whether Leibniz had stolen from Newton (see below).

Newton made substantial contributions toward our understanding of polynomials (such as the discovery of "Newton's identities") and the theory of finite differences. He discovered "Newton's methods" (a root-finding algorithm) and new formulae for the value of pi. He was the first to use fractional indices, to employ coordinate geometry to derive solutions to diophantine equations, and to use power series with confidence and to revert power series. He also approximated partial sums of harmonic series by logarithms (a precursor to Euler's summation formula).

He was elected Lucasian professor of mathematics in 1669. At that time, any fellow of Cambridge or Oxford had to be an ordained Anglican priest. The terms of the Lucasian professorship, however, required that the holder not be active in the church (presumably to have more time for science). Newton argued that this should exempt him from the ordination requirement, and Charles II , whose permission was needed, accepted this argument. Thus a conflict between Newton's religious views and Anglican orthodoxy was averted.

Mathematician and mathematical physicist Joseph Louis Lagrange (1736–1813) described Newton as "the greatest genius that ever existed and the most fortunate, for we cannot find more than once a system of the world to establish." [2]

In July 1992, the Isaac Newton Institute for Mathematical Sciences was opened at Cambridge University. The Institute is regarded as the United Kingdom 's national institute for mathematical research.

The dispute over who first developed calculus

isaac newton scientist biography

As with many areas of mathematics, calculus was developed through years of work by a number of different people. In particular, it was conceived and significantly developed by Indian mathematicians such as Bhaskara (1114–1185), Madhava of Sangamagrama (1340–1425), and members of the Kerala School founded by Madhava.

In the Western world, the two who contributed the most to the development of calculus were Newton and Leibniz. They worked independently and used different notations. Although Newton worked out his method some years before Leibniz, he published almost nothing about it until 1687 and did not give a full account until 1704. Newton did, however, correspond extensively with Leibniz. Meanwhile, Leibniz discovered his version of calculus in Paris between 1673 and 1676. He published his first account of differential calculus in 1684 and integral calculus in 1686.

It appears that Newton went further in exploring the applications of calculus; moreover, his focus was on limits and concrete reality, while that of Leibniz was on the infinite and abstract. Leibniz's notation and "differential method" were universally adopted on the Continent, and after 1820 or so, in the British Empire. Newton claimed he had been reluctant to publish his work on the subject because he feared being mocked for it. Today, credit is given to both men, but there was a period when a nasty controversy pitted English mathematicians against those on the European continent, over who should be regarded as the originator of calculus.

Starting in 1699, some members of the Royal Society accused Leibniz of plagiarism, especially because letters of correspondence between Newton and Leibniz often discussed mathematics. The dispute broke out in full force in 1711. Thus began the bitter calculus priority dispute, which marred the lives of both Newton and Leibniz until the latter's death in 1716, and continued for about a hundred years more. In 1715, just a year before Leibniz's death, the British Royal Society handed down its verdict, crediting Newton with the discovery of calculus and concluding that Leibniz was guilty of plagiarism. Newton and his associates even tried to get ambassadors in the diplomatic corps in London to review old letters and papers in the hope of gaining support for the Royal Society's findings. It later became known that these accusations were false, but Leibniz had already died.

This dispute, although it centered on questions of plagiarism and priority of discovery of calculus, also involved issues of national pride and allegiance. In fact, England did not agree to recognize the work of mathematicians from other countries until 1820. It is thought that this state of affairs may have retarded the progress of British mathematics by at least a century. (For an extended account of this controversy, see "Newton vs. Leibniz; The Calculus Controversy." )

From 1670 to 1672, Newton lectured on optics. During this period, he investigated the refraction of light , demonstrating that a prism could decompose white light into a spectrum of colors , and that a lens and second prism could recompose the multicolored spectrum into white light. He concluded that the spectrum of colors is inherent in the white light and not added by the prism (as Roger Bacon had claimed in the thirteenth century).

By separating out a colored beam and shining it on various objects, Newton showed that the colored light does not change its properties. He noted that regardless of whether a beam of colored light was reflected, scattered, or transmitted, it stayed the same color. Thus the colors we observe are the result of how objects interact with the incident, already-colored light, not the result of objects generating the color. Many of his findings in this field were criticized by later theorists, the most well-known being Johann Wolfgang von Goethe , who postulated his own color theories.

From this work, Newton concluded that any refracting telescope would suffer from the dispersion of light into colors, and he therefore invented a reflecting telescope (today known as a Newtonian telescope ) to bypass that problem. By grinding his own mirrors and using "Newton's rings" to judge the optical quality of his telescope, he was able to produce an instrument superior to the refracting telescope, due primarily to the wider diameter of the mirror. (Only later, as glasses with a variety of refractive properties became available, did achromatic lenses for refractors become feasible.) In 1671, the Royal Society asked for a demonstration of his reflecting telescope. Their interest encouraged him to publish his notes On Colour , which he later expanded into his Opticks . When Robert Hooke criticized some of Newton's ideas, Newton was so offended that he withdrew from public debate. The two men remained enemies until Hooke's death.

Newton argued that light is composed of particles, which he called corpuscles , but he also associated them with waves to explain the diffraction of light ( Opticks Bk. II, Props. XII-XX). Later physicists favored a purely wavelike explanation of light to account for diffraction. Today's quantum mechanics introduces the concept of "wave-particle duality," according to which light is made up of photons that have characteristics of both waves and particles.

Newton is believed to have been the first to explain precisely the formation of the rainbow from water droplets dispersed in the atmosphere in a rain shower. Figure 15 of Part II of Book One of Opticks shows a perfect illustration of how this occurs.

In his Hypothesis of Light of 1675, Newton posited the existence of the ether to transmit forces between particles. Newton was in contact with Henry More , the Cambridge Platonist , on alchemy , and now his interest in the subject revived. He replaced the ether with occult forces based on Hermetic ideas of attraction and repulsion between particles. In the opinion of John Maynard Keynes , who acquired many of Newton's writings on alchemy, "Newton was not the first of the age of reason: he was the last of the magicians." [3]

As Newton lived at a time when there was no clear distinction between alchemy and science, his interest in alchemy cannot be isolated from his contributions to science. [4] Some have suggested that had he not relied on the occult idea of action at a distance, across a vacuum, he might not have developed his theory of gravity.

In 1704, Newton wrote Opticks , in which he expounded his corpuscular theory of light. The book is also known for the first exposure of the idea of the interchangeability of mass and energy : "Gross bodies and light are convertible into one another...." Newton also constructed a primitive form of a frictional electrostatic generator, using a glass globe ( Opticks , 8th Query).

Gravity and motion

In 1679, Newton returned to his work on gravitation and its effect on the orbits of planets , with reference to Kepler's laws of planetary motion, and consulting with Hooke and John Flamsteed on the subject. He published his results in De Motu Corporum (1684). This contained the beginnings of the laws of motion.

The Philosophiae Naturalis Principia Mathematica (now known as the Principia ) was published on July 5, 1687, [5] with encouragement and financial help from Edmond Halley . In this work, Newton stated the three universal laws of motion that were not to be improved upon for more than 200 years. He used the Latin word gravitas (weight) for the force that would become known as gravity and defined the law of universal gravitation. Although his concept of gravity was revised by Einstein's Theory of Relativity, it represents an enormous step in the development of human understanding of the universe. In Principia , Newton also presented the first analytical determination, based on Boyle's law, of the speed of sound in air.

Newton's three laws of motion can be stated as follows:

  • First Law (the Law of Inertia): An object at rest tends to stay at rest and an object in motion tends to stay in motion unless acted upon by a net external force.
  • Second Law: In mathematical terms, F = ma, or force equals mass times acceleration . In other words, the acceleration produced by a net force on an object is directly proportional to the magnitude of the net force and inversely proportional to the mass. In the MKS system of measurement, mass is given in kilograms; acceleration, in meters per second squared; and force, in Newtons (named in his honor).
  • Third Law: For every action, there is an equal and opposite reaction.

With the Principia , Newton became internationally recognized. He acquired a circle of admirers, including the Swiss -born mathematician Nicolas Fatio de Duillier, with whom he formed a strong friendship that lasted until 1693. The end of this friendship led Newton to a nervous breakdown.

In the 1690s, Newton wrote a number of religious tracts dealing with the literal interpretation of the Bible. Henry More 's belief in the infinity of the universe and rejection of Cartesian dualism may have influenced Newton's religious ideas. A manuscript he sent to John Locke in which he disputed the existence of the Trinity was never published. Later works— The Chronology of Ancient Kingdoms Amended (1728) and Observations Upon the Prophecies of Daniel and the Apocalypse of St. John (1733)—were published after his death. He also devoted a great deal of time to alchemy (see above). [6]

isaac newton scientist biography

Newton was a member of the Parliament of England from 1689 to 1690 and again in 1701, but his only recorded comments were to complain about a cold draft in the chamber and request that the window be closed.

In 1696, Newton moved to London to take up the post of warden of the Royal Mint, a position he obtained through the patronage of Charles Montagu, First Earl of Halifax, then Chancellor of the Exchequer. He took charge of England's Great Recoinage, somewhat treading on the toes of Master Lucas (and finagling Edmond Halley into the job of deputy comptroller of the temporary Chester branch). Newton became Master of the Mint upon Lucas' death in 1699. These appointments were intended as sinecures, but Newton took them seriously, exercising his power to reform the currency and punish clippers and counterfeiters. He retired from his Cambridge duties in 1701. Ironically, it was his work at the Mint, rather than his contributions to science, that earned him a knighthood from Queen Anne in 1705.

Newton was made President of the Royal Society in 1703 and an associate of the French Académie des Sciences. In his position at the Royal Society, Newton made an enemy of John Flamsteed, the Astronomer Royal, by prematurely publishing Flamsteed's star catalog.

Newton died in London in 1727 and was buried in Westminster Abbey . His niece, Catherine Barton Conduitt, [7] served as his hostess in social affairs at his house on Jermyn Street in London. He was her "very loving uncle," [8] according to his letter to her when she was recovering from smallpox .

Religious views

isaac newton scientist biography

The law of gravity became Newton's best-known discovery. He, however, warned against using it to view the universe as a mere machine, like a great clock. He said that gravity explains the motions of the planets, but it cannot explain who set the planets in motion, and that God governs all things and knows all that is or can be done.

His scientific accomplishments notwithstanding, the Bible was Newton's greatest passion. He devoted more time to the study of Scripture and alchemy than to science. Newton claimed to have a fundamental belief in the Bible as the Word of God, written by those who were inspired and that he studied the Bible daily. Newton himself wrote works on textual criticism , most notably An Historical Account of Two Notable Corruptions of Scripture . Newton also placed the crucifixion of Jesus Christ at April 3, 33 C.E. , which is now the accepted traditional date. He also attempted, unsuccessfully, to find hidden messages within the Bible. Despite his focus on theology and alchemy, he investigated biblical passages using the scientific method—observing, hypothesizing, and testing his theories. To Newton, his scientific and religious experiments were one and the same, observing and understanding how the world functioned.

Newton rejected the church's doctrine of the Trinity and probably endorsed the Arian viewpoint that Jesus was the divine Son of God, created by God (and thus not equal to God). T.C. Pfizenmaier argues, however, that Newton more likely held the Eastern Orthodox view of the Trinity, rather than the Western one held by Roman Catholics , Anglicans , and most Protestants . [9] In his own day, he was also accused of being a Rosicrucian (as were many in the Royal Society and in the court of Charles II). [10]

Newton wrote more on religion than he did on natural science. He believed in a rationally immanent world, but he rejected the hylozoism (doctrine that all matter has life) implicit in the thought of Leibniz and Baruch Spinoza . Thus, the ordered and dynamically informed universe could be and needed to be understood by an active reason, but this universe, to be perfect and ordained, had to be regular.

Newton's effects on religious thought

isaac newton scientist biography

Robert Boyle ’s mechanical concept of the universe provided a foundation for attacks that were made against pre- Enlightenment "magical thinking" and the mystical elements of Christianity. Newton gave completion to Boyle’s ideas through mathematical proofs and was highly successful in popularizing them. [11] Newton refashioned the world governed by an interventionist God into a world crafted by a God who designs along rational and universal principles. [12] These principles were available for all people to discover, allowing us to pursue our aims fruitfully in this life, not the next , and to perfect ourselves with our rational powers. [13] The perceived ability of Newtonians to explain the world, both physical and social, through logical calculations alone is the crucial concept that led to disenchantment with traditional Christianity. [14]

The mechanical philosophy of Newton and Robert Boyle was promoted by rationalist pamphleteers as a viable alternative to the belief systems of pantheists (who considered God as immanent in or equivalent to the universe) and enthusiasts (who claimed to feel God's intense presence). It was also accepted hesitantly by orthodox preachers as well as dissident preachers like the latitudinarians (who took the position that God values the moral condition of a person's soul more than the individual's doctrinal beliefs). [15] The clarity of scientific principles was seen as a way to combat the emotional and metaphysical superlatives of the enthusiasts and the threat of atheism . [16] At the same time, the second wave of English deists used Newton's discoveries to demonstrate the possibility of a "natural religion," in which an understanding of God is derived from a rational analysis of nature rather than from revelation or tradition.

Newton saw God as the master creator whose existence could not be denied in the face of the grandeur of all creation. [17] [18] [19] The unforeseen theological consequence of his concept of God, as Leibniz pointed out, was that God was entirely removed from the world’s affairs, since the need for intervention would only evidence some imperfection in God’s creation, something impossible for a perfect and omnipotent creator. [20] Leibniz's theodicy cleared God from the responsibility for "l'origine du mal" (the origin of evil) by removing God from participation in his creation. The understanding of the world was brought down to the level of simple human reason, and humans, as Odo Marquard argued, became responsible for the correction and elimination of evil. [21]

On the other hand, latitudinarian and Newtonian ideas were taken to an extreme by the millenarians, a religious faction dedicated to the concept of a mechanical universe, but finding in it the same enthusiasm and mysticism that the Enlightenment had fought so hard to extinguish. [22]

Effects on Enlightenment thought

Enlightenment philosophers chose a short list of scientific predecessors—mainly Galileo , Boyle, and Newton—as their guides for applying the singular concept of Nature and Natural Law to every physical and social field of the day. In this respect, the lessons of history and the social structures built upon it could be discarded. [23]

Newton’s concept of the universe based on natural and rationally understandable laws became seeds for Enlightenment ideology . Locke and Voltaire applied concepts of natural law to political systems advocating intrinsic rights; the physiocrats and Adam Smith applied natural concepts of psychology and self-interest to economic systems; and sociologists critiqued how the current social order fit history into natural models of progress.

Newton and the counterfeiters

As warden of the Royal Mint, Newton estimated that 20 percent of the coins taken in during the Great Recoinage were counterfeit . Counterfeiting was treason , punishable by death. Despite this, convictions of the most flagrant criminals could be maddeningly impossible to achieve. Newton, however, proved equal to the task.

He assembled facts and proved his theories with the same brilliance in law that he had shown in science. He gathered much of that evidence himself, disguised, while he spent time at bars and taverns. For all the barriers placed to prosecution, and separating the branches of government, English law still had ancient and formidable customs of authority. Newton was made a justice of the peace, and, between June 1698 and Christmas 1699, conducted some 200 cross-examinations of witnesses, informers, and suspects. Newton won his convictions and in February 1699, he had ten prisoners waiting to be executed.

Newton's greatest triumph as the king's attorney was against William Chaloner, a rogue with a deviously intelligent mind. Chaloner set up phony conspiracies of Catholics , and then turned in the hapless conspirators whom he entrapped. Chaloner made himself rich enough to posture as a gentleman. Accusing the mint of providing tools to counterfeiters, he proposed that he be allowed to inspect the mint's processes to find ways to improve them. He petitioned parliament to adopt his plans for a coinage that could not be counterfeited. All the time, he struck false coins—or so Newton eventually proved to a court of competent jurisdiction. On March 23, 1699, Chaloner was hung, drawn and quartered.

Newton's apple

isaac newton scientist biography

A popular story claims that Newton was inspired to formulate his theory of universal gravitation by the fall of an apple from a tree. Cartoons have gone on to suggest the apple actually hit his head and that its impact made him aware of the force of gravity. There is no basis to that interpretation, but the story of the apple may have something to it. John Conduitt, Newton's assistant at the Royal Mint and husband of Newton's niece, described the event when he wrote about Newton's life:

In the year 1666, he retired again from Cambridge ... to his mother in Lincolnshire, & while he was musing in a garden, it came into his thought that the power of gravity (which brought an apple from a tree to the ground) was not limited to a certain distance from earth, but that this power must extend much further than was usually thought. Why not as high as the Moon thought he to himself & that if so, that must influence her motion & perhaps retain her in her orbit, whereupon he fell a-calculating what would be the effect of that superposition... (Keesing 1998)

The question was not whether gravity existed, but whether it extended so far from Earth that it could also be the force holding the Moon to its orbit. Newton showed that if the force decreased as the inverse square of the distance, one could indeed calculate the Moon's orbital period and get good agreement. He guessed the same force was responsible for other orbital motions and hence named it universal gravitation .

A contemporary writer, William Stukeley, recorded in his Memoirs of Sir Isaac Newton's Life a conversation with Newton in Kensington on April 15, 1726. According to that account, Newton recalled "when formerly, the notion of gravitation came into his mind. It was occasioned by the fall of an apple, as he sat in contemplative mood. Why should that apple always descend perpendicularly to the ground, thought he to himself. Why should it not go sideways or upwards, but constantly to the earth's centre." In similar terms, Voltaire wrote in his Essay on Epic Poetry (1727), "Sir Isaac Newton walking in his gardens, had the first thought of his system of gravitation, upon seeing an apple falling from a tree." These accounts are variations of Newton's own tale about sitting by a window in his home (Woolsthorpe Manor) and watching an apple fall from a tree.

Newton's writings

  • Method of Fluxions (1671)
  • De Motu Corporum in Gyrum (1684)
  • Philosophiae Naturalis Principia Mathematica (1687)
  • Opticks (1704)
  • Reports as Master of the Mint (1701-1725)
  • Arithmetica Universalis (1707)
  • An Historical Account of Two Notable Corruptions of Scripture (1754)
  • Short Chronicle , The System of the World , Optical Lectures , Universal Arithmetic , The Chronology of Ancient Kingdoms, Amended and De mundi systemate were published posthumously in 1728.
  • ↑ However, the work of William Stukeley and Mrs. Vincent, the source used by Bell and Eves, merely says that Newton entertained "a passion" for her (Ms. Storer) while he lodged at the Clarke house. Mrs. Vincent's maiden name was Katherine Storer, not Anne.
  • ↑ Delambre, M. "Notice sur la vie et les ouvrages de M. le comte J. L. Lagrange," in Oeuvres de Lagrange , I. Paris, 1867, p. xx.
  • ↑ Keynes, John Maynard Essays in Biography, "Newton, The Man" pp. 363-364 The Collected Writtings of John Maynard Keynes, Volume X, MacMillan St. Martin's Press, The Royal Economic Society: 1972.
  • ↑ Westfall (pp. 530–531) notes that Newton apparently abandoned his alchemical researches.
  • ↑ The remainder of the dates in this article follow the Gregorian calendar.
  • ↑ Westfall, p. 44.
  • ↑ Westfall, p. 595.
  • ↑ Pfizenmaier, T.C., "Was Isaac Newton an Arian?" Journal of the History of Ideas 68(1):57–80, 1997.
  • ↑ Yates, Frances A. The Rosicrucian Enlightenment. London: Routledge and Kegan Paul, 1972; Jacob, Margaret C. The Newtonians and the English Revolution: 1689-1720. p. 28.
  • ↑ Fitzpatrick, Martin. ed. Knud Haakonssen. “The Enlightenment, politics and providence: some Scottish and English comparisons.” Enlightenment and Religion: Rational Dissent in eighteenth-century Britain. Cambridge University Press, Cambridge: 1996. p. 64.
  • ↑ Frankel, Charles. The Faith of Reason: The Idea of Progress in the French Enlightenment. King’s Crown Press, New York: 1948. p. 1.
  • ↑ Germain, Gilbert G. A Discourse on Disenchantment: Reflections on Politics and Technology. p. 28.
  • ↑ Webb, R.K. ed. Knud Haakonssen. “The emergence of Rational Dissent.” Enlightenment and Religion: Rational Dissent in eighteenth-century Britain. Cambridge University Press, Cambridge: 1996. p. 19.
  • ↑ Jacob, Margaret C. The Newtonians and the English Revolution: 1689-1720. pp. 37, 44.
  • ↑ Westfall, Richard S. Science and Religion in Seventeenth-Century England. Yale University Press, New Haven: 1958. p. 200.
  • ↑ Principia, Book III; cited in Newton’s Philosophy of Nature: Selections from his writings, p. 42, ed. H.S. Thayer, Hafner Library of Classics, NY, 1953.
  • ↑ A Short Scheme of the True Religion, manuscript quoted in Memoirs of the Life, Writings and Discoveries of Sir Isaac Newton by Sir David Brewster, Edinburgh, 1850.
  • ↑ Westfall, Richard S. Science and Religion in Seventeenth-Century England. p. 201.
  • ↑ Marquard, Odo. "Burdened and Disemburdened Man and the Flight into Unindictability," in Farewell to Matters of Principle. Robert M. Wallace trans. London: Oxford UP, 1989.
  • ↑ Jacob, Margaret C. The Newtonians and the English Revolution: 1689-1720. pp. 100-101.
  • ↑ Cassels, Alan. Ideology and International Relations in the Modern World. p. 2.

References ISBN links support NWE through referral fees

  • Bell, Eric Temple. Men of Mathematics . New York: Simon and Schuster, 1937. ISBN 0671464000
  • Berlinski, David. Newton's Gift: How Sir Isaac Newton Unlocked the System of our World . New York: Simon & Schuster, 2000. ISBN 0684843927
  • Cassels, Alan. Ideology and International Relations in the Modern World . Routledge, 1996. ISBN 978-0415119276
  • Christianson, Gale. In the Presence of the Creator: Isaac Newton & His Times. New York: Free Press, 1984. ISBN 0029051908 . This well documented work provides, in particular, valuable information regarding Newton's knowledge of Patristics.
  • Craig, John. "Isaac Newton and the Counterfeiters," Notes and Records of the Royal Society (18) (1963).
  • Dampier, William C., and Margaret Dampier (eds.). Cosmology, Atomic Theory, Evolution: Classic Readings in the Literature of Science . Dover Publications, 2013. ISBN 978-0486428055
  • Frankel, Charles. The Faith of Reason: The Idea of Progress in the French Enlightenment . King's Crown Press, 1948. ASIN B0007DVU3Q
  • Germain, Gilbert G. A Discourse on Disenchantment: Reflections on Politics and Technology . State University of New York Press, 1993. ISBN 978-0791413203
  • Gleick, James. Isaac Newton . New York: Pantheon, 2003. ISBN 0375422331
  • Hart, Michael H. The 100 . New York: Carol Publishing Group, 1992. ISBN 0806513500
  • Hawking, Stephen (ed.). On the Shoulders of Giants . Philadelphia, PA: Running Press Book Publishers,2003. ISBN 076241698X
  • Jacob, Margaret C. The Newtonians and the English Revolution: 1689-1720 . Cornell University Press, 1976. ISBN 978-0801409813
  • Keesing, R.G. "The History of Newton's apple tree," in Contemporary Physics 39 (1998): 377-91.
  • Keynes, John Maynard. Essays in Biography . New York: W. W. Norton & Co, 1963. ISBN 039300189X . Keynes had taken a close interest in Newton and owned many of Newton's private papers.
  • Newton, Isaac. Papers and Letters in Natural Philosophy , edited by I. Bernard Cohen. Second edition, 1978. Cambridge, MA: Harvard University Press. ISBN 0674468538
  • Newton, Isaac. The Principia: Mathematical Principles of Natural Philosophy . Trans. by I. Bernard Cohen and Anne Whitman. Berkeley, CA: University of California Press, 1999. ISBN 0520088174
  • O'Connor, J.J., and E.F. Robertson. Sir Isaac Newton School of Mathematics and Statistics, University of St. Andrews, Scotland. Retrieved May 25, 2017.
  • Shapley, Harlow, S. Rapport, and H. Wright. A Treasury of Science ; "Newtonia" 147-149; "Discoveries" 150-154. New York: Harper & Bros, 1946.
  • Simmons, John. The giant book of scientists—The 100 greatest minds of all time . Sydney: The Book Company, 1996. ISBN 1854876953
  • Westfall, Richard S. Never at Rest. Cambridge University Press, 1998. ISBN 0521274354 .
  • Yates, Frances A. The Rosicrucian Enlightenment . London: Routledge and Kegan Paul, 1972. ISBN 978-0710073808

External links

All links retrieved March 6, 2018.

  • Portraits of Isaac Newton
  • Works by Isaac Newton . Project Gutenberg
  • Sir Isaac Newton Scientist and Mathematician by Lucidcafé
  • Newton's Reports as Master of the Royal Mint .
  • Newton's Dark Secrets NOVA television program.
  • John J. O'Connor and Edmund F. Robertson. Isaac Newton at the MacTutor archive
  • Stanford Encyclopedia of Philosophy entry on Newton's views on space, time, and motion .
  • Sir Isaac Newton . An article that traces his life and achievements.
  • The Chymistry of Isaac Newton Research about Isaac Newton's alchemical writings.
  • Newton vs. Leibniz; The Calculus Controversy
  • The Isaac Newton Institute for Mathematical Sciences
  • Biography at Isaac Newton Institute

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards . This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

  • Isaac Newton   history

The history of this article since it was imported to New World Encyclopedia :

  • History of "Isaac Newton"

Note: Some restrictions may apply to use of individual images which are separately licensed.

  • Physical sciences
  • Pages using ISBN magic links

Copyright Logo

Isaac Newton: Who He Was, Why Apples Are Falling

Sir Isaac Newton was born especially tiny but grew into a massive intellect and still looms large, thanks to his findings on gravity, light, motion, mathematics, and more.

Mathematics, Physics

Isaac Newton Kneller Painting

Far more than just discovering the laws of gravity, Sir Isaac Newton was also responsible for working out many of the principles of visible light and the laws of motion, and contributing to calculus.

Photograph of Sir Godfrey Kneller painting by Science Source

Far more than just discovering the laws of gravity, Sir Isaac Newton was also responsible for working out many of the principles of visible light and the laws of motion, and contributing to calculus.

Legend has it that Isaac Newton formulated gravitational theory in 1665 or 1666 after watching an apple fall and asking why the apple fell straight down, rather than sideways or even upward. "He showed that the force that makes the apple fall and that holds us on the ground is the same as the force that keeps the moon and planets in their orbits," said Martin Rees, a former president of Britain's Royal Society, the United Kingdom's national academy of science, which was once headed by Newton himself. "His theory of gravity wouldn't have got us global positioning satellites," said Jeremy Gray, a mathematical historian at the Milton Keynes, U.K.-based Open University. "But it was enough to develop space travel." Isaac Newton, Underachiever? Born two to three months prematurely on January 4, 1643, in a hamlet in Lincolnshire, England, Isaac Newton was a tiny baby who, according to his mother, could have fit inside a quart mug. A practical child, he enjoyed constructing models, including a tiny mill that actually ground flour—powered by a mouse running in a wheel. Admitted to the University of Cambridge on 1661, Newton at first failed to shine as a student. In 1665 the school temporarily closed because of a bubonic plague epidemic and Newton returned home to Lincolnshire for two years. It was then that the apple-falling brainstorm occurred, and he described his years on hiatus as "the prime of my age for invention." Despite his apparent affinity for private study, Newton returned to Cambridge in 1667 and served as a mathematics professor and in other capacities until 1696. Isaac Newton: More than Master of Gravity Decoding gravity was only part of Newton's contribution to mathematics and science. His other major mathematical preoccupation was calculus, and along with German mathematician Gottfried Leibniz, Newton developed differentiation and integration —techniques that remain fundamental to mathematicians and scientists. Meanwhile, his interest in optics led him to propose, correctly, that white light is actually the combination of light of all the colors of the rainbow. This, in turn, made plain the cause of chromatic aberration—inaccurate color reproduction—in the telescopes of the day. To solve the problem, Newton designed a telescope that used mirrors rather than just glass lenses, which allowed the new apparatus to focus all the colors on a single point—resulting in a crisper, more accurate image. To this day, reflecting telescopes, including the Hubble Space Telescope, are mainstays of astronomy. Following his apple insight, Newton developed the three laws of motion, which are, in his own words:

  • Newton's Law of Inertia : Every object persists in its state of rest or uniform motion in a straight line unless it is compelled to change that state by forces impressed upon it.
  • Newton's Law of Acceleration : Force is equal to the change in momentum (mV) per change in time. For a constant mass, force equals mass times acceleration [expressed in the famous equation F = ma].
  • Newton's Law of Action and Reaction: For every action, there is an equal and opposite reaction.

Newton published his findings in 1687 in a book called Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) commonly known as the Principia . "Newton's Principia made him famous—few people read it, and even fewer understood it, but everyone knew that it was a great work, rather like Einstein's Theory of Relativity over two hundred years later," writes mathematician Robert Wilson of the Open University in an article on a university website . Isaac Newton's "Unattractive Personality" Despite his wealth of discoveries, Isaac Newton wasn't well liked, particularly in old age, when he served as the head of Britain's Royal Mint, served in Parliament, and wrote on religion, among other things. "As a personality, Newton was unattractive—solitary and reclusive when young, vain and vindictive in his later years, when he tyrannized the Royal Society and vigorously sabotaged his rivals," the Royal Society's Rees said. Sir David Wallace, director of the Isaac Newton Institute for Mathematical Sciences in Cambridge, U.K., added, "He was a complex character, who also pursued alchemy"—the search for a method to turn base metals into gold—"and, as Master of the Mint, showed no clemency towards coiners [counterfeiters] sentenced to death." In 1727, at 84, Sir Isaac Newton died in his sleep and was buried with pomp and ceremony in Westminster Abbey in London.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Last Updated

May 9, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Isaac Newton (1642-1727): One of the World's Greatest Scientists

This is Shirley Griffith. And this is Steve Ember with the VOA Special English program, EXPLORATIONS .

Today we tell about one of the world's greatest scientists, Isaac Newton.

Much of today's science of physics is based on Newton's discovery of the three laws of motion and his theory of gravity. Newton also developed one of the most powerful tools of mathematics. It is the method we call calculus.

Late in his life, Newton said of his work: "If I saw further than other men, it was because I stood on the shoulders of giants. "

One of those giants was the great Italian scientist, Galileo. Galileo died the same year Newton was born. Another of the giants was the Polish scientist Nicholas Copernicus. He lived a hundred years before Newton.

Copernicus had begun a scientific revolution. It led to a completely new understanding of how the universe worked. Galileo continued and expanded the work of Copernicus.

Isaac Newton built on the ideas of these two scientists and others. He found and proved the answers for which they searched.

Isaac Newton was born in Woolsthorpe, England, on December twenty-fifth, sixteen forty-two.

He was born early. He was a small baby and very weak. No one expected him to survive. But he surprised everyone. He had one of the most powerful minds in history. And he lived until he was eighty-four.

Newton's father died before he was born. His mother married again a few years later. She left Isaac with his grandmother.

The boy was not a good student. Yet he liked to make things, such as kites and clocks and simple machines.

Newton also enjoyed finding new ways to answer questions or solve problems. As a boy, for example, he decided to find a way to measure the speed of the wind.

On a windy day, he measured how far he could jump with the wind at his back. Then he measured how far he could jump with the wind in his face. From the difference between the two jumps, he made his own measure of the strength of the wind.

Strangely, Newton became a much better student after a boy kicked him in the stomach.

The boy was one of the best students in the school. Newton decided to get even by getting higher marks than the boy who kicked him. In a short time, Newton became the top student at the school.

Newton left school to help on the family farm.

It soon became clear, however, that the boy was not a good farmer. He spent his time solving mathematical problems, instead of taking care of the crops. He spent hours visiting a bookstore in town, instead of selling his vegetables in the market.

An uncle decided that Newton would do better as a student than as a farmer. So he helped the young man enter Cambridge University to study mathematics.

Newton completed his university studies five years later, in sixteen sixty-five. He was twenty-two years old.

At that time, a deadly plague was spreading across England. To escape the disease, Newton returned to the family farm. He did more thinking than farming. In doing so, he found the answers to some of the greatest mysteries of science.

Newton used his great skill in mathematics to form a better understanding of the world and the universe. He used methods he had learned as a boy in making things. He experimented. Then he studied the results and used what he had learned to design new experiments.

Newton's work led him to create a new method in mathematics for measuring areas curved in shape. He also used it to find how much material was contained in solid objects. The method he created became known as integral calculus.

One day, sitting in the garden, Newton watched an apple fall from a tree. He began to wonder if the same force that pulled the apple down also kept the moon circling the Earth. Newton believed it was. And he believed it could be measured.

He called the force "gravity. " He began to examine it carefully.

He decided that the strength of the force keeping a planet in orbit around the sun depended on two things. One was the amount of mass in the planet and the sun. The other was how far apart they were.

Newton was able to find the exact relationship between distance and gravity. He multiplied the mass of one space object by the mass of the other. Then he divided that number by the square of their distance apart. The result was the strength of the gravity force that tied them to each other.

Newton proved his idea by measuring how much gravity force would be needed to keep the moon orbiting the Earth. Then he measured the mass of the Earth and the moon, and the distance between them. He found that his measurement of the gravity force produced was not the same as the force needed. But the numbers were close.

Newton did not tell anyone about his discovery. He put it aside to work on other ideas. Later, with correct measurements of the size of the Earth, he found that the numbers were exactly the same.

Newton spent time studying light and colors. He used a three-sided piece of glass called a prism.

He sent a beam of sunlight through the prism. It fell on a white surface. The prism separated the beam of sunlight into the colors of a rainbow. Newton believed that all these colors -- mixed together in light -- produced the color white. He proved this by letting the beam of rainbow-colored light pass through another prism. This changed the colored light back to white light.

Newton's study of light led him to learn why faraway objects seen through a telescope do not seem sharp and clear. The curved glass lenses at each end of the telescope acted like prisms. They produced a circle of colored light around an object. This created an unclear picture.

A few years later, Newton built a different kind of telescope. It used a curved mirror to make faraway objects seem larger.

Light reflected from the surface of the mirror, instead of passing through a curved glass lens. Newton's reflecting telescope produced much clearer pictures than the old kind of telescope.

Years later, the British astronomer Edmund Halley visited Newton. He said he wanted Newton's help in finding an answer to a problem no one had been able to solve. The question was this: What is the path of a planet going around the sun?

Newton immediately gave Haley the answer: an egg-shaped path called an ellipse.

Halley was surprised. He asked for Newton's proof. Newton no longer had the papers from his earlier work. He was able to recreate them, however. He showed them to Halley. He also showed Halley all his other scientific work.

Halley said Newton's scientific discoveries were the greatest ever made. He urged Newton to share them with the world.

Newton began to write a book that explained what he had done. It was published in sixteen eighty-seven. Newton called his book "The Mathematical Principles of Natural Philosophy." The book is considered the greatest scientific work ever written.

In his book, Newton explains the three natural laws of motion. The first law is that an object not moving remains still. And one that is moving continues to move at an unchanging speed, so long as no outside force influences it.

Objects in space continue to move, because nothing exists in space to stop them.

Newton's second law of motion describes force. It says force equals the mass of an object, multiplied by the change in speed it produces in an object.

His third law says that for every action, there is an equal and opposite reaction.

From these three laws, Newton was able to show how the universe worked. He proved it with easily understood mathematics. Scientists everywhere accepted Newton's ideas.

The leading English poet of Newton's time, Alexander Pope, honored the scientist with these words: "Nature and nature's laws lay hid in night. God said, --'Let Newton be!' - and all was light. "

This Special English program was written by Marilyn Christiano and Frank Beardsley. This is Shirley Griffith. And this is Steve Ember.

This page is part of Stories About People which is part of Interesting Things for ESL Students .

Biographies for Kids

Isaac newton.

  • Occupation: Scientist, mathematician, and astronomer
  • Born: January 4, 1643 in Woolsthorpe, England
  • Best known for: Defining the three laws of motion and universal gravitation

Portrait of Isaac Newton

  • Gravity - Newton is probably most famous for discovering gravity. Outlined in the Principia, his theory about gravity helped to explain the movements of the planets and the Sun. This theory is known today as Newton's law of universal gravitation.
  • Laws of Motion - Newton's laws of motion were three fundamental laws of physics that laid the foundation for classical mechanics.
  • Calculus - Newton invented a whole new type of mathematics which he called "fluxions." Today we call this math calculus and it is an important type of math used in advanced engineering and science.
  • Reflecting Telescope - In 1668 Newton invented the reflecting telescope . This type of telescope uses mirrors to reflect light and form an image. Nearly all of the major telescopes used in astronomy today are reflecting telescopes.
  • He studied many classic philosophers and astronomers such as Aristotle, Copernicus, Johannes Kepler, Rene Descartes, and Galileo.
  • Legend has it that Newton got his inspiration for gravity when he saw an apple fall from a tree on his farm.
  • He wrote his thoughts down in the Principia at the urging of his friend (and famous astronomer) Edmond Halley. Halley even paid for the book's publication.
  • He once said of his own work "If I have seen further than others, it is by standing upon the shoulders of giants."
  • Listen to a recorded reading of this page:



























































Isaac Newton Changed the World While in Quarantine From the Plague

Isaac Newton

When the Great Plague of London ravaged through the British city beginning in 1665, Issac Newton was a student at Trinity College, Cambridge. As described in Gale Christianson's Isaac Newton , a few months after acquiring his undergraduate degree in the spring of that year, the 23-year-old retreated to his family farm of Woolsthorpe Manor, some 60 miles northwest of Cambridge. Along with being located a safe distance from the carriers of the horrific disease that was wiping out the population of the city, Woolsthorpe provided the sort of quiet, serene environment that allowed a mind like Newton's to journey, uninterrupted, to the farthest reaches of the imagination. This period is now known as annus mirabilis – the "year of wonders."

READ MORE: How Isaac Newton Changed Our World

Newton helped develop calculus

First, he continued the work on mathematics that had engaged his mental acuities until being shut out of Trinity. The issue at hand was determining universal equations involving fluctuating quantities, an issue that had been tackled, on a limited scale, by the French mathematicians René Descartes and Pierre de Fermat.

By the end of 1666, Newton had effectively solved this problem with a series of papers on the rules of "fluxions," now known as calculus.

Isaac Newton

He analyzed color, light and the spectrum

Newton also turned his attention to the study of optics, and the prevailing wisdom that every color on the spectrum was a mix of dark and white light. He conducted an experiment in which he drilled a tiny hole in the shutter of his bedroom window, intercepted the ensuing light beam with a prism, and then placed a second prism in the path of those refracted beams.

The resulting panorama allowed Newton to calculate the angle of each refracted color. More importantly, it revealed the stream of colors as unchanged – proof that colors were not modifications of white light, but that white light is comprised of all components of the spectrum.

Newton studied gravity, which aided in the creation of his laws of motion

Finally, this was the period that birthed the Newtonian legend of the falling apple and the thump on the head that led to the deduction of gravity. Things didn't exactly unfold in that manner, but Newton did get to thinking about the principles of inertia and how an airborne apple, or any object, is prevented from flying off the rotating Earth into space.

The force that pulls the apple down must be the same one that pulls the moon to the Earth, he decided. Furthermore, the moon must also apply that same attracting force toward the Earth, albeit on a lesser scale. This led to the law of universal gravitation, which holds that those forces are proportional to the product of their masses and inversely proportional to the square of the distance between them.

He didn't quite get his calculations to work out at the time – he was more successful in this endeavor years later, before the 1687 publication of his fame-cementing Principia .

Meanwhile, the deadly plague abated by spring 1667, paving the way for Newton to return to Cambridge and demonstrate that the unexpected changes to his lifestyle during those dark days of England would, in turn, change the rest of the world forever.

preview for Biography Scientists & Inventors Playlist

Famous Mathematicians

antique compass

Did This Newly Found Compass Belong to Copernicus?

albert einstein sitting in front of a bookcase with his arms folded

The Solar Eclipse That Made Albert Einstein a Star

engraving of mathematician and engineer archimedes sitting at desk

Archimedes: The Mathematician Who Discovered Pi

black and white sketch of benjamin banneker

Benjamin Banneker

stephen hawking smiles at the camera while sitting in his wheelchair in front of a green chalkboard with written equations, he wears a dark suit jacket and blue collared shirt with white pinstripes

22 Famous Scientists You Should Know

Charles Babbage

Charles Babbage

Blaise Pascal

Blaise Pascal

leonhard euler

Leonhard Euler

ada lovelace

Ada Lovelace

portrait of valerie thomas

Valerie Thomas

Galileo

IMAGES

  1. Isaac Newton Biography

    isaac newton scientist biography

  2. Isaac Newton Biography

    isaac newton scientist biography

  3. Buy The Great Scientists- Isaac Newton (Inspiring biography of the

    isaac newton scientist biography

  4. Sir Isaac Newton biography

    isaac newton scientist biography

  5. Isaac Newton Biografia

    isaac newton scientist biography

  6. Isaac Newton

    isaac newton scientist biography

VIDEO

  1. BIOGRAPHY OF ISAAC NEWTON

  2. Scientist Isaac Newton's experiment!

  3. Scientist: An English Biography

  4. Isaac Newton's Incredible Discoveries Uncovered!

  5. Isaac Newton #viral #shorts #ytshorts #science #facts #

  6. Isaac Newton facts #isaacnewton #newton #facts #history

COMMENTS

  1. Isaac Newton

    Isaac Newton (born December 25, 1642 [January 4, 1643, New Style], Woolsthorpe, Lincolnshire, England—died March 20 [March 31], 1727, London) was an English physicist and mathematician who was the culminating figure of the Scientific Revolution of the 17th century. In optics, his discovery of the composition of white light integrated the phenomena of colours into the science of light and ...

  2. Isaac Newton

    Isaac Newton was an English physicist and mathematician famous for his laws of physics. He was a key figure in the Scientific Revolution of the 17th century.

  3. Isaac Newton

    Sir Isaac Newton FRS (25 December 1642 - 20 March 1726/27 [a]) was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author who was described in his time as a natural philosopher. [7] He was a key figure in the Scientific Revolution and the Enlightenment that followed. His pioneering book Philosophiæ Naturalis Principia Mathematica ...

  4. Isaac Newton ‑ Facts, Biography & Laws

    Sir Isaac Newton (1643‑1727) was an English mathematician and physicist who developed influential theories on light, calculus and celestial mechanics. Years of research culminated with the 1687 ...

  5. Biography Sir Isaac Newton

    Biography Sir Isaac Newton. Sir Issac Newton (1643- 1726) was an English mathematician, physicist and scientist. He is widely regarded as one of the most influential scientists of all time, developing new laws of mechanics, gravity and laws of motion. His work Principia Mathematica ( 1687) laid the framework for the Scientific Revolution of the ...

  6. How Isaac Newton Changed Our World

    One of the most influential scientists in history, Sir Isaac Newton's contributions to the fields of physics, mathematics, astronomy and chemistry helped usher in the Scientific Revolution. And ...

  7. Isaac Newton

    Isaac Newton (1642-1727) was an English mathematician and physicist widely regarded as the single most important figure in the Scientific Revolution for his three laws of motion and universal law of gravity. Newton's laws became a fundamental foundation of physics, while his discovery that white light is made up of a rainbow of colours revolutionised the field of optics.

  8. Life and works of Isaac Newton

    Isaac Newton, portrait by Godfrey Kneller, 1689. Sir Isaac Newton, (born Jan. 4, 1643, Woolsthorpe, Lincolnshire, Eng.—died March 31, 1727, London), English physicist and mathematician. The son of a yeoman, he was raised by his grandmother. He was educated at Cambridge University (1661-65), where he discovered the work of René Descartes.

  9. Isaac Newton's Life

    I INTRODUCTION. Newton, Sir Isaac (1642-1727), mathematician and physicist, one of the foremost scientific intellects of all time. Born at Woolsthorpe, near Grantham in Lincolnshire, where he attended school, he entered Cambridge University in 1661; he was elected a Fellow of Trinity College in 1667, and Lucasian Professor of Mathematics in 1669.

  10. Isaac Newton

    Sir Isaac Newton (1642-1727) was one of the world's most famous and influential thinkers. He founded the fields of classical mechanics, optics and calculus, among other contributions to algebra and thermodynamics. His concept of a universal law--one that applies everywhere and to all things--set the bar of ambition for physicists since. Newton held the position of Lucasian Professor of ...

  11. Isaac Newton

    Lived 1643 to 1727. Isaac Newton is perhaps the greatest physicist who has ever lived. He and Albert Einstein are almost equally matched contenders for this title. Each of these great scientists produced dramatic and startling transformations in the physical laws we believe our universe obeys, changing the way we understand and relate to the

  12. Sir Isaac Newton biography: Inventions, laws and quotes

    Isaac Newton was born on Christmas Day to a poor farming family in Woolsthorpe, England, in 1642. At the time of Newton's birth England used the Julian calendar, however, when England adopted the ...

  13. Biography of Isaac Newton, Mathematician and Scientist

    Biography of Isaac Newton, Mathematician and Scientist. Sir Isaac Newton (Jan. 4, 1643-March 31, 1727) was a superstar of physics, math, and astronomy even in his own time. He occupied the chair of Lucasian Professor of Mathematics at the University of Cambridge in England, the same role later filled, centuries later, by Stephen Hawking.

  14. Isaac Newton

    Isaac Newton. 25 December 1642 - 20 March 1727 (aged 84) One of the founders of modern physics. Gottfried Kneller. New Scientist once described Isaac Newton as "the supreme genius and most ...

  15. Isaac Newton

    Isaac Newton - Scientist, Physics, Mathematics: Newton was elected to a fellowship in Trinity College in 1667, after the university reopened. Two years later, Isaac Barrow, Lucasian professor of mathematics, who had transmitted Newton's De Analysi to John Collins in London, resigned the chair to devote himself to divinity and recommended Newton to succeed him.

  16. Isaac Newton Biography

    Sir Isaac Newton was born, premature and tiny, in 1642 in Woolsthorpe, England. ... called the "Principia" — considered by many as the greatest science book ever written. Newton's research ...

  17. Isaac Newton

    Sir Isaac Newton (January 4, 1643 - March 31, 1727) was an English physicist, mathematician, astronomer, alchemist, inventor, and natural philosopher, who is generally regarded as one of the most accomplished and influential scientists in history. In his work Philosophiae Naturalis Principia Mathematica, Newton enunciated his law of universal ...

  18. 7 Fascinating Facts about Sir Isaac Newton

    He never knew his father Isaac, who had died months before he was born. Newton's own chances of survival seemed slim at the beginning. He was a premature and sickly infant that some thought ...

  19. Isaac Newton: Who He Was, Why Apples Are Falling

    Vocabulary. Legend has it that Isaac Newton formulated gravitational theory in 1665 or 1666 after watching an apple fall and asking why the apple fell straight down, rather than sideways or even upward. "He showed that the force that makes the apple fall and that holds us on the ground is the same as the force that keeps the moon and planets in ...

  20. Biography: Isaac Newton (1642-1727): One of the World's Greatest

    Isaac Newton built on the ideas of these two scientists and others. He found and proved the answers for which they searched. Isaac Newton was born in Woolsthorpe, England, on December twenty-fifth, sixteen forty-two. He was born early. He was a small baby and very weak. No one expected him to survive. But he surprised everyone.

  21. Biography for Kids: Scientist

    Born: January 4, 1643 in Woolsthorpe, England. Died: March 31, 1727 in London, England. Best known for: Defining the three laws of motion and universal gravitation. Isaac Newton by Godfrey Kneller. Biography: Isaac Newton is considered one of the most important scientists in history. Even Albert Einstein said that Isaac Newton was the smartest ...

  22. Isaac Newton's occult studies

    Colorized engraving after Enoch Seeman's 1726 portrait of Newton. English physicist and mathematician Isaac Newton produced works exploring chronology, and biblical interpretation (especially of the Apocalypse), and alchemy.Some of this could be considered occult.Newton's scientific work may have been of lesser personal importance to him, as he placed emphasis on rediscovering the wisdom of ...

  23. Isaac Newton Changed the World While in Quarantine From the ...

    When the Great Plague of London ravaged through the British city beginning in 1665, Issac Newton was a student at Trinity College, Cambridge. As described in Gale Christianson's Isaac Newton, a ...

  24. Newton-Hooke priority controversy for the inverse square law

    Newton, faced in May 1686 with Hooke's claim on the inverse square law, denied that Hooke was to be credited as author of the idea. Among the reasons, Newton recalled that the idea had been discussed with Sir Christopher Wren previous to Hooke's 1679 letter. [12] Newton also pointed out and acknowledged prior work of others, [13] including Bullialdus, [3] (who suggested, but without ...

  25. Isaac Newton Telescope

    The Isaac Newton Telescope or INT is a 2.54 m (100 in) optical telescope run by the Isaac Newton Group of Telescopes at Roque de los Muchachos Observatory on La Palma in the Canary Islands since 1984.. Originally the INT was situated at Herstmonceux Castle in Sussex, England, which was the site of the Royal Greenwich Observatory after it moved away from Greenwich due to light pollution.

  26. Ньютон, Исаак

    Сэр Исаа́к Нью́то́н [K 1] (англ. Isaac Newton, английское произношение: [ˌaɪzək ˈnjuːtən]; 25 декабря 1642 года — 20 марта 1727 года по юлианскому календарю, действовавшему в Англии до 1752 года; или 4 января 1643 года — 31 марта 1727 года по ...